Energetic Natural Gradient

A. Derivation of FIM from KLD

In this appendix we show that £ ATF(8)A is a second or-
der Taylor approximation of Dy (p(0)||p(6@ + A)). First,
let
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We begin by deriving equations for the Jacobian and Hes-
sian of g, at 0:
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Next we compute a second order Taylor expansion of
9q(0 + A) around g,(0):
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Notice that
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and by (4)

AT 8-917(9) —

AT P 0)
00 Z
—ar? (mew))

weN

(a)0
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Thus, the first two terms on the right side of (6) are zero,
and thus:
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Next we focus on the Hessian, (5), with ¢ = p(0):
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where (a) comes from taking the derivative of both sides of
(7) with respect to 6. Substituting this into (8) we have that
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B. Derivation of EIM from Energy Distance

In this section we show that ATE(B)A is a second order
Taylor approximation of Dg(p(8), p(6 + A))?. First, let
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where we use d, to denote that d should be the distance
metric at the distribution q. We begin by deriving an ex-
pression for the Jacobian of g, at 6:
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Notice that the last two lines are equal because d, is
symmetric—swap w; and ws in the last line, and you get
the second to last line with d, (w2, w1) = dy(w1,ws). So:
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Next we compute the Hessian of g, at 8:
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Next we compute a second order Taylor expansion of
94(0 + A) around g,(0):
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The first two terms on the right side of (11) are zero, and
thus:
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Next we focus on the Hessian, (10), with ¢ = p(0):
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Substituting this into (12) we have that
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C. Proof of Theorem 1

Let |2] = m, and let D be a m x m distance matrix where
D;j = dpe)(wi,w;). Let M be an m x n matrix where

the i row is W. The EIM can then be written as:
E(0)=—-MTDM.

Recall from (7) that Zm M = (. This means that
each column of M must sum to zero, and thus that for
any x € R™, Mx is a vector whose entries also sum to
0. Hence, if D is conditionally negative definite then £(8)
is negative semidefinite since

(a)
xT€(O)x = —x"TMTDMx > 0,

for all x, where (a) holds from the definition of condition-
ally positive semidefinite matrices.

D. Discussion of CND Distances

Conditionally negative definite distances are related to Eu-
clidean distances, as shown by Schoenberg (1938).

Corollary 1. Assume || < oo and \/dy@g) is a metric
and Euclidean embeddable, that is, there exists a mapping
¢ from S to a Euclidean space with distance d' so that

dpo)y (w1, w2) = d'(p(w1), d(wz)). Then E(8) is posi-
tive semidefinite. For |Q)| < 4, every distance is Euclidean
embeddable, therefore /d, ) being a metric is sufficient
in this case.

The corollary follows directly from Theorem 1 and the
work by Schoenberg (1938) and Rao (1984).

We now provide an example of a distance metric d that is
not conditionally negative definite. We define a distance d
over the set = {1,2,3,4,5} by the number of edges in
the shortest path between two nodes in the graph depicted
in Figure 5. For example, the distance between 1 and 5 is

Figure 5: The distance defined by the length of the short-
est path between two nodes is not conditionally negative
definite.

d(1,5) = 2, while d(1,2) = 1 and d(1,1) = 0. One can
easily verify by enumeration that d is actually a distance: it
satisfies d(wq,ws) > 0, and d(wy,wy) = 0 & wy = wo,
and the triangle inequality. The distance matrix, D, of d is
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D=1 2 0 2 1
1 2 2 01
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The vector
-3
2
T=| 2
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satlsﬁesz _1 T; = 0 and gives 2T Dx = 12. Hence, d is

not conditionally negative semidefinite.

E. Proof of Theorem 2
We have
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and so

1
£0)= 2. 5,n10)

w1 EN

Op(w1|0) Op(w1]0) T
00 00

1 Op(w2|0) Op(w2|0)T
* wzeﬂ (w0 00 08

_ 1 Op(w|6) Op(w|6)T
7zp(w\0) 00 00

Alnp(w|@) dlnp(w|@)T
= 3" pljp) 2 D10) Olur(l6)

F. Proof of Theorem 3

Here we present a formal definition of what it means for
an update direction to be covariant before proving Theo-
rem 3, which states that the energetic natural gradient is a
covariant update direction. Intuitively, an update is covari-
ant if the direction of an update in the space of probability
distributions does not depend on the parametrization of the
space of probability distributions. We provide a (possibly
unintuitive) formal definition below, which comes from the
work of Dabney & Thomas (2014, Lemma 1).

Definition 1 (Congruency of PPMs). We say that two
PPMs, p with parameters @ € R™ and q with parameters
¢ € R", are congruent if there exists a continuous func-
tion ® : R™ — R"™ such that for all 0:

and the Jacobian of ® is full rank.

Definition 2 (Covariant Update). The update direction v

is covariant if, for all congruent PPMs, p and q, and all
6 cR":
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We now prove that the Energetic natural gradient is a co-
variant update direction. Our proof is similar to that of
Dabney & Thomas (2014), who show that a broad class of
natural gradient algorithms (not including the energetic nat-
ural gradient) are covariant. First notice that by the chain
rule:
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Now consider £(®(0)), where we write ¢ as shorthand for
®(6). Below, ... denotes that a long line was split onto two
lines.
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where (a) comes from (14). Since ¢(¢) = p(@) we have
that:
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So, we have that the left side of (13) is:
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We can use the chain rule as before to show that
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where (a) comes from the assumption that d¢p/96 has full

-1
rank, and so [g—‘g AT = A*g—‘g for any matrix A. We

therefore have that (13) holds for the energetic natural gra-
dient.
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