Supplementary material for Compressive Spectral Clustering

A. Proof of Theorem 3.2
Proof. Note that Hy, = UiUT, and that Y, = VyUy.
We rewrite ‘ fi— fj H in a form that will let us apply the

Johnson-Lindenstrauss lemma of norm conservation:

fi= £ = IRTHL, VEG - 6)
= HRTUkUZVZ(@' —0;)|l M
= [RTUx(fi — £l

where the f; are the standard SC feature vectors. Apply-
ing Theorem 1.1 of (Achlioptas, 2003) (an instance of the

Johnson-Lindenstrauss lemma) to ||[RTUx(f; — f;)l|, the
following holds. If d is larger than:
4420
————log N 2

then with probability at least 1 — N~7, we have, V(i,j) €
{1,...,N}%

(1= ) IUk(fi = £) < Diy < (1 + &) [|Us(Fi = )] -
As the columns of Uy, are orthonormal, we end the proof:
V(i,j) € [I,N]* |Up(fi = F)ll = IIfi = fill = D
O
B. Proof of Theorem 4.1
Proof. Recall that: Dg'j = wa - fwj =
|RTAT VIMTSY |, where &7, = & — 67, Given

that Hy, = H,, + E and using the triangle inequality in
the definition of DZT > we obtain
|RTH] VIMT67 || —
IRTETVIMTSY | < DI, < [RTETVIMTSL|| + )
IRTHT VIMTaT, ||,
We continue the proof by bounding HRTHT VIMT 4! ||
and ||RTETVIMT &7, || separately.
Letd €0, 1]. Tobound || RTH] VIMT4;
in Theorem 3.2. This proves that 1f dis larger than
16(2 + )
62 —63/3

dg = logn,

then with probability at least 1 — n=5,

& o

for all (i,7) € {1,...,n}?. To bound |[RTETVIMT4Y,|.
we use Theorem 1.1 in (Achlioptas, 2003). This theorem
proves that if d > d, then with probability at least 1 —n =5,

J
T —
IRTETVIMTOY || < ( 2)

forall (i, ) € {1,...,n}?2. Using the union bound and (3),
we deduce that, with probability at least 1 — o8,
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< Dj; < (4)

(1 n g) [ETVIMTeL || + (1 n 5) Dy,

forall (¢,5) € {1,...,

D, < |[RTHT VIMTSL || < (

g) |ETVIMTS||

n}? provided that d > dj.

Then, as e is bounded by e; on the first k eigenvalues of the
spectrum and by es on the remaining ones, we have

|[ETVIMT 67 || = [|Ue(A)UTVIMT &7 ||
|e(MUTVIMT 67 H
N
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I=k+1
= ¢ |urvimTer |
+e3 ([Jurvimrey | - uivimTay )

= (¢f —3) [uTvimTay ||
+ed |utvimTer |
= (e = &) (D)* + & [[VIMTa |
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< (6f = 5) (D) + o ey
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The last step follows from the fact that
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Define, for all (i, j) € {1,...,n}*

ﬁez
= a/e2 —e2|Dr 4 — Y22
el] |€1 €2| 1]+ mlnl{Uk(Z)}

Thus, the above inequality may be rewritten as:
|| ETV;MT 6:] H < eij,

for all (i,j) € {1,...,n}?, which combined with (4)
yields

5\ . 5
(1-5)Pa-(1+5)es

< Dj; < 5)

5 I\ .
(1 + 2) €ij + <1 + 2> D,

for all (i,7) € {1,...,n}?, with probability at least 1 —
2n~" provided that d > dj.

Let us now separate two cases. In the case where D{j >
Dr . > 0, we have

min
G e 2 2 \@62 D;;
Cij = pr i T |€1_62‘+m K
ij “ '
\/562
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provided that Eq. (7) of the main paper holds. Combin-
ing the last inequality with (5) proves the first part of the
theorem.

we have

min;{vg())} ~ 2496

In the case where D}; < D

min’

eij < \/lef — €3 Dpin +

provided that Eq. (7) of the main paper holds. Combining
the last inequality with (5) terminates the proof. O

C. Experiments on the SBM with
heterogeneous community sizes

We perform experiments on a SBM with N = 103k =
20,s = 16 and hetereogeneous community sizes. More
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Figure 1. (a-d): recovery performance of CSC on a SBM with
N = 10°,k = 20,s = 16 and hetereogeneous community
sizes versus e, for different n, d, p, 7. Default is n = 2klogk,
d =4logn, p=50and v = 103, All results are averaged over
20 graph realisations.

specifically, the list of community sizes is chosen to be:
5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50, 55, 60, 65, 70,
75, 80, 85, 90 and 95 nodes. In this scenario, there is no
theoretical value of € over which it is proven that recovery is
impossible in the large N limit. Instead, we vary e between
0 and 0.2 and show the recovery performance results with
respect to n, d, p and vy in Fig. 1. Results are similar to
the homogeneous case presented in Fig. 1(a-d) of the main

paper.
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