
Complex Embeddings for Simple Link Prediction

A. SGD algorithm
We describe the algorithm to learn the ComplEx model
with Stochastic Gradient Descent using only real-valued
vectors.

Let us rewrite equation 11, by denoting the real part
of embeddings with primes and the imaginary part with
double primes: e′i = Re(ei), e′′i = Im(ei), w′r =
Re(wr), w′′r = Im(wr). The set of parameters is Θ =
{e′i, e′′i , w′r, w′′r ;∀i ∈ E ,∀r ∈ R}, and the scoring function
involves only real vectors:

φ(r, s, o; Θ) = 〈w′r, e′s, e′o〉+ 〈w′r, e′′s , e′′o〉
+ 〈w′′r , e′s, e′′o〉 − 〈w′′r , e′′s , e′o〉

where each entity and each relation has two real embed-
dings.

Gradients are now easy to write:

∇e′sφ(r, s, o; Θ) = (w′r � e′o) + (w′′r � e′′o)

∇e′′s φ(r, s, o; Θ) = (w′r � e′′o)− (w′′r � e′o)

∇e′o
φ(r, s, o; Θ) = (w′r � e′s)− (w′′r � e′′s )

∇e′′o
φ(r, s, o; Θ) = (w′r � e′′s ) + (w′′r � e′s)

∇w′r
φ(r, s, o; Θ) = (e′s � e′o) + (e′′s � e′′o)

∇w′′r
φ(r, s, o; Θ) = (e′s � e′′o)− (e′′s � e′o)

where � is the element-wise (Hadamard) product.

As stated in equation 8 we use the sigmoid link function,
and minimize the L2-regularized negative log-likelihood:

γ(Ω; Θ) =
∑

r(s,o)∈Ω

log(1 + exp(−Yrsoφ(s, r, o; Θ)))

+λ||Θ||22 .

To handle regularization, note that the squared L2-norm of
a complex vector v = v′ + iv′′ is the sum of the squared
modulus of each entry:

||v||22 =
∑
j

√
v′2j + v′′2j

2

=
∑
j

v′2j +
∑
j

v′′2j

= ||v′||22 + ||v′′||22

which is actually the sum of the L2-norms of the vectors of
the real and imaginary parts.

Algorithm 1 SGD for the ComplEx model
input Training set Ω, Validation set Ωv , learning rate α,

embedding dim. k, regularization factor λ, negative ratio
η, batch size b, max iter m, early stopping s.
e′i ← randn(k), e′′i ← randn(k) for each i ∈ E
w′i ← randn(k), w′′i ← randn(k) for each i ∈ R
for i = 1, · · · ,m do

for j = 1..|Ω|/b do
Ωb ← sample(Ω, b, η)
Update embeddings w.r.t.:∑

r(s,o)∈Ωb
∇γ({r(s, o)}; Θ)

Update learning rate α using Adagrad
end for
if i mod s = 0 then

break if filteredMRR or AP on Ωv decreased
end if

end for

We can finally write the gradient of γ with respect to a real
embedding v for one triple r(s, o):

∇vγ({r(s, o)}; Θ) = −Yrsoφ(s, r, o; Θ)σ(∇vφ(r, s, o; Θ))

+2λv

where σ(x) = 1
1+e−x is the sigmoid function.

Algorithm 1 describes SGD for this formulation of the scor-
ing function. When Ω contains only positive triples, we
generate η negatives per positive train triple, by corrupt-
ing either the subject or the object of the positive triple, as
described in Bordes et al. (2013b).

B. WN18 embeddings visualization
We used principal component analysis (PCA) to visual-
ize embeddings of the relations of the wordnet dataset
(WN18). We plotted the four first components of the best
DistMult and ComplEx model’s embeddings in Figure 4.
For the ComplEx model, we simply concatenated the real
and imaginary parts of each embedding.

Most of WN18 relations describe hierarchies, and
are thus antisymmetric. Each of these hierarchic
relations has its inverse relation in the dataset.
For example: hypernym / hyponym, part of
/ has part, synset domain topic of /
member of domain topic. Since DistMult is unable
to model antisymmetry, it will correctly represent the na-
ture of each pair of opposite relations, but not the direction
of the relations. Loosely speaking, in the hypernym /
hyponym pair the nature is sharing semantics, and the
direction is that one entity generalizes the semantics of
the other. This makes DistMult reprensenting the opposite
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Figure 4. Plots of the first and second (Top), third and fourth (Bottom) components of the WN18 relations embeddings using PCA. Left:
DistMult embeddings. Right: ComplEx embeddings. Opposite relations are clustered together by DistMult while correctly separated by
ComplEx.

relations with very close embeddings, as Figure 4 shows.
It is especially striking for the third and fourth principal
component (bottom-left). Conversely, ComplEx manages
to oppose spatially the opposite relations.


