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APPENDIX: SUPPLEMENTARY MATERIAL
Uprooting and Rerooting Graphical Models
Here we provide:

• Proof of Lemma 2.

• In §8, details of the polytopes and proofs from §5.2, including proofs of Theorems 3 and 4.

• In §9, details of experimental methods, and additional results.

Lemma 2. Given distribution pi for any i ∈ {1, . . . , n}, the marginals p0(Xj = 1) for the original model M = M0

may be recovered as follows:

p0(Xj = 1) =

{
pi(X0 = 1) j = i

pi(Xj 6= X0) j 6= i.

Proof. First, for j = i we have

p0(Xi = 1) = p+(Xi = 1|X0 = 0)

=
p+(Xi = 1, X0 = 0)

p+(X0 = 0)

=
p+(Xi = 0, X0 = 1)

p+(Xi = 0)
(symmetry of M+, note that p+(Xr = 0) =

1

2
for any r ∈ {0, . . . , n})

= pi(X0 = 1).

Next, for j 6= i, again using symmetry of M+,

p0(Xj = 1) = p+(Xj = 1|X0 = 0)

=
p+(Xj = 1, X0 = 0)

p+(X0 = 0)

=
p+(Xj = 1, X0 = 0, Xi = 0) + p+(Xj = 1, X0 = 0, Xi = 1)

p+(X0 = 0)

=
p+(Xj = 1, X0 = 0, Xi = 0) + p+(Xj = 0, X0 = 1, Xi = 0)

p+(Xi = 0)

=
p+(Xj 6= X0, Xi = 0)

p+(Xi = 0)

= pi(Xj 6= X0).

8. Details of the polytopes and proofs from section 5.2
Weller et al. (2016) showed that LP+TRI is tight (that is, the LP relaxation on the triplet-consistent polytope is guaranteed
to yield an optimum at an integral vertex) for any model which is almost balanced (that is, any model which contains
a variable s.t. if it is removed then the remaining model is balanced; any singleton potentials are allowed). We first
provide background and preliminary results in §8.1-8.2. For more extensive background, see (Wainwright and Jordan,
2008, Chapter 8), (Sontag, 2007) or (Deza and Laurent, 1997).

In §8.3, we prove Theorem 3, a general result which shows that TRI is ‘universally rooted’. Many optimization results that
apply for TRI for some rerooting of a model will automatically apply for all rerootings.

We shall apply Theorem 3 to show how the result of Weller et al. (2016) may be significantly strengthened in Theorem 4 to
demonstrate tightness of LP+TRI for any model M whose uprooted model M+ is 2-almost balanced (that is, the uprooted
model contains 2 variables s.t. if they are both removed then what remains in the uprooted model is balanced).
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Notation. As in 4.1.2, in order to differentiate between probabilities obtained for an initial model M = M0, its uprooted
model M+, and various rerooted models Mi, we use the following notation: let pi be the probability distribution in model
Mi, in particular p0 is the distribution for model M0 which is the original model M ; let p+ be the distribution in the
uprooted model M+.

Using similar reasoning to that used above in the proof of Lemma 2, we use the symmetry of M+ to show the following
results which will be useful in §8.3 for mapping rooted probabilities pi to ‘universal’ uprooted probabilities p+.

Lemma 5. (i) For any distinct i, j ∈ {0, . . . , n}, pi(Xj = 1) = p+(Xi 6= Xj);
(ii) for any distinct i, j, k ∈ {0, . . . , n}, pi(Xj 6= Xk) = p+(Xj 6= Xk).

Proof. (i) For distinct i, j ∈ {0, . . . , n},

pi(Xj = 1) = p+(Xj = 1|Xi = 0)

=
p+(Xj = 1, Xi = 0)

p+(Xi = 0)

= 2p+(Xj = 1, Xi = 0)

= p+(Xj = 1, Xi = 0) + p+(Xj = 0, Xi = 1) (symmetry of M+)

= p+(Xi 6= Xj).

(ii) For distinct i, j, k ∈ {0, . . . , n},

pi(Xj 6= Xk) = p+(Xj 6= Xk|Xi = 0)

=
p+(Xj = 1, Xk = 0, Xi = 0) + p+(Xj = 0, Xk = 1, Xi = 0)

p+(Xi = 0)

= 2 [p+(Xj = 1, Xk = 0, Xi = 0) + p+(Xj = 0, Xk = 1, Xi = 0)]

= p+(Xj = 1, Xk = 0, Xi = 0) + p+(Xj = 0, Xk = 1, Xi = 0)

+ p+(Xj = 0, Xk = 1, Xi = 1) + p+(Xj = 1, Xk = 0, Xi = 1) (symmetry of M+)

= p+(Xj = 1, Xk = 0) + p+(Xj = 0, Xk = 1)

= p+(Xj 6= Xk).

8.1. The marginal polytope and its relaxations LOC and TRI

Given a model M with n variables V and m edges E , we may consider a vector containing marginal probabilities for all n
single variables and all m pairs of variables that are directly related.

Specifically, regarding the score (1), for any configuration x = (x1, . . . , xn), let yij = 1[xi 6= xj ] then collect the x
and y terms together into a vector z = (x1, . . . , xn, . . . , yij , . . . ) ∈ {0, 1}n+m. Similarly collect together the potential
parameters into a vector w = (θ1, . . . , θn, . . . ,− 1

2Wij , . . . ) ∈ Rn+m. Now the score of a configuration x may be written
as w · z(x), and MAP inference may be framed as an integer linear program to find z∗ ∈ arg maxz:x∈{0,1}n w · z.

The convex hull of the 2n possible integer solutions in [0, 1]n+m is the marginal polytope M for our choice of singleton and
edge terms in (1). Regarding the convex coefficients as a probability distribution p0 over all possible states, the marginal
polytope may be considered the space of all singleton and pairwise mean marginals that are consistent with some global
distribution p0 over the 2n states, that is

M = {µ = (µ1, . . . , µn, . . . , µij , . . . ) ∈ [0, 1]d s.t. ∃p0 : µi = Ep0(Xi) ∀i, µij = Ep0(1[Xi 6= Xj ]) ∀(i, j) ∈ E}. (4)

Note that µi = p0(Xi = 1) and µij = p0(Xi 6= Xj).

Since an LP attains an optimum at a vertex of the feasible region, if w · µ is maximized over M then an exact integer
solution is always optimum. However, M has exponentially many facets (Deza and Laurent, 1997), hence a simpler,
relaxed constraint set is typically employed, yielding an upper bound on the original optimum. This set is often chosen as
the local polytope LOC, which enforces only pairwise consistency (Wainwright and Jordan, 2008). If an optimum vertex
is achieved at an integer solution, then this must be an optimum of the original discrete problem, in which case we say
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that the relaxation LP+LOC is tight. Sherali and Adams (1990) proposed a series of successively tighter relaxations by
enforcing consistency over progressively larger clusters of variables. At order r, the Lr polytope enforces consistency over
all clusters of variables of size ≤ r. L2 is the local polytope LOC. Next, L3 is the triplet-consistent polytope TRI, and so
on, with Ln = M ⊆ Ln−1 ⊆ · · · ⊆ L3 = TRI ⊆ L2 = LOC.

In order to obtain the explicit constraints for these polytopes, earlier work (Wainwright and Jordan, 2008; Weller et al.,
2016) uses a different (but equivalent) minimal reparameterization leading to a different (but equivalent) set of marginals.
To link to their notation, let αi = p0(Xi = 1), αij = p0(Xi = 1, Xj = 1), αijk = p0(Xi = 1, Xj = 1, Xk = 1). We next
present a derivation of the constraints for LOC and TRI following (Weller et al., 2016), see also (Wainwright and Jordan,
2008, Example 8.7).

Examining just one variable, we have αi = µi ∈ [0, 1] ∀i. In order to be consistent with these single variable marginals,
the matrix of pairwise marginals for edge (i, j) takes the form

(
p0(Xi = 0, Xj = 0) p0(Xi = 0, Xj = 1)
p0(Xi = 1, Xj = 0) p0(Xi = 1, Xj = 1)

)
=

(
1 + αij − αi − αj αj − αij

αi − αij αij

)
. (5)

The LOC constraints are exactly those that ensure that all 4 terms are ≥ 0, which leads to

LOC constraints for edge (i, j) : max(0, αi + αj − 1) ≤ αij ≤ min(αi, αj). (6)

These constraints may be reformulated in terms of our µij marginals by using µi = αi, and observing from (5) that

µij = αi + αj − 2αij ⇔ αij =
1

2
(µi + µj − µij) .5 (7)

To obtain the constraints for TRI, we use a ‘lift-and-project’ approach by ‘lifting’ to distributions over three variables,
deriving conditions, then projecting these back down to the one and two variable marginals that we are using. We must
ensure that the distribution over every triplet of variables Xi, Xj , Xk is valid and consistent with all edge and singleton
marginals. Given αi, αj , αk, αij , αik, αjk and using αijk = p0(Xi = 1, Xj = 1, Xk = 1) as defined above, we have:

With k = 0,(
p0(Xi = 0, Xj = 0) p0(Xi = 0, Xj = 1)
p0(Xi = 1, Xj = 0) p0(Xi = 1, Xj = 1)

)
=

(
1− αi − αj − αk + αij + αik + αjk − αijk αj + αijk − αij − αjk

αi + αijk − αij − αik αij − αijk

)
With k = 1,(

p0(Xi = 0, Xj = 0) p0(Xi = 0, Xj = 1)
p0(Xi = 1, Xj = 0) p0(Xi = 1, Xj = 1)

)
=

(
αk + αijk − αik − αjk αjk − αijk

αik − αijk αijk

)
.

As previously for LOC, we have the constraints that all terms are ≥ 0. By combining inequalities, we may project back
down by eliminating αijk. For example, if we combine the condition that the top right element of the matrix for k = 0
is ≥ 0 with the similar condition for the bottom right element of the same matrix, we obtain αj − αjk ≥ 0 which is one
of the LOC constraints for edge (j, k), see (6). Working through the various combinations yields all the previous LOC
constraints for the edges (i, j), (i, k) and (j, k), and in addition we obtain the following four new triplet constraints, which
are called cycle inequalities in (Wainwright and Jordan, 2008, Example 8.7).

TRI constraints in terms of α marginals for triplet of distinct i, j, k ∈ {1, . . . , n} : αi + αjk ≥ αij + αik

αj + αik ≥ αij + αjk

αk + αij ≥ αik + αjk

αij + αik + αjk ≥ αi + αj + αk − 1.
(8)

5This equivalence is essentially the covariance mapping described in (Deza and Laurent, 1997, §5.2).
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If we use (7) to rewrite these TRI constraints (8) in terms of µ marginals, then they take the following appealing form.

TRI constraints in terms of µ marginals for triplet of distinct i, j, k ∈ {1, . . . , n} : µjk ≤ µij + µik

µik ≤ µij + µjk

µij ≤ µik + µjk

µij + µik + µjk ≤ 2. (9)

Notice that (9) considers only terms of the form µij . Since µij is the probability that Xi and Xj take different values,
a simple way to see that the inequalities of (11) are valid is to observe that they clearly hold for any integer settings of
Xi, Xj , Xk ∈ {0, 1}3, and hence they must hold for any valid probability distribution over the 8 possible settings of these
three variables (since this yields a convex combination).

8.2. The cut polytope and its relaxations RMET and MET

As in §3: given a model M with variables {X1, . . . , Xn} on graph G(V, E) with vertices V = {1, . . . , n} and edges
E , its uprooted model M+ has variables {X0, . . . , Xn} on graph G′(V ′, E ′) with vertices V ′ = {0, 1, . . . , n} and edges
E ′ = E ∪F , where F = {(0, i) : θi 6= 0}. An uprooted model M+ is completely symmetric. The score (2) considers only
edges and examines only whether the end variables of each edge take the same value.

Given a subset S ⊆ V ′ = {0, 1, . . . , n}, let δ(S) ∈ {0, 1}|E′| be the cut vector of edges of E ′ which run between the vertex
partitions S and V ′ \ S, defined by δ(S)ij = 1 iff i and j are in different partitions.

The cut polytope (Barahona and Mahjoub, 1986) of G′ is the convex hull of all such cut vectors, that is CUT = conv
{δ(S) : S ⊆ V ′}. Although there are 2n+1 choices of S, CUT has 2n vertices since by definition δ(S) = δ(V ′ \ S). In
fact, there is a simple linear bijection between CUT and the marginal polytope M of M .

Given d ∈ CUT with entries d(i, j) for each edge (i, j) ∈ E ′, d maps to µ ∈ M where µj = d(0, j) for j ∈ V, and
µij = d(i, j) for (i, j) ∈ E . To see this, d(i, j) may be interpreted as the marginal probability that i, j ∈ V ′ lie in different
partitions.

As an aside, note that the marginal polytope of M+, which we call M+, is closely related, but different, to CUT. M+ has
n + 1 additional dimensions for the singleton marginal dimensions of its n + 1 variables, though given the symmetry of
M+, these are all 1/2.

MAP inference for the model M on G is equivalent to the weighted max cut problem for G′:

max
µ∈M

w · µ = max
e∈CUT

w′ · d, w′ij =

{
θj i = 0

− 1
2Wij (i, j) ∈ E.

(10)

The bijection between M and CUT may also be used to map the LOC and TRI relaxations of M to corresponding relaxations
of CUT in [0, 1]|E

′|, called the rooted semimetric polytope RMET and the semimetric polytope MET, respectively. The
constraints for the MET polytope (which corresponds to TRI) take the following form, sometimes described as unrooted
triangle inequalities (Deza and Laurent, 1997, §27.1):

MET constraints ∀ distinct i, j, k ∈ V ′ = {0, 1, . . . , n} : d(i, j)− d(i, k)− d(j, k) ≤ 0 (11)
d(i, j) + d(i, k) + d(j, k) ≤ 2.

Note that the MET constraints (11) restricted to triplets i, j, k ∈ V = {1, . . . , n} are identical to the TRI constraints for
µ marginals in (9). Both enforce triplet consistency on the marginal probabilities of edges having end vertices which are
different.

Remarkably, the constraints on d for RMET, the rooted triangle inequalities, which are equivalent to the LOC constraints
on µ for LOC (6), are exactly just those of (11) for which one of i, j, k is 0, the vertex that was added to G to yield G′.
Hence, RMET may be regarded as MET rooted at 0. Correspondingly, we may consider TRI to be a version of LOC that
is universally rooted.

To see this, we shall consider the LOC constraints for edge (i, j) ∈ E (6), and show that they are exactly the MET
constraints (11) applied to triplet (0, i, j) in V ′. Consider the triangle 0ij of G′ shown in Figure 4.
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0

i j
d(i, j) = µij

d(0, i) = µi d(0, j) = µj

Figure 4. Illustration of edge marginals for the MET polytope, shown in orange, and their values in terms of µ marginals for the model
M , shown in blue.

Recall that µi = αi, µj = αj , and from (7) that µij = αi + αj − 2αij . Hence, the MET constraints (11) with k = 0
become:

d(i, j)− d(i, k)− d(j, k) ≤ 0 ⇔ αi + αj − 2αij − αi − αj ≤ 0 ⇔ αij ≥ 0

d(i, k)− d(i, j)− d(j, k) ≤ 0 ⇔ αi − αi − αj + 2αij − αj ≤ 0 ⇔ αij ≤ αj
d(j, k)− d(i, j)− d(i, k) ≤ 0 ⇔ αj − αi − αj + 2αij − αi ≤ 0 ⇔ αij ≤ αi
d(i, j) + d(i, k) + d(j, k) ≤ 2 ⇔ αi + αj − 2αij + αi + αj ≤ 2 ⇔ αij ≥ αi + αj − 1,

which exactly match the LOC constraints (6), as required.

8.3. New results

With the background in §8.1-8.2, we are ready to prove our new results.

Notation. Let µi, wi be the µ,w vectors corresponding to rerootings at Xi. In particular, µ0, w0 are the µ,w vectors for
the original model M = M0.
Theorem 3. (TRI is ‘universally rooted’) LP+TRI yields the same optimum score forM as for any rerootingMi; hence
LP+TRI is either tight for all rerootings or for none.

Proof. First, note that the MAP score for M is the same as that for any rerooting Mi. One way to see this follows the
observations in §3-4: each configuration x of M maps to exactly 2 configurations of M+: y0 = (0, x) and y1 = ȳ0 =
(1, x̄), with the potentials of M+ set so that score(x) = score(y0) = score(y1). Hence, in particular, a MAP configuration
for M maps to two MAP configurations for M+ with the same score, and exactly one of these will be in any rerooting Mi

as a MAP configuration for that rerooted model with the same score.

It remains to show that maxTRI(Mi) w
i · µi is the same for any rerooting of a model M . We shall use a similar idea,

converting the problem for M into a problem over the graph G′ of the uprooted model, in such a way that this problem
over G′ is the same for all rerootings Mi. In fact, we shall show a score-preserving linear bijection between TRI(Mi) and
MET, where we must still show that this is the same no matter which rerooting Mi is used.

In §8.2, we gave a simple linear bijection between M and CUT, which naturally extends to a linear bijection between
TRI(M) and MET(M). Further it is clear that this is score preserving if we use w′ from (10). That is, we have for any µ ∈
TRI(M), a linear bijection between µ and d ∈ MET(M) s.t. w · µ = w′ · d. If these are maximized over their respective
(equivalent) polytopes, then we obtain the same maximum.

It remains to show that for all rerootings, MET(M) = MET(Mi) and that wi maps to the same vector w′ for each MET.
MET(M) = MET(Mi) follows directly from Lemma 5. Each wi maps to the same vector w′ by construction, see (2).

The next result follows as a simple application of Theorem 3 to the earlier result of Weller et al. (2016).
Theorem 4. LP+TRI is tight for (any rerooting of) a model M whose uprooted model M+ is 2-almost balanced.

Proof. First, ifM+ is 2-almost balanced with special variablesXi andXj , then if we root at eitherXi orXj , we obtain an
almost balanced model (that is, Mi or Mj) on which LP+TRI is tight by the result of Weller et al. (2016). Now if LP+TRI
is tight for Mi, then by Theorem 3, LP+TRI is tight for any rerooting of Mi, including M .
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Following our result, Weller (2016) demonstrated a still stronger result: LP+TRI is tight for any model M whose uprooted
modelM+ does not contain an odd-K5 as a signed minor. An odd-K5 is the complete graph on 5 variables where all edges
are repulsive. Since an odd-K5 is clearly not 2-almost balanced (if any 2 variables are removed, the remaining model is a
frustrated triangle), all 2-almost balanced models are a subset of those that do not contain an odd-K5 as a signed minor.
Further, the condition of Weller (2016) was shown to be both sufficient and necessary for tightness for models with all
potentials that respect the edge signs of the uprooted model. For details, see (Weller, 2016).

9. Details of experimental methods, and additional results
For all inference methods, we used the open source libDAI library (Mooij, 2010) and averaged over 100 random models.
We show results first for smaller models (complete graph on 10 variables and 5 × 5 grids), and then in Figure 11 for
Bethe for larger models (complete graph on 15 variables and 9 × 9 grids). Wherever possible, we were consistent with
the approaches of Weller and Domke (2016). We experienced difficulty with mean field (MF), since a randomly initialized
run could return a very suboptimal solution. Hence, each time we used 100 random initializations and took the solution
with highest estimate of the partition function (the most accurate since MF always provides a lower bound). Still, we
experienced some convergence difficulties and advise caution in interpreting our MF results.

For MF,
MF[tol=1e-7,maxiter=10000,damping=0.0,init=RANDOM,updates=NAIVE]

For Bethe,
HAK[doubleloop=1,clusters=BETHE,init=UNIFORM,tol=1e-7,maxiter=10000]
This is guaranteed to converge to a stationary point of the Bethe free energy (whereas BP may not converge).

For TRW,
TRWBP[updates=SEQFIX,tol=1e-7,maxiter=10000,logdomain=0,nrtrees=1000,...
damping=0.25,init=UNIFORM]
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complete graph K10, mixed potentials
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Figure 5. Average error plots over 100 runs for the Bethe approximation, complete graph with 10 variables
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5 x 5 grid graph, mixed potentials

er
ro

ro
fl

o
g
Z

maximum edge strength W
max

2 4 8 12 16
0

2

4

6

8

10
Original M
M+
worst
maxW
maxtW
best

maximum edge strength W
max

2 4 8 12 16
0

2

4

6

8

10

12
Original M
M+
worst
maxW
maxtW
best

maximum edge strength W
max

2 4 8 12 16
0

5

10

15

20

25

30
Original M
M+
worst
maxW
maxtW
best

l 1
er

ro
ro

fm
ar

gi
na

ls

maximum edge strength W
max

2 4 8 12 16
0

0.01

0.02

0.03

0.04

0.05

Original M
M+
worst
maxW
maxtW
best

maximum edge strength W
max

2 4 8 12 16
0

0.05

0.1

0.15

0.2

0.25

0.3

Original M
M+
worst
maxW
maxtW
best

maximum edge strength W
max

2 4 8 12 16
0

0.05

0.1

0.15

0.2

0.25

0.3

low singleton θi ∼ [−0.1, 0.1] medium singleton θi ∼ [−2, 2] singleton + edge potentials scale together

5 x 5 grid graph, attractive potentials
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Figure 6. Average error plots over 100 runs for the Bethe approximation, 5 x 5 grid graph
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complete graph K10, mixed potentials
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complete graph, attractive potentials
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Figure 7. Average error plots over 100 runs for the TRW approximation, complete graph with 10 variables
Note the very low scale for l1 error of marginals for low singleton potentials.
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5 x 5 grid graph, mixed potentials
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5 x 5 grid graph, attractive potentials
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Figure 8. Average error plots over 100 runs for the TRW approximation, 5 x 5 grid graph
Note the very low scale for l1 error of marginals for low singleton potentials.
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complete graph K10, mixed potentials
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complete graph, attractive potentials
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Figure 9. Average error plots over 100 runs for the MF approximation, complete graph with 10 variables
Results for the error of marginals for the complete graph look interesting and warrant further investigation, though we suspect
these may be due to problems with our MF algorithm implementation.
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5 x 5 grid graph, mixed potentials
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5 x 5 grid graph, attractive potentials
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Figure 10. Average error plots over 100 runs for the MF approximation, 5 x 5 grid graph
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Bethe results for larger models, mixed potentials

complete graph K15, mixed potentials
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9 x 9 grid graph, mixed potentials
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Figure 11. Average error plots over 100 runs for the Bethe approximation, mixed potentials


