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Appendix 0: Proof of Lemma 1

Applying the Sherman-Morrison-Woodbury formula

(A+UDV) t=A1— A\ UMDt +valu)~tva,
we have

r(rl, + XTX)™' =1, - XT(I, + %XXT)_lX% =1, - X'(rl, + XXT)7'X.
Multiplying X”Y on both sides, we get
r(rl, + XTX) ' XTY = XY - XT(r1, + X X)X XTY.
The right hand side can be further simplified as
Xy - XT(rL, + XX ' xXxTy
= XTy - XT(rI, + XX)"Y(rl, + XXT —rI,)Y
=XTY = XTY +r(rl, + XXO)7Y =rXT(rL, + XXT) Y.

Therefore, we have
(rL, + XTX)'XTY = XT(r1,, + XXT)" V.

Appendix A: Proof of Theorem 1
Recall the estimator D) = XT(X XT)~ly = XT(XXT)'X8 + XT(XXT)"le = ¢ + 1. The
following three lemmas will be used to bound & and 7 respectively.

Lemma 2. Let ® = XT(XXT)"1X. Assume p > con for some cy > 1, then for any C > 0 there
exists some 0 < ¢1 < 1 < cg and c3 > 0 such that for anyt >0 and any i € Q,j # 1,

P(|<I>Z-Z-| < Clli_lﬁ) <2 By > 02mn> < 2¢O (1)
p p
and
P(\@ij] > C4Iﬂ?t\/ﬁ> < 5e~Cn 4 912, (2)
p
where ¢q = Ye2o=el)
4 ves(eo—1)



The proof can be found in the Lemma 4 and 5 in Wang and Leng (2015) for elliptical distribu-
tions. The special case of Gaussian is also proved in the Lemma 3 of Wang et al. (2015). Notice
that the eigenvalue assumption in Wang and Leng (2015) is not used for proving Lemma 4 and 5.

Lemma 3. Assume x; follows EN(L,Y). If E[L~2] < My for some constant My > 0, var(e) = o
and logp = o(n), then for any 0 < o < 1 we have

1% 2,4
p<H,7HOO < 01*”»67n> >1- O<<m10gp>,
p

7.*2n1—o¢
where 7% is defined as the minimum value for the important signals and k = cond(X).

To prove Lemma 3 we need the following two propositions.

Proposition 1. (Lounici, 2008 Lounici (2008); Nemirovski, 2000 Akritas et al. (2014)) Let Y; €

RP be random wvectors with zero means and finite variances. Then we have for any k norm with
k € [2,00] and p > 3, we have

n 2 _ . n
E| > Y[, < Cmin{k,logp} Y E|Yi}, (3)
i—1 i=1
where C' is some absolute constant.

As each row of X can be represented as X = LZXY2, where L = diag(/pL1/||z1l2, -, /DLn/||2nll2)
and Z is a matrix of independent Gaussian entries, i.e., Z ~ N(0,I,). For Z, we have the following
result.

Proposition 2. Let Z ~ N(0, 1), then we have the minimum eigenvalue of ZZT [p satisfies that

P()\mm(ZZT/p) > (- % - ;)2> > 1= 2exp(—£2/2)

for any t > 0. Assume p > con for co > 1 and take t = /n. When n > 4c/(co — 1)2, we have

P(Amm<zzT/p> > ) > 1 2exp(—n/2). (4)

(co—1)?

where ¢ = i

The proof follows Corollary 5.35 in Vershynin (2010).

Proof of Lemma 3. Let A=pXT(XXT)"'Land Z =L 'XX"Y/2 Then n=p ‘AL e

Part 1. Bounding |4;;|. Consider the standard SVD on Z as Z = VDUT, where V and D
are n X n matrices and U is a p X n matrix. Because Z is a matrix of iid Gaussian variables, its
distribution is invariant under both left and right orthogonal transformation. In particular, for any
T € O(n), we have

TvpuT 9L yvpuT,



i.e., V is uniformly distributed on O(n) conditional on U and D (they are in fact independent, but
we don’t need such a strong condition). Therefore, we have

A=pXT(XXT) L = p22 2T L(LZSZ7 L)L = pX2UDVT L(LV DUTSUDVT L)~}
D _
— p22UUTsU) DV = U Ut sU) T (=) VT

VP

Because V is uniformly distributed conditional on U and D, the distribution of A is also invariant

under right orthogonal transformation conditional on U and D, i.e., for any T" € O(n), we have
A9 ar, (5)

Our first goal is to bound the magnitude of individual entries A;;. Let v; = eiTAATe,-, which 1is

a function of U and D (see below). From (5), we know that el A is uniformly distributed on the

sphere S"1(,/v;) if conditional on v; (i.e., conditional on U, D), which implies that

s \F<¢z] 22 ¢z ol ;> o

where m;s are iid standard Gaussian variables. Thus, A;; can be bounded easily if we can bound
v;. Notice that for v; we have

D2 _
vi = el AATe; = pel S2U(UTSU)H(Z=) TN UTSU) U TS 2
P

T T 1,D?* 4 T _1_ 7T
= pel HUTSU) ™ 2(?) (UTsU) 2 H ¢,

D2

<p€THHT€z Ar_mn([]TE[]) )\T_YL’LTL( P )

Here H = Z%U(UTEU)_V2 is defined the same as in Wang and Leng (2015) and can be bounded
as el HH"e; < cank/p with probability 1 — 2exp(—Cn) (see the proof of Lemma 3 in Wang et al.
(2015)). Therefore, we have

D2
P(v, < CQ:‘QQAmin()TL) >1—2exp(—Chn)
b

Now applying the tail bound and the concentration inequality to (6) we have for any ¢t > 0 and any
C>0

nogp2
Plal >0 < 200022 P(Z2 < 0) < l-on) ")
Putting the pieces all together, we have for any ¢ > 0 and any C' > 0 that
D2
P(max |Aij| < Kty — )\mfn()> > 1 — 2npexp(—t?/2) — 3pexp(—Chn).
1) p
Now according to (4), we can further bound A, (D?/p) and obtain that

CC3

P<max |Ai;] < Cnt) > 1 — 2npexp(—t?/2) — 3pexp(—Cn) — 2exp(—n/2). (8)
ij



Part 2. Bounding 7 he second step is to use (8) and Proposition 1 to bound 1. The procedure
follows similarly as in Lounici’s paper. We first note that ||z;||3 follows a chi-square distribution

X2(p). We have for any ¢
112
P<”Z7«”2 2 1_'_2\/?_’_ 2t> S e—t,
p p p

P(maxpluziu% < 5/2) 1 perlt 9)

from which we know

Now define W; = (Ai;p/2|zllaL;  ej, Agjp ™2 ||2lla L5 Vej, -+, App 2| 55lla L ). Tt's
clear that n = 2?21 W;/p. Applying Proposition 1 to W](s with the [, norm and noticing tht
L; is independent of z; we have

EHZWH <longEHWH2 <10gp 2t22E o2k Minlog p.
7j=1 7=1

Using the Markov inequality on 7, we have for any r > 0

p(unum > Y ) <\fwm . ) _PEllE _ EITi Wilk

nr? nr2

70202/£2M1 t2 logp

cesr?

(1)

To match our previous result, we take r = ¢j/n7*x~1/6 and t = n /2 for some small a,

s ~— —2np exp(—nl_a/2) — 3pexp(—Cn) — 2exp(—n/2)

Zl_O(Mogp>

*Qna

—1 2.4
kTN 342co0°Kk* My logp
Pl < 22 21 -

O]

Lemma 4. Assume var(Y) < My. Define ® = XT(XXT)"1X. If p > con for some cy > 1, then
we have for any t > 0

P(maxz Di585| > cav/ Moligt\/ﬁ> < 2pe /2 4 5pe=Cn.
1 — p
J#i

where c4, k are defined in Lemma 2.

Proof of Lemma 4. Following Wang and Leng (2015); Wang et al. (2015), we define H = XT(XXT)fé.
When X ~ N(0,%), H follows the M ACG(X) distribution as indicated in Lemma 3 in Wang et al.
(2015) and Theorem 1 in Wang and Leng (2015). For simplicity, we only consider a particular case
where 7 = 1.

For vector v with v; = 0, we define v/ = (va,v3,- -+ ,v,)T and we can always identify a (p — 1) x
(p — 1) orthogonal matrix 7" such that 770" = |[v'||2€] where €] is a (p — 1) x 1 unit vector with the
first coordinate being 1. Now we define a new orthogonal matrix 7" as

10
=)



and we have

(1 0N[0\ [ 0 Y\ _ e _ (1 0\ _ 7
TU—<0 T’> (U'>_<Hv\ge'1)_”v”2€2' and e;T" =e] <0 T =ea

Therefore, we have
eTHHTy = I TTTHHTTTTo = T TTHH T ey = ||v||2ef HH ey.

Since H follows MACG(X), H = TTH follows M ACG(TTXT) for any fixed T. Therefore, we can
apply Lemma 2 again to obtain that

P<|61TXT(XXT)_1XU\ > ||v|204mf\/ﬁ> = P(]elTHHTv| > ||v||204/-€t\/ﬁ>
D D
~ n n
_ P(nvuzwe?ﬂﬂw > ||v||2c4ntf> _ P<||v||2|<1>12| > |rv||2c4mt\pf)
= P(;cblg\ > 64/€t\/ﬁ> < 5O 4 267 1/2,
p

Applying the above result to v = (0, ﬁi_l)) we have

n
S (@15 < cant|8]1 Y
i1 b

with probability at least 1 — 5e~¢™ — 2e~t°/2,
In addition, we know that var(Y) = I ¥8, + 0% < My and thus

1Bll2 < v/ Mok

Consequently, we have

P(Hlfdxz |4 85] > car/ Mo/fgt\/ﬁ> < 2pe /% 4 5pe=Cn.
i P
JFi

Now we are ready to prove Theorem 1

Proof of Theorem 1. Recall the definition of ¢ as ¢ = XT(XXT)~1X3. For any i we have

&=el XT(XXT)'XB = Z i + Z D455,

Jjes J#i
For the first term, we have
n
| min 3;| > kT = Vie S
(12 P
with probability 1 — [S*|e~“™ and

n .
|min 3;| < c1hm— Vi € S,
2 p



with probability 1 — ]S*]efcn. Now, for the second term, using Lemma 4, we have

—1, %
ClR °T 3

J#i
2,.—1,-%2
with probability at least 1 — 2p exp{—cgc2 ]\20 n} — 5pe~C". Therefore, we have for any i € S*
4
—1 —1
6] 2 g LGS TR Sak T
p 6 p 6 »p
and for 7 € S, we have
—1, % 7 —1, %
’fz‘ S CIHT*E + ar T E S ar T 27
D 6 p 12 p

where we use the assumption that 7* > 4x27,. Now combining the result from Lemma 3, we can
obtain

. ) —1,_% 2 41
P<min|ﬂi| > cwgm> > 1_O<M<>gp)7
b

i€S* 72N
and
R 7 —1, % 2 41
p(( max | < T 5 o oRllosrY
i€S. 12 p T*2no
Taking v = Wﬂp, we have
2,4
LA N o“k*logp
P | >y > il >1-0( ——2|.
(rminl51 2 72 max ) 21 -0 57

Proof of Theorem 2 and 3

For the selected submodel Md, we define X4 to be the variables contained in Md and X, . to be
variables that are excluded from Md. It is clear that

A(OLS — — _
B = (X7 Xa) ' XTY = Ba+ (X] Xa) ™ X e + (X Xa) " X] XaoBac = Ba+na+w.
To prove Theorem 2 is essentially to bound 7 and w. Thus, we need following three lemmas.

Lemma 5 (Garvesh, Wainwright and Yu. (2010) Raskutti et al. (2010)). Assume Z ~ N(0,X).
There exists some absolute constant ¢/, c” > 0 such that

[1Zv]2
NG

with probability at least 1 — ¢’ exp(—c'n), where p(¥) = max;—1 2 ... p Di;.

logp

> 2[[S20])2 — 9p() Iolls, Vo€ RP,

In our case, for any v with d nonzero coordinates, we have ||[v|l1 < Vd||v|2, p(X) = 1 and



1
|2Y20]]g > A2, (2)||v]|2. Therefore,

1
1Zvlle _ (M(®)  [dlogp
> min _ < .
N 1 9 JlIvllz. ol < d

Thus, as long as n > 6*kdlog p, we have

1
1/2 Ain(2)
(25 Z g m) > "B,

min A
|M|<d

Lemma 6. Assume E[L™12] < M and e[L'%] < Ms. For any M such that S* ¢ M and |M| < d,
we have for any o > 0

log > :1_O<)\*2dlogd M1+M2>7

P max <o
(IMISd Ielloe < ne n3(1-a) n3(1—4a)

where Ay = Apin(X).
Proof of Lemma 6. Define A = (X2 X,) ' X7, we have
n=(XTXy) X e= Ae
For A, we can bound its entries as
max A | < max ef (X Xa) "X ] < max e (XF Xa) a1 X7 el

Vd (XdTXd

n n

)\71

min

< Vimax e (XTXg) ™ [l max | XT| < ) x| 7].
j ] i

Recall that X = LZXY2, where L = diag(\/pL1/|#1]l2:* - s /PLn/|2n||2) and thus X, possesses a

representation as Xq = LZ Ei/ 2, where E}/ % is an p X d matrix formed by the selected d columns

of 212 We can now further bound )\;in <XdTnXd> as

—1
A :
min n min n

r — = 1
<XdTXd> -l <2; ZTLTLZE;>

—1
e T 1
< <)\min(LTL))\mm(Z FANAY /n)> .

Using Lemma 5, it is clear that

AV
2| >

I 1 Amin by
min Amin(S7 Z7Z22 /n) > ()
[M|<d 64

with probability at least 1 — O(e~¢"). In addition, since E[L'?] < M; and E[L'?] < M,, we have
for any k1 > 0,ko >0

S

P(L? < k) <kSM; and P(L > ky) < [Ek
2



Combining with equation (9) implies that

Amin (LT L)

Y

)

)

with probability at least 1 — pe P/4 — nk$Mj. Therefore, we have

XTXx, _ 162
n - A*k‘l.

max AL
M <d

with probability 1 — O(nk$Mj).
For max;; | XT|, we just need to bound max;; X;;. Using the representation X = LZYY? | we
know that

L.
X@'j == \/ﬁ ZZi21/2€j.
Izill2

It is easy to see that Z; 21/ 26j is a Gaussian random variable with mean zero and variance 1, thus
for any t > 0

P(|Z;2" e > t) < 2772,

In addition, ||2]|3/p follows a X?(p) and we have

12
P(HZ’HQZI—Z\/?) >1—et,
P P

Taking ¢ = p/4, we have max; ||z;||2/,/p > 1/2 with probability at least 1 — ne /% and thus

Mzn

W — 2p_1 — ne_p/4.
2

P(max | X;j| < 4kg+/logp) > 1 —
ij
Combining all pieces of results, we obtain that

648ksv/dv/Togp M
2Vd ng) >1- 0<nk?M1 + "2>

12
k2

P< min max |A;;| <
M}”Sd 17 * )\*/ﬁn

Following a similar argument in proving Lemma 3, we define W; = (Ayje;, Agjej, - -, Agjej) and
then

n = Z Wj.
j=1

Using Proposition 1, we have

Ellnl3 = Bl Y_Wjll3 < Clogd ) E|[Wjll3, < O

<a2k§ dlogdlogp)
pust =1

A2k n
Using the Markov inequality implies that for any r» > 0

e o’k3 dlogdlogp 6 nM,
P >r) < M _ g O nk$hp + =32 ).
(ﬁa?d'"“‘” T) = e ) T T gy

r



2(1—a)

_ l—«
71?1%10,/?1:71 5 and ko =n 9 , we have

1 A2dlogd M + M
P<max Hn\|o<,§m/0gp>:1—0< . dlogd Mt 2)
‘M'Sd na ng(lfa) n§(174a)

Lemma 7. Assume E[L™'%] < My and e[L'?] < My. For any M such that S* € M and \./\;l\ <d.
Assume that d — |S*| < ¢ and 3,6 |Bi]* < R for some ¢ € (0,1), then for any o > 0, we have

/1 M, + My)R?
P< max ||wl|ls <o ng) >1-— O< ( 1_; 3331 — )
M|<d (log p)#ns—da—2

Proof of Lemma 7. According to our definition that w = (XdTXd)*ngdecﬁdjc, we can directly
bound the 9 norm of w as

Letr=o0

O]

_ 1 XTXy
||WH% = ngcchl:ch(Xc’{Xd) 2Xng705d70 < Eﬁchcllledech C)\min <dn>

min n

where A1 <XdT Xd> has already obtained a bound in Lemma 6 as

T
. (ded> _ 162

with probability 1 — O(nk$M;). Now for %/Bg,chT,ch,ch,c we have

1 o7 Lo T2 7577 sl /2 1 .p ST/277 7512 pL?
~BacXaKXacPae = —BaVae 21 L LIS Bae < —BaVae 2" 25, Baemax T
Zill2

Since Z ~ N(0,1,), we can choose an orthogonal matrix @) such that 5(1762;’/3 = e1Q||Ba.c2 /2H2
and

1 *
B S22 e = 18acS i e 27 Zel < |Bucl BN 12" Zen,

where Z ~ N (0, I,). Tt is easy to see that for any ¢ > 0

T7T 7 t 2t
P<61€1§1+2 t >>1_
n n n

and [|Ba.cl3 < 727“R. Thus, taking ¢t = (1 + ¢) log p, we have

max —ﬁdc T/ QZTzzj/fﬁd,c < BrETRA
|M|<d T ’

with probability 1 — p~! as long as n > (1 + &) logp where ¢ is the upper bound on d — |S*|. For
max; pL? /|23, we follow the same argument in Lemma 6

L? M
P<maxp L <2k§>21—nep/4—nl;.
I2:113 ks




Putting all pieces together, we have

1—t k2
max [|w|l2 < 367 Rik2 2
|M|<d k1

with probability at least 1 — O 222 + nk?Ml). According to our assumption that 7, < 2/ losp

12
k2

and taking k1 = (log;‘)i//t% and ko = 1/v/k1 we have

logp> ( (M + M) R® )
Pl max ||lw]ls <oy/—— ] >1-0 .
(s e < o [252) > 1 — 0

O

We are now ready to prove Theorem 2

Proof of Theorem 2. We just need to combine the results of Lemma 6 and 7, i.e.,

B = Byt +w,
where
1 -24] A M
P< max |7l < o o8 >:1_O<)\*ld ogd 11+ 2)
‘M|§d n< ng(l—a) n§(1_4a)
and

logp (Ml +M2)R3
P< max ||wlz < 0\/T> >1- O< 1 2, 3—da—2 )

Therefore, we have

log )_1_O<)\*2dlogd My + M, (My + M) R? >

5(OLS)
P< max ||Bd 6d”oo <20 ne n%(lfa) n%(174a) (log p)2bn3—4a—2b

|IM|<d,S*CcM

O]

Proof of Theorem 3. Recall that Xy consists of variables contained in My, the definition of
B (r)Hidge) hecomes

B(r)Fidee) — (XT Xy +rI) XX+ (XTI Xg+ 1) X e + (X Xy 4 r1) ' X T Xy Bae
=B —r(XIXg+rI) B+ (XTI Xy +7L) ' X e+ (XT Xy +71) ' X Xy Bae
=B —&(r) +7(r) + a(r).

For £(r) we have

Clals s
(Xng/nJrr/n) - n?

I1€(r)13 < r?B7(Xi Xa+11a) 28 < ——
n2\

min

As proved in Lemma 6, we know that

X}[Xd> S Ak

max Amzn( = 162 .

|M|<d n

10



with probability 1 — O(nk$M;). Adding r/n to the above matrix will only increase the smallest
eigenvalue. Thus, we have

~ B 162r \* M, 162rs M,
1E(r)[l2 < r*BT (X Xq +rly) 2B < 0 = 0

n)\*kl - nkl
Where we used My > var(Y) > || 8|13\, (2). Choosing k1 = n~ 2(197047 we have
~ 162rk M, M
P(( w601 < 250 ) = 1-0( i),
which implies that as long as r < U"””{;;SZV 98P we have
~ 1 M
P( max [[€(r)]2 < o/ —2 ) —1- o(ll)
IM|<d ne n3(1=4e)

In addition, the proof for ||n|/s and ||w||2 shows that the only key quantity that has changed is

T T ‘
Max, v <4 Amin XaXd ) Ghich is replaced by Max, v <q Amin (W) for B(rdge) . While the

latter is trivially lower bounded by the former, we thus have

logp> :1_O<)\;2dlogd M1+M2>

no l1-a) 1—4a)

P( max () oo < o
n3

~ l(
|IM|<d n3

and

1 M + My)R3
P a0l < oy %B2 ) > 1 - o (AEEEI,
IM|<d ne (log p)%n

Consequently, we have

P( max AU _ gyl < 30

log ) _, O()\*leogd 2My + My (M7 + M>)R3?
|M|<d,S*CM

1(1-a) ns(1—da) (log p)2n3—da—2

as long as

; onlT/9-50/18) /Toem
"= 162k M, ‘

O]

Proof of Corollary 1. As mentioned before, we have B(OLS) = BMd + (X}\;thMd)*lXMds. Be-

cause &; ~ N(0,02) for i = 1,2,--- ,n, we have for any i € My,

- _ _ d
N = e?(X;‘GldXMd) 1X3\;[d6 ~ N(0, 026?(X/:C?thMd) Lei) @ a\/e;fp(X}\;ldXMd)—leiN(O, 1). (10)

Likewise in the proof of Lemma 5, we know that as long as n > 64kdlogp

Thus, we have

11



T(vT N1
z’Iél/%l}z €; (XMdXMd) ei < 64K/n.

Therefore, for any t > 0 and i € My, with probability at least 1 — ¢’ exp(—c'n) — 2 exp(—t2/2)
we have

814%015

NG

17| < Ut\/eiT(X/j\;(dXMd)_lei <
Then for any § > 0, if n > log(2¢”/d)/c, then with probability at least 1 — ¢ we have

2k log(4d/§
max |7i;| < 8¢ w (11)
1EMy n
Because o needs to estimated from the data, we need to obtain a bound as well. Notice that &2 is
an unbiased estimator for o, and

o?X2%(n — d)

~2 2 T T -1
) :ae(In—XMd(XMdXMd) X, )e~ T

where X2(k) denotes a chi-square random variable with degree of freedom k. Using Proposition
5.16 in Vershynin (2010), we can bound 62 as follows. Let K = [|X?(1) — 1||y,. There exists some
¢5 > 0 such that for any ¢ > 0 we have,

P20 1[34) <2emp{ - comin (£050, 00

Hence for any § > 0, if n > d + 4K?1og(2/J)/cs, then with probability at least 1 — § we have,
6% — 02| < 6?2,

which implies that

DN | =
Q
)
INA
Q>
)
INA
N |
q
)

Then we know that

2k log(4 2k log(4 2k log(4
max [7;] < 8oy | 2F10BUA/0) g 55 [26108(AAJ0) g sa [2r108(4d/0)
1EMy n n n

Now define v = 8v/264/ w. If the signal 7 = min;eg |3;| satisfies that

r> 20 2/<clog(4d/(5)7
n

then with probability at least 1 — 29, for any ¢ € S

A . 2k log(4d/é
|Bi| = 7] < 8a 2rlog(4d/9) <4/,
n
and for i € S we have
A 2k log(4d/d
B = 7~ max ] > 160 21D 5 oy

1EMy
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