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Abstract

We examined the sequence of decision problems
that are encountered in the game of Tetris and
found that most of the problems are easy in the
following sense: One can choose well among the
available actions without knowing an evaluation
function that scores well in the game. This is a
consequence of three conditions that are preva-
lent in the game: simple dominance, cumulative
dominance, and noncompensation. These condi-
tions can be exploited to develop faster and more
effective learning algorithms. In addition, they
allow certain types of domain knowledge to be
incorporated with ease into a learning algorithm.
Among the sequential decision problems we en-
counter, it is unlikely that Tetris is unique or rare
in having these properties.

1. Introduction
Many problems humans encounter are sequential in nature,
where a successful outcome depends not on a single de-
cision but on a series of related decisions. Furthermore,
typically there is uncertainty regarding the consequences
of decisions. These types of problems, known as sequen-
tial decision problems under uncertainty, remain challeng-
ing for machine learning despite successful applications in
large, complex domains such as the game of Go (Silver
et al., 2016).

One means to developing faster, more effective learning
algorithms is to study the natural environments in which
sequential decision problems are encountered. It is well

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

known that many aspects of the natural world have regulari-
ties. For example, networks observed in nature are very dif-
ferent from random networks. They exhibit homophily (the
tendency of connected nodes to have correlated attributes)
and they tend to have some nodes with a very high degree.
Both of these properties have informed the development
of algorithms that can search natural networks much more
effectively than they search random networks (Kleinberg,
2000; Watts et al., 2002; Adamic et al., 2001; Şimşek &
Jensen, 2008). It is possible that natural sequential-decision
environments similarly exhibit regularities that can inform
the development of learning algorithms.

We examined one particular environment in depth: Tetris,
one of the most well-known and liked video games of all
time. Our interest is not in Tetris per se but in using it as a
platform for identifying regularities in sequential-decision
environments.

We found that most individual problems encountered while
playing Tetris are easy in the following sense: One can
choose well among the available actions without knowing
an evaluation function that scores well in the game. Fur-
thermore, there is an intuitive feature that typically elimi-
nates a substantial number of actions without eliminating
the best action. The underlying reasons are three types of
regularities in the domain, which we explain in detail in the
following sections.

Our analysis is motivated by earlier results in the decision-
making literature on single-shot problems. In the following
sections, we review this literature and describe our results
in Tetris. Our analysis leads to two immediate questions
for further research. The first is whether Tetris is unique or
rare in having these regularities. The second is how these
regularities can be exploited for faster, more effective learn-
ing. We discuss both questions in some detail, presenting
additional results from the game of backgammon.
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2. Background
Consider the following judgment problem: You are given a
number of objects and are asked to determine which object
has the highest value on a specified (unobserved) criterion.
For example, you may be given a number of stocks and
asked to determine which stock will have a higher rate of
return in five years, given a number of features on each
stock, for example, the type of industry and the return rate
in the last 12 months. This problem is called comparison.

There are three conditions under which the comparison
problem becomes easy if the relationship between the fea-
tures and the criterion is linear. When these conditions
hold, one can decide correctly without knowing the exact
linear relationship between the features and the criterion.
It suffices to know only the sign of the weights, and in
two of the conditions, also the order in which the weights
decrease. These conditions are simple dominance (Hog-
arth & Karelaia, 2006), cumulative dominance (Baucells
et al., 2008), and noncompensation (Martignon & Hof-
frage, 2002; Katsikopoulos, 2011; Şimşek, 2013).

These conditions were found to be prevalent in a large, di-
verse collection of natural data sets (Şimşek, 2013). In 51
data sets examined in this study, on average, simple dom-
inance held in 16%, cumulative dominance in 62%, and
noncompensation in 85% of the paired comparisons be-
tween objects. Furthermore, with principled, probabilistic
approximations to dominance, the prevalence of simple and
cumulative dominance increased substantially.

Below we explain the three conditions and give a simple il-
lustrative example. Let y = w0+w1x1+w2x2+...+wkxk
denote the linear relationship between the features and
the criterion, where y is the criterion, w0 is the intercept,
w1, ..., wk are the weights, and x1, ..., xk are the feature
values. Let xAi denote the value of the ith feature for object
A. We assume, for ease of exposition and without loss of
generality, that all weights are positive and that the weights
are ordered in decreasing magnitude.

2.1. Simple dominance

Object A is said to dominate object B if xAi ≥ xBi ,∀i, and
∃i such that xAi > xBi . If object A dominates object B, one
can be certain that A has the higher criterion value. We
refer to dominance as simple dominance to differentiate it
from cumulative dominance, discussed next.

2.2. Cumulative dominance

Let zi =
∑i

j=1 xj ,∀i, denote the cumulative profile of an
object. Object A is said to cumulatively dominate object
B if zAi ≥ zBi ,∀i, and ∃i such that zAi > zAi . If object A
cumulatively dominates object B, one can be certain that

A has the higher criterion value. To check for cumulative
dominance, one needs to know the order in which feature
weights decrease, which we refer to as feature order.

Simple dominance implies cumulative dominance. Simple
and cumulative dominance are both transitive: Given three
objects A, B, and C, if A dominates B and B dominates C,
then A dominates C.

2.3. Noncompensation

Consider the following lexicographic decision rule: Order
the features in decreasing magnitude of their weights; iden-
tify the first feature that discriminates1 between the objects;
choose the object whose value on this feature is higher. If
this decision rule decides correctly, we say that the decision
problem exhibits noncompensation.

Noncompensation holds with probability 1 if the features
are binary, taking values of 0 or 1, and the weights satisfy
the set of constraints wi >

∑k
j=i+1 wj , i = 1, 2, ..., k − 1.

Such weights are called noncompensatory. An example is
the sequence 1, 0.5, 0.25, 0.125. If features are numeric,
noncompensation may or may not hold, depending on the
weights of the linear function and the feature values of the
objects being compared.

Both simple and cumulative dominance imply noncompen-
sation.

2.4. An illustrative example

As an illustrative example, consider a pile of U.S. coins,
where 〈x$1, x50¢, x25¢, x10¢, x5¢, x1¢〉 denotes the num-
ber of each coin type in the pile. The dollar value of the
pile is described by the linear function x$1 + 0.5x50¢ +
0.25x25¢ + 0.1x10¢ + 0.05x5¢ + 0.01x1¢.

Pile 〈4, 4, 4, 0, 0, 0〉 simply dominates pile 〈3, 4, 2, 0, 0, 0〉.
Even if the dollar value of the coin types are not known, the
first pile can be identified as the one with the higher value.

Pile 〈6, 4, 2, 0, 0, 0〉 cumulatively dominates (but does not
simply dominate) pile 〈3, 5, 1, 0, 0, 0〉. If the dollar value
of each coin type is unknown but the coins can be ranked
from most to least valuable, the first pile can be identified
as the one with the higher value.

Pile 〈4, 4, 4, 0, 0, 0〉 neither simply nor cumulatively dom-
inates pile 〈2, 8, 2, 0, 0, 0〉. A lexicographic decision rule
selects the first pile because it contains more of the highest-
valued coin type. It would be correct in this particular case
but is not guaranteed to be correct in general—unless each
pile has at most one of each coin type (because the weights
are noncompensatory).

1A feature discriminates between two objects if its value dif-
fers on the two objects.
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ID Feature Weight Sample value

1 Rows with holes −24.04 6
2 Column transitions −19.77 20
3 Holes −13.08 12
4 Landing height −12.63 10.5
5 Cumulative wells −10.49 26
6 Row transitions −9.22 56
7 Eroded piece cells +6.60 0
8 Hole depth −1.61 12

Figure 1. Sample board during a game of Tetris, showing a tetrimino falling from the top of the grid; the seven possible tetriminos; and a
table showing the features used by BCTS, their weight in the linear evaluation function, and their value on the sample board if the falling
tetrimino is allowed to drop without intervention. The features are described in the text.

3. Objective
Sequential decision problems can be viewed as a series of
comparison problems, albeit ones that have complex de-
pendencies. At each decision stage, the agent faces the fol-
lowing comparison problem: Among the actions that are
available, choose the one with the highest value. Conse-
quently, the same type of regularities that make judgment
problems easy can potentially make sequential decision
problems easy as well, if learning algorithms are tailored
to exploit them. Our objective is to explore this possibility.

4. Method
We examine Tetris, one of the most well-known and liked
video games of all time. The game is played on a two-
dimensional grid, initially empty. Pieces of different shapes
fall from the top of the grid, one at a time, piling up on
each other. As each piece falls, the player controls where
and how the piece lands by rotating the piece and moving it
horizontally, to the left or to the right, any number of times.
When a row becomes entirely full, the row is deleted, cre-
ating additional space on the grid. The game ends when
there is no space at the top of the grid for the next piece.
The standard grid is 20 cells high and 10 cells wide. The
pieces, called tetriminos, each occupy four cells and have
seven different shapes. Figure 1 shows the standard board
during a game and the seven tetriminos.

It is known that there are tetrimino sequences that termi-
nate the game, no matter how well they are placed (Burgiel,
1997). Finding the optimal placement of tetriminos is NP-
complete even if the whole sequence of tetriminos is known
in advance (Demaine et al., 2003). Tetris has approxi-
mately 1.6× 1060 states.

Artificial players can learn to play very well, removing on
average hundreds of thousands of rows. The best known

player is BCTS (which stands for Building Controllers
for Tetris Systems), a controller developed by Thiery &
Scherrer (2009), who won the 2008 Reinforcement Learn-
ing Competition using a variant of BCTS. The controller
was developed using the cross-entropy algorithm, follow-
ing earlier work by Szita & Lörincz (2006). More recently,
reinforcement learning methods have succeeded in learning
faster but not in learning a better policy (Gabillon et al.,
2013; Scherrer et al., 2015).

BCTS uses a linear evaluation function with eight features.
For each tetrimino falling from the top, the controller eval-
uates all possible legal placements on the board using this
linear evaluation function and selects the placement with
the highest value. The features are described below and
listed in Figure 1, along with their weights and values on
the sample board if the falling tetrimino is allowed to drop
without intervention.

Two of the key concepts used in the features are holes and
wells. A hole is an empty cell that has one or more full
cells placed higher than itself in the same column. A well
is a succession of empty cells in a column such that the
immediate cells on the left and the right are full (where the
outside of the grid is assumed to be full).

Rows with holes is the number of rows that have at
least one hole.

Column transitions are determined by examining each
column from one end to the other and counting how
many times there is a transition from a full cell to an
empty cell or the reverse. It is assumed that the outside
of the grid is full at the bottom but empty at the top.

Holes is the number of holes.

Landing height equals (y1 + y2)/2, where y1 and y2
are the lowest and the highest cell height, respectively,
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occupied by the current tetrimino, before any rows are
cleared.

Cumulative wells is the cumulative depth of the cells
in a well, summed for all wells. For example, for a
well of depth 3, the cumulative depth of its cells is
1 + 2 + 3 = 6.

Row transitions are determined by examining each
row from one end to the other, counting how many
times there is a transition from a full cell to an empty
cell or the reverse. It is assumed that the outside of the
grid is full (both on the left and on the right).

Eroded piece cells is the number of lines cleared by
the placement multiplied by the number of cells of the
current piece cleared along with the line(s). The max-
imum value of this feature is 16, observed when four
lines are cleared at once.

Hole depth is the sum, for all holes on the board, of
the number of full cells directly above the hole, in the
same column.

Our first objective was to examine the states encountered
during the game to identify how often the following condi-
tions hold: simple dominance, cumulative dominance, and
noncompensation. Below we describe our implementation
of the game and how we collected data.

4.1. Our implementations of Tetris

We developed two implementations of Tetris, one for col-
lecting data from human subjects and one for performing
simulation experiments with artificial players. Both imple-
mentations had the standard board size of 10 × 20. The
next piece was selected uniformly at random. A reward
of +1 was given for every deleted row. The total reward
received in a game is called the score.

Human subjects played with an implementation of the
game similar to the standard video game. Tetriminos fell
from the top one piece at a time, at a comfortable speed.
The game terminated when the next piece did not fit the
board.

On the other hand, the implementation for artificial play-
ers required only the high-level decision of where, and in
what orientation, to place the piece. In addition, the game
was slightly simplified as is typical in the literature (Szita
& Lörincz, 2006; Thiery & Scherrer, 2009; Scherrer et al.,
2015). The top four rows were used solely to display the
next piece. The legal moves were those that could be per-
formed by rotating and translating the piece (to the left or
the right) as desired in this display area and then dropping
it. The game terminated when the player was not able to fit
the next piece in the lower 16 rows of the grid.

4.2. Data collection

The states encountered during the game depend on the pol-
icy followed by the agent. We generated three different data
sets that differed on how the agent played the game. One
sample in each data set consisted of the current board con-
figuration and the identity of the next piece to be placed.
The data sets are described below.

BCTS was obtained by playing 20 games following the
BCTS policy. Game scores ranged between 49,013 and
3,381,366 (median=709,636). From each game, we ran-
domly selected 10,000 samples.

Random was obtained by selecting actions uniformly at
random, playing as many games as necessary to generate
200,000 samples. A random policy clears lines very rarely,
hence the games were very short, lasting 12–36 moves (me-
dian=22), with scores ranging from 0 to 5 (median=0).

People was obtained by asking 13 acquaintances to play
the game as long as they wished. Before their moves were
recorded, each participant had a chance to practice playing
the game for a duration of their own choosing. The length
of play ranged from 172 to 4,230 moves among the partic-
ipants, with a median value of 554 moves. We gathered a
total of 14,006 samples.

5. Results
Before we present the results, we define a few terms. Recall
that a sample consists of the current board configuration
and the identity of the next piece. An action is any legal
placement of the next piece on the current board. A con-
sideration set is a subset of the available actions. We define
four different types of consideration sets: legal, distinct,
Pareto-simple, and Pareto-cumulative, explained in detail
below. An ideal placement is one that the linear evalua-
tion function of BCTS ranks as the best. Because multiple
placements can have identical feature values, there may be
more than one ideal placement.

5.1. Dominance

Figure 2 shows the prevalence of simple and cumulative
dominance. The figure displays twelve plots, showing the
empirical probability distribution function of the size of
four consideration sets under the three policies. By fol-
lowing each column from top to bottom, one can observe
the reduction in the size of the consideration set as simple
and cumulative dominance are applied as a filter, under a
given policy.

Legal contains all legal placements of the piece. Its prob-
ability distribution has three peaks at 9, 17, and 34. These
are the number of possible placements on the board for var-
ious pieces, when there is enough room. For instance, the
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Figure 2. Prevalence of simple and cumulative dominance in Tetris. Each plot shows the empirical probability density function (PDF)
of the size of the consideration set while a particular policy was being followed. All plots are drawn on the same scale. Axis labels are
shown on the outer plots only. By following each column from top to bottom, one can observe the reduction in the number of placements
as simple and cumulative dominance are applied as a filter.

square tetrimino can be placed in nine different ways on an
empty board. When the board is almost full, the number of
possibilities is smaller. Random policy experiences a full
board much more often than the other two policies, which
is why the probability distribution is slightly different for
this policy.

Occasionally, two different legal placements yield the same
feature values, which means that the BCTS controller—
and any other feature-based controller using the same
features—would not distinguish between these placements,
assigning them equal value.

Distinct filters the legal set by removing all but one of
those legal placements whose feature values are identical.
Consequently, every placement in this set has a distinct set

of feature values.

Pareto-simple filters the distinct set by further elim-
inating placements that are simply dominated by one or
more other placements.

Pareto-cumulative filters the Pareto-simple set by
further eliminating placements that are cumulatively dom-
inated by one or more other placements (recall that simple
dominance implies cumulative dominance). Mathematical
properties of dominance ensure that both Pareto-simple and
Pareto-cumulative sets contain at least one ideal placement.

Figure 2 shows that both simple and cumulative dominance
reduced the size of the consideration set substantially. This
is true for all three policies.
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Figure 3. Elimination of alternative placements via the lexicographic decision rule. Solid lines show the empirical Cumulative Distribu-
tion Function (CDF) of the number of alternatives remaining after applying each of the first four features sequentially. Notice that on
two data sets (BCTS and People), lines belonging to features 1–3 are almost identical. Plus signs show the proportion of cases where the
ideal alternative remained under consideration after processing feature 1: if the proportion is 1, the plus sign is on the solid gray line.

Under the random policy, simple dominance reduced the
median number of alternatives from 16 to 3, while cumula-
tive dominance further reduced it to 2. In other words, or-
dinarily, the player had on average 16 distinct placements
to consider. By simply knowing the sign of the weights (or
guessing them correctly), the player can reduce this num-
ber to 3. And if the feature order is also known, this number
can be reduced to 2.

Under the policies followed by BCTS and people, the re-
duction in the median size of the consideration set was
larger: from 17 to 3 with simple dominance, and to 1 with
cumulative dominance. This is remarkable. A considera-
tion set of size one means that there is no decision to make:
only one placement remains and it is known with certainty
that this is an ideal placement.

5.2. Noncompensation

To each of the three data sets, we applied the lexicographic
decision rule as follows. We started with the distinct set
of placements; we used each feature sequentially, one at a
time, to reduce the number of placements further and fur-
ther until there was only one element left. With each fea-
ture, we kept only the placements that had the best (high-
est or lowest, depending on the sign of the feature weight)
value for this feature, eliminating all the rest. We used the
features in the order listed in Figure 1, which corresponds
to the feature order of the BCTS controller.

The rate of noncompensation is the proportion of samples
in which the lexicographic decision was an ideal decision.
This number was 68.1, 69.0, and 52.0% under BCTS, peo-
ple, and random controllers, respectively.

Figure 3 shows the lexicographic process on each data set.
The vertical axis shows the empirical cumulative distribu-
tion function (CDF). Feature 1 (rows with holes) substan-

tially reduced the alternatives considered while generally
keeping the ideal alternative. Specifically, it reduced the
median number of actions from 17 to 4, 9, and 4, while
keeping the ideal action in the consideration set in 98%,
99%, and 93% of the cases, in BCTS, random, and people
data sets, respectively.

5.3. Strength of overall play

We examined trajectories under three additional policies:
selecting randomly among the Pareto-simple set, selecting
randomly among the Pareto-cumulative set, and following
the lexicographic decision rule. Figure 4 shows the distri-
bution of scores obtained by these policies. To help put
these numbers into context, consider that reaching a score
of 80 is equivalent to clearing the legal placement area (16
rows) 5 times.

We also computed the probability of making the ideal
choice on a randomly chosen sample along the trajectory.
This number was 0.38 for the policy that selected among
Pareto-simple and 0.75 for Pareto-cumulative.

6. Discussion
Our analysis showed that simple dominance, cumula-
tive dominance, and noncompensation are all prevalent in
Tetris. Furthermore, there is a feature (rows with holes) that
eliminates a substantial number of actions while only rarely
eliminating the best action. This feature is not complex but
simple and intuitive.

Our findings raise two immediate questions. First, is Tetris
unique or rare among sequential decision problems in hav-
ing these properties? And second, how can algorithms
make use of these properties for learning more effectively?
We discuss each question in turn.
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Figure 4. Scores obtained by policies that exploit simple dominance, cumulative dominance, and noncompensation. In contrast, a
controller that selects actions randomly almost always ended the game with a score of 0 while BCTS scores ranged between 49,013 and
3,381,366 (median=709,636).

6.1. Is Tetris special?

Our results echo earlier findings on one-shot decision prob-
lems in natural environments. Dominance and noncom-
pensation were found to be prevalent when comparing ob-
jects (Şimşek, 2013). In addition, presence of a very strong
feature, one that can handle much of the workload by it-
self, was reported in classification and comparison prob-
lems (Holte, 1993; Şimşek & Buckmann, 2015). Given
similar findings in simpler problems, and given that Tetris
is the first sequential decision problem we analyzed, it
seems unlikely that Tetris is special. This view is also sup-
ported by a limited analysis we performed on the game of
backgammon.

Backgammon is one of the oldest board games known,
beloved in many regions of the word. It has more than 1020

possible board positions. In 1979, a hand-crafted artificial
player developed by Berliner (1980) beat the human world
champion. Later, Tesauro (2002) developed a better player
that learned through self-play using neural networks, one
whose level of play surpassed the best human players.

We analyzed 1,838 games of backgammon played at top
tournaments in the world, including the Monte Carlo World
Championship, in 1973–2011. We obtained the data from
an online repository maintained by Hübener to examine the
prevalence of simple dominance. We examined positions
where the two opponents still have contact—otherwise, the
game simplifies considerably and depends mostly on the
luck of the roll. This gave us 55,442 samples to examine.
We used the following features, in the direction indicated
in parenthesis: pip count (−), blot exposure (−), points oc-
cupied in home board (+), prime formation (+), pip count
of opponent (+), blot exposure of opponent (+).

It should be noted that backgammon is a complex, strate-
gic game. There are different high-level strategies that the
players follow, such as a running game, blocking game,
or back game, under which the desired movements of the
pieces are very different. For instance, while a lower pip
count is generally desired, when one is playing a back

game, a higher pip count is advantageous. What we present
is only a crude analysis that does not take context into ac-
count.

Figure 5 shows the results. Backgammon can have a high
branching factor, especially if the dice show a double. The
number of legal plays of the dice ranged from 0 to 515
(median=13; 95th percentile=64). In contrast, the size of
the Pareto-simple set ranged from 0 to 259 (median=5; 95th
percentile=22). In 77.8% of the positions examined, the
action chosen by the tournament player was in the Pareto-
simple set.

6.2. How can learning algorithms exploit these
properties?

One possibility is to reduce the action choices of the agent
to Pareto-simple and Pareto-cumulative sets. We give two
examples. First, we applied approximate λ-policy iteration
to Tetris, using the same set of features and parameters de-
scribed by Bertsekas & Tsitsiklis (1996). Each iteration
used 100,000 samples. Second, we applied AmpiQ, which
belongs to the family of approximate modified policy iter-
ation (AMPI) algorithms (Scherrer et al., 2015). We used
a rollout-set size of 20,000 and rollout length of 15. We
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used the features listed in Figure 1 along with those used
by Lagoudakis et al. (2002).

Figure 6 shows learning curves with and without first
reducing the action set to Pareto-simple and to Pareto-
cumulative, using the features listed in Figure 1. The figure
shows the distribution of the median score at each itera-
tion (100 replications). The solid lines connect the median
values, while the shaded areas show the 25th and 75th per-
centiles. The learning curves show clear improvements in
the learning rate and in the quality of the policies learned.

Another promising research direction is to examine very
simple policies. Dominance and noncompensation allow
simple rules, such as lexicographic and tallying heuris-
tics (Gigerenzer et al., 1999), to make correct decisions in
one-shot problems. Very simple policies inspired by these
heuristics may be able to learn reasonably-well policies
within short periods of interaction with the environment.

7. Concluding remarks
This work explored a novel direction in learning to solve
sequential decision problems, leveraging insights from var-
ious research fields such as cognitive psychology and op-
erations research. We examined whether three mathemat-
ical properties—which were found to be useful in making
one-shot decisions—also hold for sequential decisions. We
found that the properties were prevalent and could be em-
bedded in learning algorithms in the games of Tetris and
backgammon.

As noted earlier, two important future directions are to
study additional sequential decision problems and to ex-
plore how learning algorithms can further exploit these
properties. Additional research directions include: (1) tak-

ing context into account when identifying Pareto sets, (2)
using principled probabilistic approximations to simple and
cumulative dominance (Şimşek, 2013), (3) exploring the
use of simple dominance for nonlinear value functions—
we have discussed dominance only for a linear function, but
simple dominance applies to a much broader set of func-
tions.

Traditionally, it has been difficult to inject domain knowl-
edge into reinforcement learning algorithms. The work
described here presents an easy way of doing so for cer-
tain types of domain knowledge. The type of knowledge
required to construct Pareto-simple and Pareto-cumulative
sets, or close approximations of them, may be readily avail-
able in many domains. For example, in Tetris, feature di-
rections are all intuitive, which allows the Pareto-simple set
to be constructed easily.

Our results make a strong case for the utility of studying
natural decision problems. While synthetic domains play
an important role in developing learning algorithms, study-
ing the structural regularities of natural problems can yield
additional insights for learning effectively.
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