
Isotonic Hawkes Processes

A. Proof of Theorem 6
Theorem 6. Suppose E[Ni|Hti ] =

R ti
0

g⇤(w⇤ · xt)dt, where g⇤ is monotonic increasing, 1-Lipschitz and kw⇤k  W .

Then with probability at least 1� �, there exist some iteration k < O

✓�
Wn

log(Wn/�)

�
1/3

◆
such that

"(ĝk, ŵk
)  O

✓⇣W 2

log(Wn/�)

n

⌘
1/3

◆
.

Notations. We define some extra notations. First we rewrite the integral as
R ti
0

g⇤(w⇤ ·xt)dt =
P

j2Si
aijg

⇤
(w⇤ ·xj). Set

y⇤i = g⇤(w⇤ ·xi) to be the expected value of each yi. Let ¯Ni be the expected value of Ni. Then we have ¯Ni =
P

j2Si
aijy

⇤
j .

Clearly we do not have access to ¯Ni. However, consider a hypothetical call to the algorithm with input {(xi, ¯Ni)}ni=1

and
suppose it returns ḡk. In this case, we define ȳki = ḡk(w̄k · xi). Next we begin the proof and introduce Lemma 3-5.

Analysis roadmap. To prove Theorem 6, we establish several lemmas. The heart of the proof is Lemma 3, in which we
show a property of the learned parameters ŵk at iteration k. That is, the squared distance kŵk �w⇤k2 between ŵk and the
true direction w⇤ decreases at each iteration at a rate which depends on "(ĝk, ŵk

) and some other additive error terms ⌘
1

and ⌘
2

, which can be bounded respectively:

kŵk � w⇤k2 � kŵk+1 � w⇤k2 � C
2

"(ĝk, ŵk
)� C

1

(⌘
1

+ ⌘
2

) (16)

Lemma 4 bounds ⌘
1

= O
⇣
(K +

p
4K2

+ 8k2)
�
log(

1

� )
�
1/2

⌘
using martingale concentration inequality.

Lemma 5 bounds ⌘
2

= O

✓�W 2
log(Wn/�)

n

�
1/3

◆
. It relates ŷkj (the value we can actually compute) and ȳkj (the value we

could compute if we had ¯Ni). ȳkj and ŷkj will show up when we decouple kŵk � w⇤k2 � kŵk+1 � w⇤k2.

Finally, we plug in the values of ⌘
1

and ⌘
2

to Lemma 3. Then we conduct telescoping sum of (16) and show there is at most

O

✓
W/(⌘

1

+ ⌘
2

)

◆
iterations before the error "(ĝk, ŵk

) is less than O(⌘
1

+ ⌘
2

). Since ⌘
2

is the dominant term compared

with ⌘
1

, we replace ⌘
1

by ⌘
2

in the final results. This completes the proof.

Now we introduce Lemma 3-5 as follows.
Lemma 3. Suppose that kwk � wk  W , kxik  1,

p
c 

P
j2Si

aij 
p
C, 8i 2 [n], j 2 [n] and yj  M, 8j 2 [n],

and

| 1
n

nX

i=1

(Ni � ¯Ni)|  ⌘
1

,
1

n

nX

i=1

X

j2Si

aij |ŷkj � ȳkj |  ⌘
2

then the following formula holds:

kŵk � w⇤k2 � kŵk+1 � w⇤k2 � C
2

"(ĝk, ŵk
)� C

1

(⌘
1

+ ⌘
2

) (17)

where C
1

= max{5CW, 4M
p
c+ 2CW}, C

2

= 2c� C.

The complete proof of Lemma 3 is in Appendix C.
Lemma 4 (Martingale Concentration Inequality). Suppose dM(t)  K, V (t)  k for all t > 0 and some K, k � 0. With
probability at least 1� �, it holds that

1

n

nX

i=1

|Ni � ¯Ni|  O
⇣
(K +

p
4K2

+ 8k2)
�
log(1/�)

�
1/2

⌘
.

Note Ni � ¯Ni = Mi, which is the martingale at time ti. A continuous martingale is a stochastic process such that
E[Mt|{M⌧ , ⌧  s}] = Ms. It means the conditional expectation of an observation at time t is equal to the observation
at time s, given all the observations up to time s  t. V (t) is the variation process. It is shown in (Aalen et al., 2008)
that V (t) = ⇤(t) =

R t
0

�(s)ds, which is the compensator for point process N(t). The martingale serves as the noise term
in point processes (similar to Gaussian noise in regression) and can be bounded using the Bernstein-type concentration
inequality. The proof is in Appendix D.
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Lemma 5. (Kakade et al., 2011) With probability at least 1� �, it holds for any k that

1

n

nX

j=1

|ŷkj � ȳkj |  O
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log(Wn/�)

n

⌘
1/3

◆
.

Lemma 5 relates ŷkj (the value we can actually compute) to ȳkj (the value we could compute if we had the conditional
means of Nj). The proof of this lemma uses the covering number technique and can be found in (Kakade et al., 2011).

Proof of Theorem 6. With Lemma 3, we can conduct telescoping sum. There can be two cases: either "(ĝk, ŵk
) 

3C
1

(⌘
1

+ ⌘
2

)/C
2

or "(ĝk, ŵk
) � 3C

1

(⌘
1

+ ⌘
2

)/C
2

. If it is the first case, then we are done. If it is the second case, then
we have:

kwk � wk2 � kwk+1 � wk2 � C
1

(⌘
1

+ ⌘
2

)

Since kwk+1 � wk2 � 0, and kw0 � wk2  2W 2, by telescoping sum, at iteration K, we have:

2W 2 � kw0 � wk2 � kwK � wk2 � KC
1

(⌘
1

+ ⌘
2

)

Set K = 2W 2/C
1

(⌘
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+⌘
2

), if k > K, then the above inequality does not hold, which means "(ĝk, ŵk
) � 3C

1

(⌘
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+⌘
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)/C
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does not hold. Hence there can be at most 2W 2/C
1

(⌘
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+ ⌘
2

) = O(W/(⌘
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+ ⌘
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)) iterations before "(ĝk, ŵk
)  3C
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(⌘
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⌘
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)/C
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.

The remaining step is to bound ⌘
1

and ⌘
2

. We use Lemma 4 to bound ⌘
1

and use Lemma 5 to bound ⌘
2

. Clearly ⌘
2

is the
dominant term. Plugging the values of ⌘

1

and ⌘
2

, we have the conclusion that there is some hk such that

"(ĝk, ŵk
)  O

✓�W 2

log(Wn/�)
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�
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◆
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B. Proof of Lemma 6
To prove Lemma 3, a key technique is the generalized calibration property. It generalizes that of isotonic regression in
(Kalai & Sastry, 2009) since our objective function is more general. We first state Lemma 6 and then provide the proof.

Lemma 6 (Generalized Calibration Property). The solutions to Quadratic Problem in (11) is partitioned into disjoint
blocks {Pl}ml=1

, and for each block Pl:

nX

i=1

(Ni �
X

j2Si

aij ŷ
k
j )

X

j2Pl

aij = 0 (18)

Proof. First we define aij such that

aij =

(
aij if j 2 Si

0 else

Hence we have
nX

j=1

aij =
X

j2Si

aij (19)

We can rewrite the objective function as:

f =

1

2

nX

i=1

(Ni �
X

j2Si

aij ŷ
k
j )

2

=

1

2

nX

i=1

(Ni �
nX

j=1

aij ŷ
k
j )

2

Set {�i}n�1

i=1

to be the Lagrange multipliers. To update ŷkj , we apply the KKT conditions to (11) and obtain the following
formulas:

@f

@ŷk
1

=

nX

i=1

(Ni �
nX

j=1

aij ŷ
k
j )ai1 + �

1

= 0 (20)

@f

@ŷkj
=

nX

i=1

(Ni �
nX

j=1

aij ŷ
k
j )aij + �j � �j�1

= 0, 2  j  n� 1 (21)

@f

@ŷkn
=

nX

i=1

(Ni �
nX

j=1

aij ŷ
k
j )ain � �n�1

= 0 (22)

�j(ŷ
k
j � ŷkj+1

) = 0, 1  j  n� 1 (23)

�j � 0, 1  j  n� 1 (24)

Depending whether ŷkj ’s are equal, we can divide the subscript of ŷkj into disjoint sets {Pl}ml=1

such that in each Pl, the
values of ŷkj are the same. Hence there exists j

1

< j
2

< · · · < jm�1

< n, such that

P
1

= {1, · · · , j
1

},P
2

= {j
1

+ 1, · · · , j
2

}, · · · ,Pm = {jm�1

+ 1, n} (25)

Figure 8 illustrates an example when m = 3. in this case, P
1

= {1, 2}, P
2

= {3, 4}, and P
3

= {5, 6}. Now we show the
following equality holds for l = 1, · · · ,m in three cases,

nX

i=1

(Ni �
nX

j=1

aij ŷ
k
j )

X

j2Pl

aij = 0

Case 1: the first block. For P
1

, we sum up equations @f
@ŷk

j
= 0 according to the index in P

1

. we have

( Pn
i=1

(Ni �
Pn

j=1

aij ŷ
k
j )

P
j2P1

aij + �j1 = 0

�j1 = 0

(26)
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Figure 8. Demonstration for the block partition in (25). P1, P2 and P3 are the first, intermediate and last block respectively. In each
block, ŷ has the same value.

Since ŷkj1 6= ŷkj1+1

, from (23) we have �j1 = 0.

Case 2: the intermediate blocks. For 2  l  m� 1, in Pl, we sum up equations @f
@ŷk

j
= 0. Then we have

( Pn
i=1

(Ni �
Pn

j=1

aij ŷ
k
j )

P
j2Pl

aij + �jl � �jl�1 = 0

�jl = �jl�1 = 0

(27)

Since ŷkjl 6= ŷkjl+1

and ŷkjl�1
6= ŷkjl�1+1

, from (23) we have �jl = �jl�1 = 0.

Case 3: the last block. For Pm, similarly we have
( Pn

i=1

(Ni �
Pn

j=1

aij ŷ
k
j )

P
j2Pm

aij � �jm�1 = 0

�jm�1 = 0

(28)

From (19), we have for all l = 1, · · · ,m
nX

i=1

(Ni �
X

j2Pl

aij ŷ
k
j )

X

j2Pl

aij = 0

This completes the proof.
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C. Proof of Lemma 3
First, we have

kŵk � w⇤k2 � kŵk+1 � w⇤k2 = 2(ŵk+1 � ŵk
) · (w⇤ � ŵk

)� kŵk+1 � ŵkk2 (29)

=

2

n

nX

i=1

(Ni �
X

j2Si

aij ŷ
k
j )(

X

j2Si

aijxj · (w⇤ � ŵk
))

| {z }
A

�

������
1

n

nX

i=1

(Ni �
X

j2Si

aij ŷ
k
j )

X

j2Si

aijxj

������

2

| {z }
B

(30)

First we simplify A. Using the following equality:

Ni �
X

j2Si

aij ŷ
k
j = Ni �

X

j2Si

aijy
⇤
j +

X

j2Si

aijy
⇤
j �

X

j2Si

aij ȳ
k
j +

X

j2Si

aij ȳ
k
j �

X

j2Si

aij ŷ
k
j ,

we can rewrite A into three parts:

A =

2

n

nX

i=1

(Ni �
X

j2Si

aijy
⇤
j )(

X

j2Si

aijxj) · (w⇤ � wk
) (31)

+

2

n

nX

i=1

(

X

j2Si

aijy
⇤
j �

X

j2Si

aij ȳ
k
j )(

X

j2Si

aijxj · (w⇤ � wk
)) (32)

+

2

n

nX

i=1

(

X

j2Si

aij ȳ
k
j �

X

j2Si

aij ŷ
k
j )(

X

j2Si

aijxj · (w⇤ � wk
)) (33)

The term (31) is at least �2CW⌘
1

, the term (33) is at least �2CW⌘
2

since |
P

j2Si
aij(w � wk

) · xj | 
p
CW and

assuming C � 1. We thus bound(32).

First define v, the inverse of g as
v(y) = inf{z 2 dom(g)|g(z) = y}

Note that v is well defined since g is monotonic. We also split (32) into three parts,

2

n

nX

i=1

(

X

j2Si

aijy
⇤
j �

X

j2Si

aij ȳ
k
j )(

X

j2Si

aijxj · (w⇤ � ŵk
))

=

2

n

nX

i=1

(

X

j2Si

aijy
⇤
j �

X

j2Si

aij ȳ
k
j )

X

j2Si

aijv(ȳ
k
j ) (34)

� 2

n

nX

i=1

(

X

j2Si

aijy
⇤
j �

X

j2Si

aij ȳ
k
j )

X

j2Si

aijŵ
k · xj (35)

+

2

n

nX

i=1

(

X

j2Si

aijy
⇤
j �

X

j2Si

aij ȳ
k
j )

X

j2Si

aij(w
⇤ · xj � v(ȳkj )) (36)

As to (34), it is 0 by Lemma 6. To see this, remember that ¯Ni =
P

j2Si
aijy

⇤
i and ȳkj is the output of the algorithm in Eq.

(11) with input {(w̄k · xi, ¯Ni)}. Apply Lemma 6 and we have the pools {Pl}ml=1

and
nX

i=1

(

¯Ni �
X

j2Si

aij ȳ
k
j )

X

j2Pl

X

j2Si

aij = 0

Define function v to be the inverse of g. v is defined as v(y) = inf{z 2 dom(g)|g(z) = y}. Since g is monotonic, v is
well-defined. Since all ȳkj in the same set Pl has the same value, then the value v(ȳkj ) (the inverse mapping) is also the
same. Hence

nX

i=1

(Ni �
X

j2Si

aij ȳ
k
j )

X

j2Si

aijv(ȳ
k
j ) = 0
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Now sum the above equation up for all sets Pl, l = 1, · · · ,m, note that
Sm

l=1

P = {1, · · · , n}, we have
nX

i=1

(

¯Ni �
X

j2Si

aij ȳ
k
j )

X

j2Si

aijv(ȳ
k
j ) = 0

As to (35), we show it is always no greater than 0. To see this, we first claim that for any � > 0,
nX

i=1

(

¯Ni �
X

j2Si

aij ȳ
k
j )

2 
nX

i=1

(

¯Ni �
X

j2Si

aij ȳ
k
j � �(

X

j2Si

aijxj) · ŵk
)

2

This is because
P

j2Si
aij ȳ

k
j minimizes the sum of squared difference w.r.t. ¯Ni over all such sequences. Rewriting this as

a difference of squares gives,
X

i

�(
X

j2Si

aijxj) · ŵk

✓
2Ni � 2

X

j2Si

aij ȳ
k
j � �(

X

j2Si

aijxj) · ŵk

◆
� 0

Dividing both sides by 2� > 0, we have
X

i

(

X

j2Si

aijxj) · ŵk

✓
¯Ni �

X

j2Si

aij ȳ
k
j � �

2

(

X

j2Si

aijxj) · ŵk

◆
� 0

Setting � ! 0, by continuity we obtain

2

n

nX

i=1

(

¯Ni �
X

j2Si

aij ȳ
k
j )

X

j2Si

aijŵ
k · xj � 0

Hence we have (35) always no greater than 0.

As to (36), by 1-Lipschitz property of g, the first term can be bounded as

2

n

nX

i=1

(

X

j2Si

aijy
⇤
j �

X

j2Si

aij ȳ
k
j )

X

j2Si

aij(v(y
⇤
j )� v(ȳkj ))

� 2

n

nX

j=1

c(y⇤j � ȳkj )(v(y
⇤
j )� v(ȳkj ))

� 2

n

nX

j=1

c(y⇤j � ȳkj )
2

= 2c"(ḡk, w̄k
) (37)

Plugging to the definition of A, we get

A � 2c"(ḡk, w̄k
)� 2CW (⌘

1

+ ⌘
2

) (38)

Next we bound B. First rewrite B as:

B =

������
1

n

nX

i=1

(Ni �
X

j2Si

aijy
⇤
j +

X

j2Si

aijy
⇤
j �

X

j2Si

aij ŷ
k
j )

X

j2Si

aijxj

������

2



������
1

n

nX

i=1

(Ni �
X

j2Si

aijy
⇤
j )

X

j2Si

aijxj

������

2

(39)

+ 2

������
1

n

nX

i=1

(Ni �
X

j2Si

aijy
⇤
j )

X

j2Si

aijxi

������
⇥

������
1

n

nX

i=1

(

X

j2Si

aijy
⇤
j �

X

j2Si

aij ŷ
k
j )

X

j2Si

aijxj

������
(40)

+

������
1

n

nX

i=1

(

X

j2Si

aijy
⇤
j �

X

j2Si

aij ŷ
k
j )

X

j2Si

aijxj

������

2

(41)
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From the condition in Lemma 3, we have

k 1
n

nX

i=1

(Ni �
1

n

nX

i=1

X

j2Si

aijy
⇤
j )

X

j2Si

aijxjk2  C⌘2
1

(42)

Use Jensen’s inequality and consider the upper bound C for k
P

j2Si
aijxik2, we show that

������
1

n

nX

i=1

(

X

j2Si

aijy
⇤
j �

X

j2Si

aij ŷ
k
j )

X

j2Si

aijxi

������

2

 C ⇥ 1

n

nX

i=1

(y⇤j � ŷkj )
2

= C"(ĝk, ŵk
) (43)

Combining (42) and (43) into (39), (40), (41), assuming ⌘
1

 1, C � 1, we have

B  C⌘2
1

+ 2C⌘
1

q
"(ĝk, ŵk

) + C"(ĝk, ŵk
)  C"(ĝk, ŵk

) + 3C⌘
1

(44)

Hence the we have:
B  C"(ĝk, ŵk

) + 3C⌘
1

(45)

Combining the bound for A in (38) and the bound for B in (45) into (30), we get

kŵk � ŵk2 � kŵk+1 � ŵk2 � 2c"(ḡk, w̄k
)� C"(ĝk, ŵk

)� CW (5⌘
1

+ 2⌘
2

) (46)

To finish the proof, we establish the relationship between "(ḡk, w̄k
) and "(ĝk, ŵk

) as follows: we claim that the difference
between "(ḡk, w̄k

) and "(ĝk, ŵk
) can be lower bounded:

"(ḡk, w̄k
)� "(ĝk, ŵk

) � �2M⌘
2

/
p
c (47)

To see this, we have:

"(ḡk, w̄k
) =

1

n

nX

j=1

(ȳkj � y⇤j )
2

=

1

n

nX

j=1

(ȳkj � ŷkj + ŷkj � y⇤j )
2

=

1

n

nX

j=1

(ŷkj � y⇤j )
2

+

1

n

nX

j=1

(ȳkj � ŷkj )(ȳ
k
j + ŷkj � 2y⇤j )

= "(ĝk, ŵk
) +

1

n

nX

j=1

(ȳkj � ŷkj )(ȳ
k
j + ŷkj � 2y⇤j )

and we have |ȳki + ŷki � 2y⇤i |  2M . Plugging this and the following inequality leads to (47).

1

n

nX

j=1

|ŷkj � ȳkj | 
1

n

nX

j=1

X

j2Si

aij/
p
c|ŷkj � ȳkj |  ⌘

2

/
p
c

Combine (47) and (46), we have

kwk � wk2 � kwk+1 � wk2 � (2c� C)"(ĝk, ŵk
)� 4M

p
c⌘

2

� CW (5⌘
1

+ 2⌘
2

) � C
2

"(ĝk, ŵk
)� C

1

(⌘
1

+ ⌘
2

)

where C
1

= max{5CW, 4M
p
c+ 2CW}, C

2

= (2c� C), this completes the proof.
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D. Proof of Lemma 4
We have Ni � ¯Ni = Mi, which is the martingale at time ti. The martingale serves as the noise term in point processes
(similar to Gaussian noise in regression) and can be bounded using the Bernstein-type concentration inequality. First, we
have the following martingale inequality (Aalen et al., 2008; Liptser & Shiryayev, 2012): for each ✏ and some t, we have

P[|M(t)| > ✏]  exp
✓
� ✏2

2(k2 + ✏K)

◆

In our case, for each i, we have Ni = ⇤(ti)+M(ti), where ⇤(t) is the compensator and M(t) is the zero-mean martingale.
Also we have ¯Ni = E(Ni) = ⇤(ti). Hence Ni� ¯Ni = M(ti) = Mi. Now we set � = P[|M(t)| > ✏], then with probability

at least 1� �, |M(t)|  ✏. Set � = exp
✓
� ✏2

2(k2
+✏K)

◆
, then we have the equation
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Here we have used the fact that
�
log(1/�)

�
2  log(1/�) 

p
log(1/�). We can obtain that

✏ = O
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Hence we have
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