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Abstract
Ordinary least squares (OLS) is the default
method for fitting linear models, but is not ap-
plicable for problems with dimensionality larger
than the sample size. For these problems, we
advocate the use of a generalized version of
OLS motivated by ridge regression, and propose
two novel three-step algorithms involving least
squares fitting and hard thresholding. The al-
gorithms are methodologically simple to under-
stand intuitively, computationally easy to imple-
ment efficiently, and theoretically appealing for
choosing models consistently. Numerical exer-
cises comparing our methods with penalization-
based approaches in simulations and data analy-
ses illustrate the great potential of the proposed
algorithms.

1. INTRODUCTION
Long known for its consistency, simplicity and optimality
under mild conditions, ordinary least squares (OLS) is the
most widely used technique for fitting linear models. De-
veloped originally for fitting fixed dimensional linear mod-
els, unfortunately, classical OLS fails in high dimensional
linear models where the number of predictors p far exceeds
the number of observations n. To deal with this prob-
lem, Tibshirani (1996) proposed `1-penalized regression,
a.k.a, lasso, which triggered the recent overwhelming ex-
ploration in both theory and methodology of penalization-
based methods. These methods usually assume that only
a small number of coefficients are nonzero (known as the
sparsity assumption), and minimize the same least squares
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loss function as OLS by including an additional penalty on
the coefficients, with the typical choice being the `1 norm.
Such “penalization” constrains the solution space to certain
directions favoring sparsity of the solution, and thus over-
comes the non-unique issue with OLS. It yields a sparse
solution and achieves model selection consistency and es-
timation consistency under certain conditions. See Zhao
and Yu (2006); Fan and Li (2001); Zhang (2010); Zou and
Hastie (2005).

Despite the success of the methods based on regularization,
there are important issues that can not be easily neglected.
On the one hand, methods using convex penalties, such as
lasso, usually require strong conditions for model selec-
tion consistency (Zhao and Yu, 2006; Lounici, 2008). On
the other hand, methods using non-convex penalties (Fan
and Li, 2001; Zhang, 2010) that can achieve model selec-
tion consistency under mild conditions often require huge
computational expense. These concerns have limited the
practical use of regularized methods, motivating alterna-
tive strategies such as direct hard thresholding (Jain et al.,
2014).

In this article, we aim to solve the problem of fitting high-
dimensional sparse linear models by reconsidering OLS
and answering the following simple question: Can ordi-
nary least squares consistently fit these models with some
suitable algorithms? Our result provides an affirmative an-
swer to this question under fairly general settings. In par-
ticular, we give a generalized form of OLS in high dimen-
sional linear regression, and develop two algorithms that
can consistently estimate the coefficients and recover the
support. These algorithms involve least squares type of fit-
ting and hard thresholding, and are non-iterative in nature.
Extensive empirical experiments are provided in Section 4
to compare the proposed estimators to many existing penal-
ization methods. The performance of the new estimators is
very competitive under various setups in terms of model
selection, parameter estimation and computational time.
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1.1. Related Works

The work that is most closely related to ours is Yang
et al. (2014), in which the authors proposed an algorithm
based on OLS and ridge regression. However, both their
methodology and theory are still within the `1 regulariza-
tion framework, and their conditions (especially their C-
Ridge and C-OLS conditions) are overly strong and can
be easily violated in practice. Jain et al. (2014) proposed
an iterative hard thresholding algorithm for sparse regres-
sion, which shares a similar spirit of hard thresholding as
our algorithm. Nevertheless, their motivation is completely
different, their algorithm lacks theoretical guarantees for
consistent support recovery, and they require an iterative
estimation procedure.

1.2. Our Contributions

We provide a generalized form of OLS for fitting high di-
mensional data motivated by ridge regression, and develop
two algorithms that can consistently fit linear models on
weakly sparse coefficients. We summarize the advantages
of our new algorithms in three points.

Our algorithms work for highly correlated features under
random designs. The consistency of the algorithms relies
on a moderately growing conditional number, as opposed
to the strong irrepresentable condition (Zhao and Yu, 2006;
Wainwright, 2009) required by lasso. Our algorithms can
achieve consistent identify strong signals for ultra-high di-
mensional data (log p = o(n)) with only a bounded vari-
ance assumption on the noise ε, i.e., var(ε) < ∞. This is
remarkable as most methods (c.f. Zhang (2010); Yang et al.
(2014); Cai and Wang (2011); Wainwright (2009); Zhang
and Huang (2008); Wang and Leng (2015)) that work for
log p = o(n) case rely on a sub-Gaussian tail/bounded
error assumption, which might fail to hold for real data.
Lounici (2008) proved that lasso also achieves consistent
model selection with a second-order condition similar to
ours, but requires two additional assumptions. The al-
gorithms are simple, efficient and scale well for large p.
In particular, the matrix operations are fully parallelizable
with very few communications for very large p, while reg-
ularization methods are either hard to be computed in par-
allel in the feature space, or the parallelization requires a
large amount of machine communications.

The remainder of this article is organized as follows. In
Section 2 we generalize the ordinary least squares estimator
for high dimensional problems where p > n, and propose
two three-step algorithms consisting only of least squares
fitting and hard thresholding in a loose sense. Section 3
provides consistency theory for the algorithms. Section 4
evaluates the empirical performance. We conclude and dis-
cuss further implications of our algorithms in the last sec-
tion. All the proofs are provided in the supplementary ma-

terials.

2. HIGH DIMENSIONAL ORDINARY
LEAST SQUARES

Consider the usual linear model

Y = Xβ + ε,

whereX is the n×p design matrix, Y is the n×1 response
vector and β is the coefficient. In the high dimensional
literature, βi’s are routinely assumed to be zero except for
a small subset S∗ = supp(β). In this paper, we consider a
slightly more general setting, where β is not exactly sparse,
but consists of both strong and weak signals. In particular,
we defined S∗ and S∗

S∗ = {k : |βk| ≥ τ∗} S∗ = {k : |βk| ≤ τ∗}

as the strong and weak signal sets and S∗ ∪ S∗ =
{1, 2, · · · , p}. The algorithms developed in this paper is to
recover the strong signal set S∗. The specific relationship
between τ∗ and τ∗ will be detailed later.

To carefully tailor the low-dimensional OLS estimator in
a high dimensional scenario, one needs to answer the fol-
lowing two questions: i) What is the correct form of OLS
in the high dimensional setting? ii) How to correctly use
this estimator? To answer these, we reconsider OLS from
a different perspective by viewing the OLS as the limit of
the ridge estimator with the ridge parameter going to zero,
i.e.,

(XTX)−1XTY = lim
r→0

(XTX + rIp)
−1XTY.

One nice property of the ridge estimator is that it exists
regardless of the relationship between p and n. A keen
observation reveals the following relationship immediately.

Lemma 1. For any p, n, r > 0, we have

(XTX + rIp)
−1XTY = XT (XXT + rIn)−1Y. (1)

Notice that the right hand side of (1) exists when p > n and
r = 0. Consequently, we can naturally extend the classical
OLS to the high dimensional scenario by letting r tend to
zero in (1). Denote this high dimensional version of the
OLS as

β̂(HD) = lim
r→0

XT (XXT + rIn)−1Y = XT (XXT )−1Y.

Unfortunately, β̂(HD) does not have good general perfor-
mance in estimating sparse vectors in high-dimensional
cases. Instead of directly estimating β as β̂HD, how-
ever, this new estimator of β may be used for dimension
reduction by observing β̂(HD) = XT (XXT )−1Xβ +



No penalty no tears: Least squares in high-dimensional linear models

XT (XXT )−1ε = Φβ + η. Since η is stochastically small,
if Φ is close to a diagonally dominant matrix and β is
sparse, then the strong and weak signals can be separated
by simply thresholding the small entries of β̂(HD). The
exact meaning of this statement will be discussed in the
next section. Some simple examples demonstrating the di-
agonal dominance of XT (XXT )−1X are illustrated im-
mediately in Figure 1, where the rows of X in the left
two plots are drawn from N(0,Σ) with σij = 0.6 or
σij = 0.99|i−j|. The sample size and data dimension are
chosen as (n, p) = (50, 1000). The right plot takes the
standardized design matrix directly from the real data in
Section 4. A clear diagonal dominance pattern is visible in
each plot.

This ability to separate strong and weak signals allows us
to first obtain a smaller model with size d such that |S∗| <
d < n containing S∗. Since d is below n, one can directly
apply the usual OLS to obtain an estimator, which will be
thresholded further to obtain a more refined model. The
final estimator will then be obtained by an OLS fit on the
refined model. This three-stage non-iterative algorithm is
termed Least-squares adaptive thresholding (LAT) and the
concrete procedure is described in Algorithm 1.

Algorithm 1 The Least-squares Adaptive Thresholding
(LAT) Algorithm
Initialization:

1: Input (Y,X), d, δ
Stage 1 : Pre-selection

2: Standardize Y and X to Ỹ and X̃ having mean 0 and
variance 1.

3: Compute β̂(HD) = X̃T (X̃X̃T + 0.1 · In)−1Ỹ . Rank
the importance of the variables by |β̂(HD)

i |;
4: Denote the model corresponding to the d largest
|β̂(HD)
i | as M̃d. Alternatively use extended BIC (Chen

and Chen, 2008) in conjunction with the obtained vari-
able importance to select the best submodel.

Stage 2 : Hard thresholding
5: β̂(OLS) = (XT

M̃d
XM̃d

)−1XT
M̃d

Y ;
6: σ̂2 =

∑n
i=1(y − ŷ)2/(n− d);

7: C̄ = (XT
M̃d

XM̃d
)−1;

8: Threshold β̂(OLS) by MEAN(
√

2σ̂2C̄ii log(4d/δ)) or
use BIC to select the best submodel. Denote the chosen
model as M̂.

Stage 3 : Refinement
9: β̂M̂ = (XT

M̂XM̂)−1XT
M̂Y ;

10: β̂i = 0,∀i 6∈ M̂;
11: return β̂.

The input parameter d is the submodel size selected
in Stage 1 and δ is the tuning parameter determin-
ing the threshold in Stage 2. In Stage 1, we use

β̂(HD) = X̃T (X̃X̃T + 0.1 · In)−1Ỹ instead of β̂(HD) =
X̃T (X̃X̃T )−1Ỹ because X̃X̃T is rank deficient (the rank
is n − 1) after standardization. The number 0.1 can be re-
placed by any arbitrary small number. As noted in Wang
and Leng (2015), this additional ridge term is also essential
when p and n get closer. Our results in Section 3 mainly
focus on β̂(HD) = XT (XXT )−1Y where X is assumed
to be drawn from a distribution with mean zero, so no stan-
dardization or ridge adjustment is required. However, the
result is easy to generalize to the case where a ridge term is
included. See Wang and Leng (2015).

The Stage 1 of Algorithm 1 is very similar to variable
screening methods (Fan and Lv, 2008; Wang and Leng,
2015). However, most screening methods require a sub-
Gaussian condition the noise to handle the ultra-high di-
mensional data where log(p) = o(n). In contrast to the
existing theory, we prove in the next section a better result
that Stage 1 of Algorithm 1 can produce satisfactory sub-
model even for heavy-tailed noise.

The estimator β̂(OLS) in Stage 2 can be substituted by its
ridge counterpart β̂(Ridge) = (XT

M̃d
XM̃d

+rId)
−1XT

M̃d
Y

and C̄ by (XT
M̃d

XM̃d
+rId)

−1 to stabilize numerical com-
putation. Similar modification can be applied to the Stage
3 as well. The resulted variant of the algorithm is referred
to as the Ridge Adaptive Thresholding (RAT) algorithm and
described in Algorithm 2.

Algorithm 2 The Ridge Adaptive Thresholding (RAT) Al-
gorithm
Initialization:

1: Input (Y,X), d, δ, r
Stage 1 : Pre-selection

2: Standardize Y and X to Ỹ and X̃ having mean 0 and
variance 1.

3: Compute β̂(HD) = X̃T (X̃X̃T + 0.1 · In)−1Ỹ . Rank
the importance of the variables by |β̂(HD)

i |;
4: Denote the model corresponding to the d largest
|β̂(HD)
i | as M̃d. Alternatively use eBIC in Chen and

Chen (2008) in conjunction with the obtained variable
importance to select the best submodel.

Stage 2 : Hard thresholding
5: β̂(Ridge) = (XT

M̃d
XM̃d

+ rId)
−1XT

M̃d
Y ;

6: σ̂2 =
∑n
i=1(y − ŷ)2/(n− d);

7: C̄ = (XT
M̃d

XM̃d
+ rId)

−1;

8: Threshold β̂(OLS) by MEAN(
√

2σ̂2C̄ii log(4d/δ)) or
use BIC to select the best submodel. Denote the chosen
model as M̂.

Stage 3 : Refinement
9: β̂M̂ = (XT

M̂XM̂ + rI)−1XT
M̂Y ;

10: β̂i = 0,∀i 6∈ M̂;
11: return β̂.
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XT(XXT)-1X: <ij = 0.6 XT(XXT)-1X: <ij = 0.99|i - j| XT(XXT)-1X: Real data

Figure 1. Examples forXT (XXT )−1X . Left: X ∼ N(0,Σ) with σij = 0.6 and σii = 1; Middle: X ∼ N(0,Σ) with σij = 0.9|i−j|;
Right: Real data from Section 4.

We suggest to use 10-fold cross-validation to tune the ridge
parameter r. Notice that the model is already small after
stage 1, so using cross-validation will not significantly in-
crease the computational burden. The computational per-
formance is illustrated in Section 4.

3. THEORY
In this section, we prove the consistency of Algorithm 1
in recoverying S∗ and provide concrete forms for all the
values needed for the algorithm to work. Recall the lin-
ear model Y = Xβ + ε. We consider the random design
where the rows of X are drawn from an elliptical distribu-
tion with covariance Σ. It is easy to show that xi admits an
equivalent representation as

xi
(d)
= Li

√
pzi

‖zi‖2
Σ1/2 =

√
pLi

‖zi‖2
ziΣ

1/2. (2)

where zi is a p-variate standard Gaussian random variable
and Li is a nonnegative random variable that is indepen-
dent of zi. We denote this distribution by EN(L,Σ). This
random design allows for various correlation structures and
contains many distribution families that are widely used
(Bickel et al., 2009; Raskutti et al., 2010). The noise ε,
as mentioned earlier, is only assumed to have the second-
order moment, i.e., var(ε) = σ2 < ∞, in contrast to
the sub-Gaussian/bounded error assumption seen in most
high dimension literature. See Zhang (2010); Yang et al.
(2014); Cai and Wang (2011); Wainwright (2009); Zhang
and Huang (2008). This relaxation is similar to Lounici
(2008); however we do not require any further assumptions
needed by Lounici (2008). In Algorithm 1, we also propose
to use extended BIC and BIC for parameter tuning. How-
ever, the corresponding details will not be pursued here,
as their consistency is straightforwardly implied by the re-
sults from this section and the existing literature (Chen and
Chen, 2008).

As shown in (2), the variable L controls the signal strength
of xi, we thus need a lower bound on Li to guarantee a

good signal strength. Define κ = cond(Σ). We state our
result in three theorems.
Theorem 1. Assume xi ∼ EN(Li,Σ) withE[L−2i ] < M1

and εi is a random variable with a bounded variance σ2.
We also assume p > c0n for some c0 > 1 and var(Y ) ≤
M0. If |S∗| log p = o(n), n > 4c0/(c0− 1)2, and τ∗/τ∗ ≥
4κ2, then we can choose γ to be 2c1κ

−1τ
3

n
p , where c1 is

some absolute constant specified in Lemma 2 and for any
α ∈ (0, 1) we have

P

(
max
i∈S∗
|β̂(HD)
i | ≤ γ ≤ min

i∈S∗
|β̂(HD)
i |

)
= 1−O

(
σ2κ4 log p

τ∗2nα

)
.

Theorem 1 guarantees the model selection consistency of
the first stage of Algorithm 1. It only requires a second-
moment condition on the noise tail, relaxing the sub-
Gaussian assumption seen in other literature. The proba-
bility term shows that the algorithm requires the strong sig-

nals to be lower bounded by a signal strength of σ
√

log p
nα .

In addition, a gap of τ∗/τ∗ ≥ 4κ2 is needed between the
strong and the weak signals in order for a successful sup-
port recovery.

As γ is not easily computable based on data, we propose to
rank the |β̂(HD)

i |′s and select d largest coefficients. Alter-
natively, we can construct a series of nested models formed
by ranking the largest n coefficients and adopt the extended
BIC (Chen and Chen, 2008). Once the submodel M̃d is ob-
tained, we proceed to the second stage by obtaining an es-
timate via ordinary least squares β̂(OLS) corresponding to
M̃d. The theory for β̂(OLS) requires more stringent con-
ditions, as we now need to estimate βM̂d

instead of just
obtaining a correct ranking. In particular, we have to im-
pose conditions on the magnitude of βS∗ and the moments
of L, i.e., for β̂(OLS) we have the following result.
Theorem 2. Assume the same conditions forX and ε as in
Theorem 1. We also assume n ≥ 64κd log p and d−|S∗| ≤
c̃ for some c̃ > 0. If E[L−12] ≤ M1, E[L12] ≤ M2,

τ∗ ≤ σ
κ

√
log p
n and there exists some ι ∈ (0, 1) such that
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i∈S∗
|βi|ι ≤ R, then for any α > 0, we have

P

(
max

|M̂|≤d, S∗⊂M̂
‖β̂(OLS) − β‖∞ ≤ 2σ

√
log p

nα

)
= 1−O

(
λ−2
∗ d log d

n
1
3
(1−α)

+
M1 +M2

n
1
3
(1−4α)

+
(M1 +M2)R3

(log p)2ιn3−4α−2ι

)
,

i.e., if τ∗ ≥ 5σ
√

log p
nα

, then we can choose γ′ = 3σ
√

log p
nα

and

max
i 6∈S∗

|β̂(OLS)
i | ≤ γ′ ≤ min

i∈S∗
|β̂(OLS)
i |

with probability tending to 1.

The moment condition on L is not tight. We use this
number just for simplicity. As shown in Theorem 2,
the lι norm of βS∗ is allowed to grow in a rate of
(log p)2ι/3n1−4α/3−2ι/3, i.e., our algorithms work for
weakly sparse coefficients. However, different from The-
orem 1, Theorem 2 imposes an upper bound on α. This is
mainly due to the different structures between β̂(HD) and
β̂(OLS), i.e., β̂(OLS) relies on L for diminishing the weak
signals while β̂(HD) does not. For ridge regression, we
have the following result.

Theorem 3 (Ridge regression). Assume all the conditions
in Theorem 2. If we choose the ridge parameter satisfying

r ≤ σn(7/9−5α/18)
√

log p

162κM0
,

then we have

P

(
max

|M̂|≤d,S∗⊂M̂
‖β̂(ridge) − β‖∞ ≤ 3σ

√
log p

nα

)
= 1−O

(
λ−2
∗ d log d

n
1
3
(1−α)

+
2M1 +M2

n
1
3
(1−4α)

+
(M1 +M2)R3

(log p)2ιn3−4α−2ι

)
,

i.e., if τ∗ ≥ 7σ
√

log p
nα

, then we can choose γ′ = 4σ
√

log p
nα

and

max
i 6∈S∗

|β̂(Ridge)
i (r)| ≤ γ′ ≤ min

i∈S∗
|β̂(Ridge)
i (r)|

with probability tending to 1.

When both the noise ε andX follows Gaussian distribution
and τ∗ = 0, we can obtain a more explicit form of the
threshold γ′, as the following Corollary shows.

Corollary 1 (Gaussian noise). Assume ε ∼ N(0, σ2),
X ∼ N(0,Σ) and τ∗ = 0. For any δ ∈ (0, 1), define

γ′ = 8
√

2σ̂
√

2κ log(4d/δ)
n , where σ̂ is the estimated stan-

dard error as σ̂2 =
∑n
i=1(yi − ŷi)

2/(n − d). For suffi-
ciently large n, if d ≤ n− 4K2 log(2/δ)/c for some abso-

lute constants c, K and τ∗ ≥ 24σ
√

2κ log(4d/δ)
n , then with

probability at least 1− 2δ, we have

|β̂(OLS)
i | ≥ γ′ ∀i ∈ S∗ and |β̂(OLS)

i | ≤ γ′ ∀i 6∈ S∗.

Write C̄ = (XT
M̃d

XM̃d
)−1 as in Algorithm 1. In practice,

we propose to use γ′ = mean(
√

2σ̂2C̄ii log(4d/δ)) as the
threshold (see Algorithm 1), because the estimation error
takes a form of

√
σ2C̄ii log(4d/δ). Once the final model

is obtained, as in Stage 3 of Algorithm 1, we refit it again
using ordinary least squares. The final output will have
the same output as if we knew S∗ a priori with probability
tending to 1. As implied by Theorem 1 – 3, LAT and RAT
can consistently identify strong signals in the ultra-high di-
mensional (log p = o(n)) setting with only the bounded
moment assumption var(ε) < ∞, in contrast to most ex-
isting methods that require ε ∼ N(0, σ2) or ‖ε‖∞ <∞.

4. EXPERIMENTS
In this section, we provide extensive numerical experi-
ments for assessing the performance of LAT and RAT. In
particular, we compare the two methods to existing penal-
ized methods including lasso, elastic net (enet (Zou and
Hastie, 2005)), adaptive lasso (Zou, 2006), scad (Fan and
Li, 2001) and mc+ (Zhang, 2010). As it is well-known that
the lasso estimator is biased, we also consider two varia-
tions of it by combining lasso with Stage 2 and 3 of our
LAT and RAT algorithms, denoted as lasLAT (las1 in Fig-
ures) and lasRAT (las2 in Figures) respectively. We note
that the lasLat algorithm is very similar to the thresholded
lasso (Zhou, 2010) with an additional thresholding step.
We code LAT and RAT and adaptive lasso in Matlab, use
glmnet (Friedman et al., 2010) for enet and lasso, and
SparseReg (Zhou et al., 2012; Zhou and Lange, 2013)
for scad and mc+. Since adaptive lasso achieves a similar
performance as lasLat on synthetic datasets, we only report
its performance for the real data.

4.1. Synthetic Datasets

The model used in this section for comparison is the lin-
ear model Y = Xβ + ε, where ε ∼ N(0, σ2) and
X ∼ N(0,Σ). To control the signal-to-noise ratio, we de-
fine r = ‖β‖2/σ, which is chosen to be 2.3 for all experi-
ments. The sample size and the data dimension are chosen
to be (n, p) = (200, 1000) or (n, p) = (500, 10000) for
all experiments. For evaluation purposes, we consider four
different structures of Σ below.

(i) Independent predictors. The support is set as S =
{1, 2, 3, 4, 5}. We generate Xi from a standard multivari-
ate normal distribution with independent components. The
coefficients are specified as

βi =

{
(−1)ui(|N(0, 1)|+ 1), ui ∼ Ber(0.5) i ∈ S
0 i 6∈ S.

(ii) Compound symmetry. All predictors are equally corre-
lated with correlation ρ = 0.6. The coefficients are set to
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be βi = 3 for i = 1, ..., 5 and βi = 0 otherwise.

(iii) Group structure. This example is Example 4 in Zou
and Hastie (2005), for which we allocate the 15 true vari-
ables into three groups. Specifically, the predictors are gen-
erated as

x1+3m = z1 +N(0, 0.01),

x2+3m = z2 +N(0, 0.01),

x3+3m = z3 +N(0, 0.01),

where m = 0, 1, 2, 3, 4 and zi ∼ N(0, 1) are independent.
The coefficients are set as

βi = 3, i = 1, 2, · · · , 15; βi = 0, i = 16, · · · , p.

(iv) Factor models. This model is also considered in Mein-
shausen and Bühlmann (2010) and Cho and Fryzlewicz
(2012). Let φj , j = 1, 2, · · · , k be independent standard
normal variables. We set predictors as xi =

∑k
j=1 φjfij +

ηi, where fij and ηi are generated from independent stan-
dard normal distributions. The number of factors is chosen
as k = 5 in the simulation while the coefficients are speci-
fied the same as in Example (ii).

To compare the performance of all methods, we simulate
200 synthetic datasets for (n, p) = (200, 1000) and 100 for
(n, p) = (500, 10000) for each example, and record i) the
root mean squared error (RMSE): ‖β̂−β‖2, ii) the false
negatives (# FN), iii) the false positives (# FP) and iv) the
actual runtime (in milliseconds). We use the extended BIC
(Chen and Chen, 2008) to choose the parameters for any
regularized algorithm. Due to the huge computation ex-
pense for scad and mc+, we only find the first d√pe predic-
tors on the solution path (because we know s � √p). For
RAT and LAT, d is set to 0.3 × n. For RAT and larsRidge,
we adopt a 10-fold cross-validation procedure to tune the
ridge parameter r for a better finite-sample performance,
although the theory allows r to be fixed as a constant. For
all hard-thresholding steps, we fix δ = 0.5. The results for
(n, p) = (200, 1000) are plotted in Figure 2, 3, 4 and 5 and
a more comprehensive result (average values for RMSE, #
FPs, # FNs, runtime) for (n, p) = (500, 10000) is sum-
marized in Table 1.

As can be seen from both the plots and the tables, LAT and
RAT achieve the smallest RMSE for Example (ii), (iii) and
(iv) and are on par with lasLAT for Example (i). For Exam-
ple (iii), RAT and enet achieve the best performance while
all the other methods fail to work. In addition, the runtime
of LAT and RAT are also competitive compared to that of
lasso and enet. We thus conclude that LAT and RAT achieve
similar or even better performance compared to the usual
regularized methods.

4.2. A Student Performance Dataset

We look at one dataset used for evaluating student achieve-
ment in Portuguese schools (Cortez and Silva, 2008). The
data attributes include student grades and school related
features that were collected by using school reports and
questionnaires. The particular dataset used here provides
the students’ performance in mathematics. The goal of the
research is to predict the final grade based on all the at-
tributes.

The original data set contains 395 students and 32 raw at-
tributes. The raw attributes are recoded as 40 attributes and
form 780 features after interaction terms are added. We
then remove features that are constant for all students. This
gives 767 features for us to work with. To compare the per-
formance of all methods, we first randomly split the dataset
into 10 parts. We use one of the 10 parts as a test set, fit all
the methods on the other 9 parts, and then record their pre-
diction error (root mean square error, RMSE), model size
and runtime on the test set. We repeat this procedure until
each of the 10 parts has been used for testing. The averaged
prediction error, model size and runtime are summarized in
Table 2. We also report the performance of the null model
which predicts the final grade on the test set using the mean
final grade in the training set.

It can be seen that RAT achieves the smallest cross-
validation error, followed by scad and mc+. In the post-
feature-selection analysis, we found that two features, the
1st and 2nd period grades of a student, were selected by all
the methods. This result coincides with the common per-
ception that these two grades usually have high impact on
the final grade.

In addition, we may also be interested in what happens
when no strong signals are presented. One way to do this
is to remove all the features that are related to the 1st and
2nd grades before applying the aforementioned procedures.
The new result without the strong signals removed are sum-
marized in Table 3.

Table 3 shows a few interesting findings. First, under this
artificial weak signal scenario, adaptive lasso achieves the
smallest cross-validation error and RAT is the first runner-
up. Second, in Stage 1, lasso seems to provide slightly
more robust screening than OLS in that the selected fea-
tures are less correlated. This might be the reason that LAT
is outperformed by lasLAT. However, in both the strong
and weak signal cases, RAT is consistently competitive in
terms of performance.

5. CONCLUSION
We have proposed two novel algorithms Lat and Rat that
only rely on least-squares type of fitting and hard threshold-
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Figure 2. The Boxplots for Example (i). Left: Estimation Error; Middle: False Positives; Right: False Negatives
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Figure 3. The Boxplots for Example (ii). Left: Estimation Error; Middle: False Positives; Right: False Negatives
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Figure 4. The Boxplots for Example (iii). Left: Estimation Error; Middle: False Positives; Right: False Negatives
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Figure 5. The boxplots for Example (iv). Left: Estimation Error; Middle: False Positives; Right: False Negatives
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Table 1. Results for (n, p) = (500, 10000)

Example LAT RAT lasso lasLAT lasRAT enet scad mc+
RMSE 0.263 0.264 0.781 0.214 0.214 1.039 0.762 0.755

Ex.(i) # FPs 0.550 0.580 0.190 0.190 0.190 0.470 0.280 0.280
# FNs 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000
Time 36.1 41.8 72.7 72.7 74.1 71.8 1107.5 1003.2
RMSE 0.204 0.204 0.979 0.260 0.260 1.363 0.967 0.959

Ex. (ii) # FPs 0.480 0.480 1.500 0.350 0.350 10.820 2.470 2.400
# FNs 0.000 0.000 0.040 0.040 0.040 0.040 0.020 0.020
Time 34.8 40.8 76.1 76.1 77.5 82.0 1557.6 1456.1
RMSE 9.738 1.347 7.326 17.621 3.837 1.843 7.285 8.462

Ex. (iii) # FPs 0.000 0.000 0.060 0.000 0.000 0.120 0.120 0.090
# FNs 4.640 0.000 1.440 13.360 1.450 0.000 1.800 2.780
Time 35.0 41.6 75.6 75.6 77.5 74.4 6304.4 4613.8
RMSE 0.168 0.168 1.175 0.256 0.256 1.780 0.389 0.368

Ex. (iv) # FPs 0.920 0.920 21.710 0.260 0.260 37.210 6.360 6.270
# FNs 0.010 0.010 0.140 0.140 0.140 0.450 0.000 0.000
Time 34.5 41.1 78.7 78.7 80.8 81.4 1895.6 1937.1

Table 2. Prediction Error of the Final Grades by Different Methods
methods mean error Standard error average model size runtime (millisec)
LAT 1.93 0.118 6.8 22.3
RAT 1.90 0.131 3.5 74.3
lasso 1.94 0.138 3.7 60.7
lasLAT 2.02 0.119 3.6 55.5
lasRAT 2.04 0.124 3.6 71.3
enet 1.99 0.127 4.7 58.5
scad 1.92 0.142 3.5 260.6
mc+ 1.92 0.143 3.4 246.0
adaptive lasso 2.01 0.140 3.6 65.5
null 4.54 0.151 0 —

Table 3. Prediction Error of the Final Grades Excluding Strong Signals
methods mean error Standard error average model size runtime (millisec)
LAT 4.50 0.141 5.3 22.4
RAT 4.26 0.130 4.0 74.0
lasso 4.27 0.151 5.0 318.9
lasLAT 4.25 0.131 2.9 316.5
lasRAT 4.28 0.127 2.8 331.9
enet 4.37 0.171 6.0 265.6
scad 4.30 0.156 4.8 387.5
mc+ 4.29 0.156 4.7 340.2
adaptive lasso 4.24 0.180 4.8 298.0
null 4.54 0.151 0 —

ing, based on a high-dimensional generalization of OLS.
The two methods are simple, easily implementable, and can
consistently fit a high dimensional linear model and recover
its support. The performance of the two methods are com-
petitive compared to existing regularization methods. It is

of great interest to further extend this framework to other
models such as generalized linear models and models for
survival analysis.
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Meinshausen, N. and Bühlmann, P. (2010). Stability selec-
tion. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 72(4):417–473.

Raskutti, G., Wainwright, M. J., and Yu, B. (2010). Re-
stricted eigenvalue properties for correlated gaussian de-
signs. The Journal of Machine Learning Research,
11:2241–2259.

Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society.
Series B (Statistical Methodology), pages 267–288.

Wainwright, M. J. (2009). Sharp thresholds for
high-dimensional and noisy sparsity recovery using-
constrained quadratic programming (lasso). IEEE Trans-
actions on Information Theory, 55(5):2183–2202.

Wang, X. and Leng, C. (2015). High dimensional ordinary
least squares projection for screening variables. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology).

Yang, E., Lozano, A., and Ravikumar, P. (2014). Elemen-
tary estimators for high-dimensional linear regression. In
Proceedings of the 31st International Conference on Ma-
chine Learning (ICML-14), pages 388–396.

Zhang, C.-H. (2010). Nearly unbiased variable selection
under minimax concave penalty. The Annals of Statis-
tics, 38(2):894–942.

Zhang, C.-H. and Huang, J. (2008). The sparsity and bias of
the lasso selection in high-dimensional linear regression.
The Annals of Statistics, 36(4):1567–1594.

Zhao, P. and Yu, B. (2006). On model selection consistency
of lasso. The Journal of Machine Learning Research,
7:2541–2563.

Zhou, H., Armagan, A., and Dunson, D. B. (2012). Path
following and empirical bayes model selection for sparse
regression. arXiv preprint arXiv:1201.3528.

Zhou, H. and Lange, K. (2013). A path algorithm for
constrained estimation. Journal of Computational and
Graphical Statistics, 22(2):261–283.

Zhou, S. (2010). Thresholded lasso for high dimen-
sional variable selection and statistical estimation. arXiv
preprint arXiv:1002.1583.

Zou, H. (2006). The adaptive lasso and its oracle prop-
erties. Journal of the American statistical association,
101(476):1418–1429.

Zou, H. and Hastie, T. (2005). Regularization and vari-
able selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology),
67(2):301–320.


