Supplementary of “Nonlinear Statistical Learning with Truncated Gaussian
Graphical Models”

1. Training TGGM for Classification

Similar to the regression model, the derivatives of Q(-) can
be derived as
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where Z 2 (21,22, ,zy|. With the gradients, we can
update the model parameters ® using appropriate opti-
mization algorithms, such as SGD and its variants.

The prior expectation E[-|X] can be computed easily
due to p(H|X) comprising of univariate truncated nor-
mals (Johnson et al., 1994). For the posterior expec-
tation E[-|Y,X], we resort to the mean-field VB ap-
proximation. Define S = [sq,82, -+ ,sy]| with 5; £
T,z;. Suppose a fully factorized distribution ¢(H,S) =
Hf\il Hszl q(h;(k))q(s;(k)). Then, we minimize the
KL-divergence between ¢(H,S) and the true posterior
p(Y,S,HX) = I, Nr (h; [Wox; +bo,02Ly) x
N(SZ’Tl(Wlh,—Fbl),TZT?) X Hk#yl I(Sz(k‘) Z O),
with the KL-divergence expressed as
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where (-) means expectation taken w.r.t. ¢(H, S); and H(q)
is the entropy of ¢(H,S). For convenience of presenta-
tion, denote v; = [h! sT]T and V = [vy,va, -+, vyl
Thereby, ¢(H,S) can now be denoted as ¢(V). It is

known that when all g(vs(¢)) except (¢,s) = (k,i) are
known, the KL-divergence is minimized if In g(v;(k)) =
(Inp(yi, vilxi)) 2 (i + const (Jordan et al., 1999). Fol-
lowing the similar procedures and arrangements in regres-
sion, it can be obtained that
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where C'3 represents all terms without reliance on v;(k);
and
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From the fact Ing(v;(k)) =
const, it can be derived that
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where ¢; is defined as ¢;(k) = Yi(k)—Pi (k) {vidg with

P, (k k)
P; = P; — diag(P;). From the distribution ¢(v;(k)), the
expectation E[v;(k)|y;, x;] and variance Var[v;(k)|y;, x;]
using the truncated normal properties. With the fact v; =
W7 sT]7T, the expectations E[H|Y, X], E[HH|Y, X] and
E[S|Y, X] required in the gradient computation can be ob-
tained directly. For s; £ T;z;, we have E[z|y;, x;] =
T;'E [s;|y:, xi], and thus E[Z|Y,X] can be computed
easily.

2. Training Deep TGGM

The training algorithms for deep regression and classifica-
tion TGGMs are almost the same, thus we only present
that for classification only. With similar transformation
in single layer model, we can represent deep classifica-
tion TGGM as p(Y,S,H|X;0) = [IX, p(h;|x;) x
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N (si| Ti(Wah; +bs), T,T]) x ], I(si(k) > 0),
where p(h;|x;) is truncated normal distribution de-
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fined as p(h;x;) = % exp{——Hh’i V;]; iboll” _
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W}I {h; >0} with h; £ [T W77
and H £ [hy, hy,---  hy]. The lengths of hg ) and hZ@)
are denoted as M; and Mo, respectively. It can be seen that
the whole model is very closely related to TGGM and pre-
serves most of the properties of truncated normal, thus can
be trained efficiently similar to above models. The deriva-
tives of Q can be derived as
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where H() £ [hgf),hg), - ,h%)} for ¢ = 1,2. With the
gradients, we can update the model parameters ® using
appropriate optimization algorithms, such as SGD and its
variants.

In deep models, since the prior is also a multivariate trun-
cated normal, it is expensive to compute the prior expec-
tation E[-|X] analytically as that in one-layer case. For the
efficiency of training, we resort to mean-field VB for the es-
timation of both prior and posterior expectations E[-|X] and
E[-|Y,X]. The prior distribution p(h;|x;) can be equiva-
lently written as
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Suppose a fully factorized distribution ¢(h;) =
Hk Lq(hi(k)) with M = M; + M>. We now min-
imize the KL-divergence between ¢(h;) and the true
posterior p(h;|x;). It is known that when all g(hg(¢))
except (¢,s) = (k,i) are known, the KL-divergence is
minimized if Ing(h;(k)) = (Inp(hi|x;)) ;) + const.
By rearranging the terms in In p(h;|x;), it can be easily
obtained that p(h;|x;) = —3Q(k, k)hZ(k) + (8;(k) —
Q(k,—k)h;(—k))h;(k) + InI(h;(k) > 0) + C4. Thus,

we have
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where Qp 2 Q — diag(Q). From the univariate trun-
cated normal ¢g(h;) , we can estimate the prior expectation
E[H|X] easily.

For posterior expectation E[-|Y,X], we also suppose a
fully factorized distribution ¢(v;) with v; = [h' s7]T and
then minimize the KL-divergence. First, we express the
log-likelihood as
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where in deep models P; and ~, are defined as
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Then, it can be known that the KL-divergence is minimized
with ¢(v;(k)) being the same form as (9). The only differ-
ence are the expressions of precision matrix P; and lin-
ear vector 7y,. With the factorized truncated normal distri-
bution, the posterior expectations E[H|Y, X] and covari-
ance E[HH”|Y,X] can be estimated easily using trun-
cated normal properties.
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