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A Detail of the optimization of TC(X;Y )

We need to optimize the following objective.
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If we take the derivative of this expression (along with
the constraint that p(y|x) should be normalized) and set
it equal to zero, the following simple fixed point equation
emerges.
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Surprisingly, optimizing this objective over possible func-
tions has a fixed point solution with a simple form. This
leads to an iterative solution procedure that actually corre-
sponds to a special case of the one considered in (Ver Steeg
& Galstyan, 2015). There it is shown that each iterative up-
date of the fixed-point equation increases the objective and
that we are therefore guaranteed to converge to a local op-
timum of the objective. In short, we consider the empirical
distribution over observed samples. For each sample, we
start with a random probabilistic label. Then we use these
labels to estimate the marginals, p(x

i

|y), then we use the
fixed point to re-estimate p(y|x), and so on until conver-
gence.

Also, note that we can estimate the value of the objective in
a simple way. The normalization term, Z(x) is computed
for each sample by just summing over the two values of
Y = y, since Y is binary. The expected logarithm of Z, or
the free energy is an estimate of the objective (Ver Steeg
& Galstyan, 2015).

Algorithmic details The code implementing this opti-
mization is included as a module in the sieve code (Ver
Steeg). The algorithm is described in Alg. 1. Note we
use � as the discrete delta function. The complexity is
O(k ⇥ N ⇥ n), where n is the number of variables, N
is the number of samples, and k is the cardinality of the
latent factor, Y . Because the solution only depends on es-
timation of marginals between X

i

and Y , the number of
samples needed for accurate estimation is small (Ver Steeg
& Galstyan, 2015).

Labeling test data The fixed point equation above essen-
tially gives us a simple representation of the labeling func-
tion in terms of some parameters which, in this case, just
correspond to the marginal probability distributions. We
simply input values of x from a test set into that equation,
and then round y to the most likely value to generate labels.

Algorithm 1 Optimizing TC(X; Y )

Input: Data matrix, xl

i

,
i = 1, . . . , n variables, l = 1, . . . , N samples.
Specify k: Cardinality of Y = 1, . . . , k
repeat
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until Convergence

Missing data Note that missing data is handled quite
gracefully in this scenario. Imagine that some subset of the
X

i

’s are observed. Denote the subset of indices for which
we have observed data on a given sample with G and the
subset of random variables as x

G

. If we solved the opti-
mization problem for this subset only, we would get a form
for the solution like this:
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In other words, we simply omit the contribution from un-
observed variables in the product.

B Proof of Theorem 2.1
We begin by adopting a general definition for “representa-
tions” and recalling a useful theorem concerning them.

Definition The random variables Y ⌘ Y1, . . . , Ym

con-
stitute a representation of X if the joint distribution fac-
torizes, p(x, y) =

Q
m

j=1 p(y
j

|x)p(x), 8x 2 X , 8j 2
{1, . . . , m}, 8y

j

2 Y
j

. A representation is completely de-
fined by the domains of the variables and the conditional
probability tables, p(y

j

|x).

Theorem B.1. Basic Decomposition of Information (Ver
Steeg & Galstyan, 2015)

If Y is a representation of X and we define,

TC
L

(X; Y ) ⌘
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then the following bound and decomposition holds.

TC(X) � TC(X; Y ) = TC(Y ) + TC
L

(X; Y ) (8)

Theorem. Incremental Decomposition of Information

Let Y be some (deterministic) function of X1, . . . , Xn

and
for each i = 1, . . . , n, ¯X

i

is a probabilistic function of
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X
i

, Y . Then the following upper and lower bounds on
TC(X) hold.
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Proof. We refer to Fig. 1(a) for the structure of the graph-
ical model. We set ¯X ⌘ ¯X1, . . . , ¯X

n

, Y and we will write
¯X1:n to pick out all terms except Y . Note that because
Y is a deterministic function of X , we can view ¯X

i

as
a probabilistic function of X

i

, Y or of X (as required by
Thm. B.1). Applying Thm. B.1, we have

TC(X;

¯X) = TC(

¯X) + TC
L

(X;

¯X).

On the LHS, note that TC(X;

¯X) = TC(X)�TC(X| ¯X),
so we can re-arrange to get

TC(X) � (TC(

¯X) + TC(X; Y ))

= TC(X| ¯X) + TC
L

(X;

¯X) � TC(X; Y ).
(10)

The LHS is the quantity we are trying to bound, so we focus
on expanding the RHS and bounding it.

First we expand TC
L
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¯X) =

P
n

i=1 I(X
i

;

¯X) �P
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information we expand the first term.
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Rearranging, we take out a term equal to TC(X; Y ).
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The conditional mutual information, I(A; B|C) =

I(A; BC) � I(A; C). We expand the first instance of CMI
in the previous expression.
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Since Y = f(X), the first and fourth terms cancel. Finally,
this leaves us with
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Now we can replace all of this back in to Eq. 10, noting that
the TC(X; Y ) terms cancel.

TC(X) � (TC(
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First, note that total correlation, conditional total corre-
lation, mutual information, conditional mutual informa-
tion, and entropy (for discrete variables) are non-negative.
Therefore we trivially have the lower bound, LHS �
�P

n

i=1 I(

¯X
i

; Y ). All that remains is to find the upper
bound. We drop the negative mutual information, expand
the definition of TC in the first line, then drop the negative
of an entropy in the second line.
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The equality in the last line can be seen by just expanding
all the definitions of conditional entropies and conditional
mutual information. These provide the upper and lower
bounds for the theorem.

C An algorithm for perfect reconstruction
of remainder information

We will use the notation of Fig. 1(a) to construct remain-
der information for one variable in one layer of the sieve.
The goal is to construct the remainder information, ¯X

i

, as
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Figure B.1. An illustration of how the remainder information, x̄i,
is constructed from statistics about p(xi, y).

a probabilistic function of X
i

, Y so that we satisfy the con-
ditions of Lemma 2.2,

(i) I(

¯X
i

; Y ) = 0 (ii) H(X
i

| ¯X
i

, Y ) = 0.

We need to write down a probabilistic function p(x̄
i

|x
i

, y)

so that, for the observed statistics, p(x
i

, y), these condi-
tions are satisfied. There are many ways to accomplish this,
and we sketch out one solution here. The actual code we
use to generate remainder information for results in this pa-
per are available (Ver Steeg).

We start with the picture in Fig. B.1 that visualizes the con-
ditional probabilities p(x

i

|y). Note that the order of the x
i

for each value of y can be arbitrary for this scheme to suc-
ceed. For concreteness, we sort the values of x

i

for each
y in order of descending likelihood. Next, we construct
the marginal distribution, p(x̄

i

). Every time we see a split
in one of the histograms of p(x

i

|y), we introduce a cor-
responding split for p(x̄

i

). Now, to construct p(x̄
i

|x
i

, y),
for each x̄

i

= q, for each y = j, we find the unique
value of x

i

= k(j, q) that is directly above the histogram
for p(x̄

i

= q). Then we set p(x̄
i

= q|x
i

, y) = p(x̄
i

=

q)/p(x
i

= k(j, q)|y = j). Now, marginalizing over x
i

,
p(x̄
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|y) = p(x̄
i

), ensuring that I(

¯X
i

; Y ) = 0. Visually, it
can be seen that H(X

i

| ¯X
i

, Y ) = 0 by picking a value of
x̄

i

and y and noting that it picks out a unique value of x
i

in
Fig. B.1.

Note that the function to construct x̄
i

is probabilistic.
Therefore, when we construct the remainder information
at the next layer of the sieve, we have to draw x̄

i

stochas-
tically from this distribution. In the example in Sec. 3 the
functions for the remainder information happened to be de-
terministic. In general, though, probabilistic functions in-
ject some noise to ensure that correlations with Y are for-
gotten at the next level of the sieve. In Sec. 6 we point out
that this scheme is detrimental for lossless compression and
we point out an alternative.

Controlling the cardinality of x̄
i

It is easy to imagine
scenarios in Fig. B.1 where the cardinality of x̄

i

becomes

very large. What we would like is to be able to approx-
imately satisfy conditions (i) and (ii) while keeping the
cardinality of the variables, ¯X

i

, small (so that we can ac-
curately estimate probabilities from samples of data). To
guide intuition, consider two extreme cases. First, imag-
ine setting x̄

i

= 0, regardless of x
i

, y. This satisfies
condition (i) but maximally violates (ii). The other ex-
treme is to set x̄

i

= x
i

. In that case, (ii) is satisfied, but
I(

¯X
i

; Y ) = I(X
i

; Y ). This is only problematic if X
i

is re-
lated to Y to begin with. If it is, and we set ¯X

i

= X
i

, then
the same dependence can be extracted at the next layer as
well (since we pass X

i

to the next layer unchanged).

In practice we would like to find the best solution with a
cardinality of fixed size. Note that this can be cast as an
optimization problem where p(x̄

i

= |x
i

, y) represent ¯k ⇥
k

x

⇥ k
y

variables to optimize over if those are the respec-
tive cardinalities of the variables. Then we can minimize
a nonlinear objective like O = H(X

i

| ¯X
i

, Y ) + I(

¯X
i

; Y )

over these variables. While off-the-shelf solvers will cer-
tainly return local optima for this problem, the optimization
is quite slow, especially if we let k’s get big.

For the results in this paper, instead of directly solving the
optimization problem above to get a representation with
cardinality of fixed size, we first construct a perfect solution
without limiting the cardinality. Then we modify that solu-
tion to let either (i) or (ii) grow somewhat while reducing
the cardinality of x̄

i

to some target. To keep I(

¯X
i

; Y ) = 0

while reducing the cardinality of x̄
i

, we just pick the x̄
i

with the smallest probability and merge it with another
value for x̄

i

. On the other hand, to reduce the cardinality
while keeping H(X

i

| ¯X
i

, Y ) = 0, we again start by finding
the x̄

i

= k with the lowest probability. Then we take the
probability mass for p(x̄

i

= k|x
i

, y) for each x
i

and y and
add it to the p(x̄

i

6= k|x
i

, y) that already has the highest
likelihood for that x

i

, y combination. Note that I(

¯X
i

; Y )

will no longer be zero after doing so. For both of these
schemes (keeping (i) fixed or keeping (ii) fixed) we reduce
cardinality until we achieve some target. For the results in
this paper we alway picked k

x̄i = k
xi + 1 as the target and

we always used the strategy where (ii) was satisfied and we
let (i) be violated. In cases where perfect remainder infor-
mation is impractical due to issues of finite data, we have to
define “good remainder information” based on how well it
preserves the bounds in Thm. 2.1. The best way to do this
may depend on the application, as we saw in Sec. 6.

D More MNIST results
Fig. B.2 shows the same type of results as Fig. 7 but using
test data that was never seen in training. Note that no labels
were used in any training.

There are several plausible to generate new, never before
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Figure B.2. The same results as Fig. 7 but using samples from a test set instead of the training set.

seen images using the sieve. Here we chose to draw the
variables at the last layer of the sieve randomly and inde-
pendently according to each of their marginal distributions
over the training data. Then we inverted the sieve to recover
hallucinated images. Some example results are shown in
Fig. D.1.

Figure D.1. An attempt to generate new images using the sieve.


