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1. Extra results and proofs

In this section, we include a few of the results we use
that also appeared in other material — or had very similar
proofs in other material — but restated in our notation for
the reader’s convenience.

Lemma 1 If the minimum s-t cut of Gy(a,9) for 6 > 0 is

less than a vol(R), then ¢(S) < a, where S is the node set
corresponding to the cut.

Proor Recall that the min-cut objective can be stated as
rSnCl‘r/l a Vol(R)+0S —avol(RNS) + (e f(R) + a8) vol(RN S).
If the objective is less than a vol(R), then

0S —avol(RNS) + (af(R) + as) vol(RN S) <0

= 95 — <
vol(RNS)—evol(RNS)

>

where € = f(R) + 0. All we need to show then is that
vol(RN S) — evol(RN S) < min{vol(S), vol(S)}

and it will follow that

aS
— <
min{vol(S ), vol(S)}

P(S) =

We first note that

vol(RNS) —evol(RNS) < vol(RN S) < vol(S).

Also,

vol(RNS) —evol(RN S)

<vol(RN S) = f(R)vol(RN S)

=vol(R) — vol(R N §) — f(R) vol(R) + f(R)vol(RN S)
< vol(R) = f(R)vol(R) + f(R)Vol(R N §)

= f(R)vol(RN §)

< vol(S)

so the result holds. n

Both assertions in the following theorem are novel results
regarding our algorithm SmvpLELocAL. They can be shown
using the same proof techniques used in Lemma 2.2 of An-
dersen & Lang (2008), with slight alterations to include the
locality parameter 6.

Theorem 4 Given an initial reference set R C V with
vol(R) < vol(R), StmpLELocCAL returns a cut set S * such that

1. if C C R, then ¢(S*) < ¢(C).

2. For all sets of nodes C such that
vol(RN C) S vol(R)
vol(C) — vol(V)

for some y > §, we have ¢(S*) < (y+§)¢(C).

vol(R)
vol(V)

Proor We use the same proof outline as Andersen & Lang
(2008), and reproduce many of the same steps for the con-
venience of the reader.

The first assertion holds because if C C R, ¢z(C) = ¢(C),
SO

$(S™) < $r(S™) < ¢r(C) = ¢(C),

where ¢ is used to denote quotient score introduced in
equation (7) of the paper. We refer to this as the modified
quotient score relative to R:
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ocC

RO = RN —evol RN C):

To prove the second assertion we start by showing that
ér(C) < ﬁqﬁ(C ), which is true if and only if

vol(C N R) — £vol(C N R) > (y — &) vol(C).

To see this holds we apply the assumption made in the sec-
ond assertion and simplify:

vol(RNC) —&vol(CNR) _ vol(CNR) _ _vol(Cn R)

vol(C) vol(C) vol(C)
vol(R) vol(R) vol(R) vol(R)

2 Solv) T voiyy ~ YR+ (1 T Sol(V) 7vol(V))
__vol(R) vol(R) (- vol(V) = vol(R)
=Y Sawy LR 5 (1 Vol ®) vol(R))

~ 6( L vol(R) Vol(R))

vol(V) vol(V)

o _ _ Vvol(R) vol(R)
=y 1+0 5(1 vol(V) yvol(V))

>y-0.

Since S* is the set that minimizes @z(S ), we have

P(S™) < Pr(S™) < Pr(C) < $(C).

1
(y—0)

2. Empirical Runtime of SimpleLocal

In terms of the runtime, the spectral method is substantially
faster in practice than our sequence of max-flow problems.
(See Table 1 in the main text.) This arises due to a few
factors. First, we are using a carefully engineered code for
the spectral algorithm designed for speed. Second, we are
using a general-purpose linear programming solver for the
maximum-flow problems. Third, we are not exploiting any
possible “warm-start” between independent flow solutions.
We anticipate that a more careful implementation within
our highly flexible three-stage framework would shrink the
runtime gap considerably.

3. Experiment parameters for the MRI
problem

We obtained a labeled MRI scan from the MICCAI-2012
challenge with 256 x 287 x 256 voxels (around 18 mil-
lion). (The MRI scans originated with the OASIS project,
and labeled data was provided by Neuromorphometrics,
Inc. neuromorphometrics.com under an academic subscrip-
tion.) We assembled a nearest neighbor graph on this im-
age using all 26 spatially adjacency voxels where each edge

was weighted similar to Shi & Malik (2000). We used the

function e~(Vim VI /005" here VI, is the scan intensity at
voxel i. Subsequently, we threshholded the graph at a min-
imum weight of 0.1 and scaled each edge weight to have
minimum weight 1 so that the volume of a set was an upper-
bound on the number of edges contained. The final graph
was connected except for 35 voxels and contained 467 mil-
lion edges.

Seeding and SimpleLocal We picked 75 random voxels
in the true image, then used SiMpLELocAL to refine the set R
consisting of these 75 voxels and their immediate neighbors
using a value of 6 = 0.1 to keep the computation local. The
seed set is shown here in the supplement in Figure 1. The
resulting set is show in 4(b).

Refinement The output from SmvpLELocAL can be further
improved by growing the set by its neighborhood and vary-
ing 6. We call this “refinement” and used one step of re-
finement with § = 0.5. The result is in Figure 4(c).

Spectral We compare this against a highly-optimized
strongly-local spectral method to minimize conductance
using personalized PageRank vectors (Andersen et al.,
2006), where the PageRank computation uses @ = 0.99.
The spectral result is in the final subfigure Figure 4(d).

Parameter selection We picked parameters for the flow
methods to ensure that the volume explored would be
around 10 times the volume of the desired ventricle, and
occassionally reduced the parameter ¢ if it seemed that the
method was exploring too much or if the flow problems
took too long. We picked the parameters for the spectral
method until we found a set that meaningfully grew. Our
particular technique attempts to avoid diffusing as much as
possible and so we had to adjust the parameters to ensure
that it moved beyond the seed set.

3.1. Near optimiality of Refined SimpleLocal

We can use our SivpLELocaL and 3STaceFLow primitives
to attempt to identify the best and largest conductance set
largely contained within the target ventricle. This is essen-
tially the best result we could hope to achieve as the entire
desired set has conductance larger than the set we identify.
Thus, if we run a single iteration of 3STaceFLow using the
entire target set as R, @ = 0.1291 (the conductance of the
target set), and § = 15, we will find a set that is almost
exclusively contained within the target ventricle (Figure 2).
This choice of ¢ is guided by the intuition that we want
the set to be almost exclusively in the interior of the target,
but small variations outside would be okay. The resulting
solution set found has conductance 0.0621 and 2527 ver-
tices. The difference between the refined set we generated
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Figure 1. The seed set R for the MRI segmentation. As in the
main body figures, the true ventricle is shown in blue and the set
in orange.

Figure 2. The largest set we identified with a small value of con-
ductance inside the target ventricle. This is essentially the best set
we could hope to identify from our flow techniques.

(Figure 4(c) in the main text) and this set is slight. Their
intersection is 2317 voxels. So there is a slightly better set
that SsmpLELocAL and the refinement procedure could have
generated, but not by much.

3.2. Other good sets

We highlight a few other low-conductance sets we identi-
fied in the course of our experiments in Figure 3 and Fig-
ure 4. In the first figure, we show another set available
from the spectral method that makes a boundary error in
the other direction and ends up too far inside the set. A
closely related set in Figure 3 is, perhaps, the optimal set
contained within the the target ventricle. It has the low-
est conductance score of any set we ever computed. One
challenge with using the flow-based methods such as Smv-

(a) Optimized spectral (b) Component of Refined
Figure 3. At left, we have another set from spectral that identifies
a low-conductance set nearly strictly inside. At right, we show the
best subset of the disconnected region identified by SmmpLELocaL
and the refinement procedure. The spectral set has conductance
0.079 and the SmvpLELocAL component has conductance 0.0398.
Note that the spectral set does not hug the boundary nearly as
closely as the results from the SimpLELocaL method in the main
paper.

Figure 4. A tiny set of 295 vertices with conductance 0.048 buried
deep within the ventricle. This set often attracts the flow-based
method if the value of § is set too high.

pLELocAL is that they tend to quickly contract to very good,
small sets. For instance, there is a set of 295 vertices with
very good conductance (Figure 4). If the parameter J is set
too high, then this often causes the flow-based method to
contract too much (e.g. we over-regularize) and identify a
very precise small set. This feature could be useful in some
applications where the conductance measure is a very good
proxy for the desired output.
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