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A. Appendix: Additional numerical results
A.1. Handwritten digit classification

For the handwritten digit classification experiment de-
scribed in Section 6.1, Table 1 shows the classification error
for Daubechies wavelets with 2 vanishing moments (DB2).

DB2
abs ReLU tanh LogSig

n.p. 0.54 0.51 1.29 1.40
sub. 0.60 0.58 1.16 1.34
max. 0.57 0.57 0.75 0.67
avg. 0.52 0.61 1.16 1.27

Table 1. Classification errors in percent for handwritten digit
classification using DB2 wavelet filters, different non-linearities,
and different pooling operators (sub.: sub-sampling; max.: max-
pooling; avg.: average-pooling; n.p.: no pooling).

A.2. Feature importance evaluation

For the feature importance experiment described in Section
6.2, Figure 1 shows the cumulative feature importance (per
triplet of layer index, wavelet scale, and direction, averaged
over all trees in the respective RF) in facial landmark de-
tection (right eye and mouth).

B. Appendix: Lipschitz continuity of pooling
operators

We verify the Lipschitz property

‖P (f)− P (h)‖2 ≤ R‖f − h‖2, ∀f, h ∈ HN ,

for the pooling operators in Section 2.3.1.

Sub-sampling: Pooling by sub-sampling is defined as

P : HN → HN/S , P (f)[n] = f [Sn], n ∈ IN/S ,
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Figure 1. Average cumulative feature importance and standard er-
ror for facial landmark detection. The labels on the horizontal axis
indicate layer index d/wavelet direction (0: horizontal, 1: vertical,
2: diagonal).
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where N/S ∈ N. Lipschitz continuity with R = 1 follows
from

‖P (f)− P (h)‖22 =
∑

n∈IN/S

|f [Sn]− h[Sn]|2

≤
∑
n∈IN

|f [n]− h[n]|2 = ‖f − h‖22, ∀f, h ∈ HN .

Averaging: Pooling by averaging is defined as

P : HN → HN/S , P (f)[n] =

Sn+S−1∑
k=Sn

αk−Snf [k],

for n ∈ IN/S , where N/S ∈ N. We start by setting α′ :=
maxk∈{0,...,S−1} |αk|. Then,

‖P (f)− P (h)‖22

=
∑

n∈IN/S

∣∣∣ Sn+S−1∑
k=Sn

αk−Sn(f [k]− h[k])
∣∣∣2

≤
∑

n∈IN/S

∣∣∣ Sn+S−1∑
k=Sn

α′|f [k]− h[k]|
∣∣∣2

≤ α′2S
∑

n∈IN/S

Sn+S−1∑
k=Sn

∣∣∣f [k]− h[k]
∣∣∣2 (B.1)

= α′2S
∑
n∈IN

∣∣∣f [k]− h[k]
∣∣∣2 = α′2S‖f − h‖22,

where we used
∑
k∈IS |f [k]−h[k]| ≤ S1/2‖f−h‖2, f, h ∈

HS , to get (B.1), see, e.g., (Golub & Van Loan, 2013).

Maximization: Pooling by maximization is defined as

P : HN → HN/S , P (f)[n] = max
k∈{Sn,...,Sn+S−1}

|f [k]|,

for n ∈ IN/S , where N/S ∈ N. We have

‖P (f)− P (h)‖22
=

∑
n∈IN/S

∣∣ max
k∈{Sn,...,Sn+S−1}

|f [k]|

− max
k∈{Sn,...,Sn+S−1}

|h[k]|
∣∣2

≤
∑

n∈IN/S

max
k∈{Sn,...,Sn+S−1}

∣∣f [k]− h[k]
∣∣2 (B.2)

≤
∑

n∈IN/S

S−1∑
k=0

|f [Sn+ k]− h[Sn+ k]|2 (B.3)

= ‖f − h‖22,

where we employed the reverse triangle inequality∣∣‖f‖∞ − ‖h‖∞∣∣ ≤ ‖f − h‖∞, f, h ∈ HS , to get (B.2),
and in (B.3) we used ‖f‖∞ ≤ ‖f‖2, f ∈ HS , see, e.g.,
(Golub & Van Loan, 2013).

C. Appendix: Proof of Theorem 1
We start by proving i). The key idea of the proof is—
similarly to the proof of Proposition 4 in (Wiatowski &
Bölcskei, 2015)—to employ telescoping series arguments.
For ease of notation, we let fq := U [q]f and hq := U [q]h,
for f, h ∈ HN1

, q ∈ Λd1. With (9) we have

|||ΦΩ(f)− ΦΩ(h)|||2 =

D−1∑
d=0

∑
q∈Λd

1

||(fq − hq) ∗ χd||22︸ ︷︷ ︸
=:ad

.

The key step is then to show that ad can be upper-bounded
according to

ad ≤ bd − bd+1, d = 0, . . . , D − 1, (C.1)

with bd :=
∑
q∈Λd

1
‖fq − hq‖22, for d = 0, . . . , D, and to

note that

D−1∑
d=0

ad ≤
D−1∑
d=0

(bd − bd+1) = b0 − bD︸︷︷︸
≥0

≤ b0

=
∑
q∈Λ0

1

‖fq − hq‖22 = ‖f − h‖22,

which then yields (8). Writing out (C.1), it follows that we
need to establish∑

q∈Λd
1

‖(fq − hq) ∗ χd‖22 ≤
∑
q∈Λd

1

||fq − hq‖22

−
∑

q∈Λd+1
1

‖fq − hq‖22, d = 0, . . . , D − 1. (C.2)

We start by examining the second sum on the right-hand
side (RHS) in (C.2). Every path

q̃ ∈ Λd+1
1 = Λ1 × · · · × Λd︸ ︷︷ ︸

=Λd
1

×Λd+1

of length d + 1 can be decomposed into a path q ∈ Λd1
of length d and an index λd+1 ∈ Λd+1 according to q̃ =
(q, λd+1). Thanks to (5) we have U [q̃] = U [(q, λd+1)] =
Ud+1[λd+1]U [q], which yields

∑
q̃∈Λd+1

1

‖fq̃ − hq̃‖22 =
∑
q∈Λd

1

∑
λd+1∈Λd+1

‖Ud+1[λd+1]fq

− Ud+1[λd+1]hq‖22. (C.3)
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Substituting (C.3) into (C.2) and rearranging terms, we ob-
tain

∑
q∈Λd

1

(
‖(fq − hq) ∗ χd‖22 (C.4)

+
∑

λd+1∈Λd+1

‖Ud+1[λd+1]fq − Ud+1[λd+1]hq‖22
)

(C.5)

≤
∑
q∈Λd

1

||fq − hq‖22, d = 0, . . . , D − 1. (C.6)

We next note that the sum over the index set Λd+1 inside
the brackets in (C.4)-(C.5) satisfies

∑
λd+1∈Λd+1

‖Ud+1[λd+1]fq − Ud+1[λd+1]hq‖22

=
∑

λd+1∈Λd+1

‖Pd+1

(
ρd+1(fq ∗ gλd+1

)
)

− Pd+1

(
ρd+1(hq ∗ gλd+1

)
)
‖22

≤ R2
d+1

∑
λd+1∈Λd+1

‖ρd+1(fq ∗ gλd+1
) (C.7)

− ρd+1(hq ∗ gλd+1
)‖22 (C.8)

≤ R2
d+1L

2
d+1

∑
λd+1∈Λd+1

‖(fq − hq) ∗ gλd+1
‖22, (C.9)

where we employed the Lipschitz continuity of Pd+1 in
(C.7)-(C.8) and the Lipschitz continuity of ρd+1 in (C.9).
Substituting the sum over the index set Λd+1 inside the
brackets in (C.4)-(C.5) by the upper bound (C.9) yields

∑
q∈Λd

1

(
‖(fq − hq) ∗ χd‖22

+
∑

λd+1∈Λd+1

‖Ud+1[λd+1]fq − Ud+1[λd+1]hq‖22
)

≤
∑
q∈Λd

1

max{1, R2
d+1L

2
d+1}

(
‖(fq − hq) ∗ χd‖22 (C.10)

+
∑

λd+1∈Λd+1

‖(fq − hq) ∗ gλd+1
‖22
)
, (C.11)

for d = 0, . . . , D − 1. As {gλd+1
}λd+1∈Λd+1

∪ {χd} are
atoms of the convolutional set Ψd+1, and fq, hq ∈ HNd+1

,
we have

‖(fq − hq) ∗ χd‖22 +
∑

λd+1∈Λd+1

‖(fq − hq) ∗ gλd+1
‖22

≤ Bd+1‖fq − hq‖22,

which, when used in (C.10)-(C.11) yields∑
q∈Λd

1

(
‖(fq − hq) ∗ χd‖22

+
∑

λd+1∈Λd+1

‖Ud+1[λd+1]fq − Ud+1[λd+1]hq‖22
)

≤
∑
q∈Λd

1

max{Bd+1, Bd+1R
2
d+1L

2
d+1}‖fq − hq‖22,

(C.12)

for d = 0, . . . , D − 1. Finally, invoking (7) in (C.12) we
get (C.4)-(C.6) and hence (C.1). This completes the proof
of i).

We continue with ii). The key step in establishing (10)
is to show that for ρd(0) = 0 and Pd(0) = 0, for
d ∈ {1, . . . , D − 1}, the feature extractor ΦΩ satisfies
ΦΩ(0) = 0, and to employ (8) with h = 0 which yields

|||Φ(f)||| ≤ ‖f‖,

for f ∈ HN1 . It remains to prove that ΦΩ(h) = 0 for
h = 0. For h = 0, the operator Ud, d ∈ {1, 2, . . . , D},
defined in (4) satisfies

(Ud[λd]h) = Pd
(
ρd(h ∗ gλd︸ ︷︷ ︸

=0

)

︸ ︷︷ ︸
=0

)
︸ ︷︷ ︸

=0

,

for λd ∈ Λd, by assumption. With the definition of U [q] in
(5) this then yields (U [q]h) = 0 for h = 0 and all q ∈ Λd1.
ΦΩ(0) = 0 finally follows from

ΦΩ(h) =

D−1⋃
d=0

{ (
U [q]h

)
∗ χd︸ ︷︷ ︸

=0

}
q∈Λd

1
= 0. (C.13)

We proceed to iii). The proof of the deformation sensitivity
bound (12) is based on two key ingredients. The first one
is the Lipschitz continuity result stated in (8). The second
ingredient, stated in Proposition D.1 in Appendix D, is an
upper bound on the deformation error ‖f − Fτf‖2 given
by

‖f − Fτf‖2 ≤ 4KN
1/2
1 ‖τ‖1/2∞ , (C.14)

where f ∈ CN1,K
CART . We now show how (8) and (C.14) can

be combined to establish (12). To this end, we first apply
(8) with h := (Fτf) to get

|||ΦΩ(f)− ΦΩ(Fτf)||| ≤ ‖f − Fτf‖2, (C.15)

for f ∈ CN1,K
CART ⊆ HN1

, N1 ∈ N, and K > 0, and then re-
place the RHS of (C.15) by the RHS of (C.14). This com-
pletes the proof of iii).
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D. Appendix: Proposition D.1
Proposition D.1. For every N ∈ N, every K > 0, and
every τ : R→ [−1, 1], we have

‖f − Fτf‖2 ≤ 4KN1/2‖τ‖1/2∞ , (D.1)

for all f ∈ CN,KCART.

Remark D.1. As already mentioned at the end of Section 4,
excluding the interval boundary points a, b in the definition
of sampled cartoon functions CN,KCART (see Definition 4) is
necessary for technical reasons. Specifically, without im-
posing this exclusion, we can not expect to get deformation
sensitivity results of the form (D.1). This can be seen as
follows. Let us assume that we seek a bound of the form
‖f − Fτf‖2 ≤ CN,K‖τ‖α∞, for some CN,K > 0 and
some α > 0, that applies to all f [n] = c(n/N), n ∈ IN ,
with c ∈ CKCART. Take τ(x) = 1/N , in which case the
deformation (Fτf)[n] = c(n/N − 1/N) amounts to a
simple translation by 1/N and ‖τ‖∞ = 1/N ≤ 1. Let
c(x) = 1[0,2/N ](x). Then c ∈ CKCART for K = 1 and
‖f − Fτf‖2 =

√
2, which obviously does not decay with

‖τ‖α∞ = N−α for some α > 0. We note that this phe-
nomenon occurs only in the discrete case.

Proof. The proof of (D.1) is based on judiciously combi-
ning deformation sensitivity bounds for the sampled com-
ponents c1(n/N), c2(n/N), n ∈ IN , in (c1 + 1[a,b]c2) ∈
CKCART, and the sampled indicator function 1[a,b](n/N),
n ∈ IN . The first bound, stated in Lemma D.1 below,
reads

‖f − Fτf‖2 ≤ CN1/2‖τ‖∞, (D.2)

and applies to discrete-time signals f [n] = f(n/N), n ∈
IN , with f : R→ C satisfying the Lipschitz property with
Lipschitz constant C. The second bound we need, stated in
Lemma D.2 below, is given by

‖1N[a,b] − Fτ1
N
[a,b]‖2 ≤ 2N1/2‖τ‖1/2∞ , (D.3)

and applies to sampled indicator functions 1N[a,b][n] :=

1[a,b](n/N), n ∈ IN , with a, b /∈ {0, 1
N , . . . ,

N−1
N }. We

now show how (D.2) and (D.3) can be combined to estab-
lish (D.1). For a sampled cartoon function f ∈ CN,KCART,
i.e.,

f [n] = c1(n/N) + 1[a,b](n/N)c2(n/N)

=: f1[n] + 1N[a,b][n]f2[n], n ∈ IN ,

we have

‖f − Fτf‖2 ≤ ‖f1 − Fτf1‖2 + ‖1N[a,b](f2 − Fτf2)‖2
+ ‖(1N[a,b] − Fτ1

N
[a,b])(Fτf2)‖2 (D.4)

≤ ‖f1 − Fτf1‖2 + ‖f2 − Fτf2‖2
+ ‖1N[a,b] − Fτ1

N
[a,b]‖2‖Fτf2‖∞,

where in (D.4) we used(
Fτ (1N[a,b]f2)

)
[n] = (1[a,b]c2)(n/N − τ(n/N))

= 1[a,b](n/N − τ(n/N))c2((n/N − τ(n/N)))

= (Fτ1
N
[a,b])[n](Fτf2)[n].

With the upper bounds (D.2) and (D.3), invoking proper-
ties of CN,KCART (namely, (i) c1, c2 satisfy the Lipschitz pro-
perty with Lipschitz constant C = K and hence f1[n] =
c1(n/N), f2[n] = c2(n/N), n ∈ IN , satisfy (D.2) with
C = K, and (ii) ‖Fτf2‖∞ = supn∈IN |(Fτf2)[n]| =
supn∈IN |c2(n/N − τ(n/N))| ≤ supx∈R |c2(x)| =
‖c2‖∞ ≤ K), this yields

‖f − Fτf‖2 ≤ 2KN1/2 ‖τ‖∞ + 2KN1/2‖τ‖1/2∞
≤ 4KN1/2‖τ‖1/2∞ ,

where in the last step we used ‖τ‖∞ ≤ ‖τ‖1/2∞ , which is
thanks to the assumption ‖τ‖∞ ≤ 1. This completes the
proof of (D.1).

It remains to establish (D.2) and (D.3).

Lemma D.1. Let c : R → C be Lipschitz-continuous with
Lipschitz constantC. Let further f [n] := c(n/N), n ∈ IN .
Then,

‖f − Fτf‖2 ≤ CN1/2‖τ‖∞.

Proof. Invoking the Lipschitz property of c according to

‖f − Fτf‖22 =
∑
n∈IN

|f [n]− (Fτf)[n]|2

=
∑
n∈IN

|c(n/N)− c(n/N − τ(n/N))|2

≤ C2
∑
n∈IN

|τ(n/N)|2 ≤ C2N‖τ‖2∞

completes the proof.

We continue with a deformation sensitivity result for sam-
pled indicator functions 1[a,b](x).

Lemma D.2. Let [a, b] ⊆ [0, 1] and set 1N[a,b][n] :=

1[a,b](n/N), n ∈ IN , with a, b /∈ {0, 1
N , . . . ,

N−1
N }. Then,

we have

‖1N[a,b] − Fτ1
N
[a,b]‖2 ≤ 2N1/2‖τ‖1/2∞ .

Proof. In order to upper-bound

‖1N[a,b] − Fτ1
N
[a,b]‖

2
2 =

∑
n∈IN

|1N[a,b][n]− (Fτ1
N
[a,b])[n]|2

=
∑
n∈IN

|1[a,b](n/N)− 1[a,b](n/N − τ(n/N))|2,
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we first note that the summand h(n) := |1[a,b](n/N) −
1[a,b](n/N − τ(n/N))|2 satisfies h(n) = 1, for n ∈ S,
where

S :=
{
n ∈ IN

∣∣∣ n
N
∈ [a, b] and

n

N
− τ
( n
N

)
/∈ [a, b]

}
∪
{
n ∈ IN

∣∣∣ n
N

/∈ [a, b] and
n

N
− τ
( n
N

)
∈ [a, b]

}
,

and h(n) = 0, for n ∈ IN\S. Thanks to a, b /∈
{0, 1

N , . . . ,
N−1
N }, we have S ⊆ Σ, where

Σ :=
{
n ∈ Z

∣∣∣ ∣∣∣ n
N
− a
∣∣∣ < ‖τ‖∞}

∪
{
n ∈ Z

∣∣∣ ∣∣∣ n
N
− b
∣∣∣ < ‖τ‖∞}.

The cardinality of the set Σ can be upper-bounded by
2 2‖τ‖∞

1/N , which then yields

‖1N[a,b] − Fτ1
N
[a,b]‖

2
2 =

∑
n∈IN

|h(n)|2

=
∑
n∈S

1 ≤
∑
n∈Σ

1 ≤ 4N‖τ‖∞. (D.5)

This completes the proof.

Remark D.2. For general a, b ∈ [0, 1], i.e., when we drop
the assumption a, b /∈ {0, 1

N , . . . ,
N−1
N }, it follows that

S ⊆ Σ′, where

Σ′ :=
{
n ∈ Z

∣∣∣ ∣∣∣ n
N
− a
∣∣∣ ≤ ‖τ‖∞}

∪
{
n ∈ Z

∣∣∣ ∣∣∣ n
N
− b
∣∣∣ ≤ ‖τ‖∞}.

Noting that the cardinality of Σ′ can be upper-bounded by
2
( 2‖τ‖∞

1/N + 1
)

= 4N‖τ‖∞ + 2, this then yields (similarly
to (D.5))

‖1N[a,b] − Fτ1
N
[a,b]‖

2
2 ≤

∑
n∈Σ

1 ≤ 4N‖τ‖∞ + 2,

which shows that the deformation error—for general a, b ∈
[0, 1]—does not decay with ‖τ‖α∞ for some α > 0 (see also
the example in Remark D.1).

E. Appendix: Theorem 2
We start by establishing i). For ease of notation, again, we
let fq := U [q]f and hq := U [q]h, for f, h ∈ HN1

, q ∈ Λd1.
We have

|||ΦdΩ(f)− ΦdΩ(h)|||2 =
∑
q∈Λd

1

||(fq − hq) ∗ χd||22 (E.1)

≤ ‖χd‖21
∑
q∈Λd

1

||(fq − hq)||22︸ ︷︷ ︸
=:ad

, (E.2)

where (E.2) follows by Young’s inequality (Folland, 2015).

Remark E.1. We emphasize that (E.1) can also be upper-
bounded byBd+1

∑
q∈Λd

1
||(fq−hq)||22, which follows from

the fact that {gλd+1
}λd+1∈Λd+1

∪ {χd} are atoms of the
convolutional set Ψd+1 with Bessel bound Bd+1. Hence,
one can substitute ‖χd‖1 in (15) by Bd+1.

The key step is then to show that ad can be upper-bounded
according to

ak ≤ (BkL
2
kR

2
k)ak−1, k = 1, . . . , d, (E.3)

and to note that

ad ≤ (BdL
2
dR

2
d)ad−1 ≤ · · · ≤

( d∏
k=1

BkL
2
kR

2
k

)
a0

=
( d∏
k=1

BkL
2
kR

2
k

) ∑
q∈Λ0

1

‖fq − hq‖22

=
( d∏
k=1

BkL
2
kR

2
k

)
‖f − h‖22,

which yields (16). We now establish (E.3). Every path

q̃ ∈ Λk1 = Λ1 × · · · × Λk−1︸ ︷︷ ︸
=Λk−1

1

×Λk

of length k can be decomposed into a path q ∈ Λk−1
1

of length k − 1 and an index λk ∈ Λk according to
q̃ = (q, λk). Thanks to (5) we have U [q̃] = U [(q, λk)] =
Uk[λk]U [q], which yields∑

q̃∈Λk
1

‖fq̃ − hq̃‖22 =
∑

q∈Λk−1
1

∑
λk∈Λk

‖Uk[λk]fq

− Uk[λk]hq‖22. (E.4)

We next note that the term inside the sums on the RHS in
(E.4) satisfies

‖Uk[λk]fq − Uk[λk]hq‖22
= ‖Pk

(
ρk(fq ∗ gλk

)
)
− Pk

(
ρk(hq ∗ gλk

)
)
‖22

≤ L2
kR

2
k‖(fq − hq) ∗ gλk

‖22, (E.5)

where we used the Lipschitz continuity of Pk and ρk with
Lipschitz constants Rk > 0 and Lk > 0, respectively. As
{gλk
}λk∈Λk

∪ {χk−1} are the atoms of the convolutional
set Ψk, and fq, hq ∈ HNk

by (5), we have∑
λk∈Λk

‖(fq − hq) ∗ gλk
‖22 ≤ Bk‖fq − hq‖22,

which, when used in (E.5) together with (E.4), yields∑
q̃∈Λk

1

‖fq̃ − hq̃‖22 ≤ BkL2
kR

2
k

∑
q∈Λk−1

1

‖fq − hq‖22,
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and hence establishes (E.3), thereby completing the proof
of i).

We now turn to ii). The proof of (17) follows—as in the
proof of ii) in Theorem 1 in Appendix C—from (16) to-
gether with ΦdΩ(h) = {(U [q]h) ∗ χd}q∈Λd

1
= 0 for h = 0,

see (C.13).

We continue with iii). The proof of the deformation sen-
sitivity bound (18) is based on two key ingredients. The
first one is the Lipschitz continuity result in (16). The sec-
ond ingredient is, again, the deformation sensitivity bound
(D.1) stated in Proposition D.1 in Appendix D. Combining
(16) and (D.1)—as in the proof of iii) in Theorem 1 in Ap-
pendix C—then establishes (18) and completes the proof
of iii).

We proceed to iv). For ease of notation, again, we let fq :=
U [q]f , for f ∈ HN1 , q ∈ Λd1. Thanks to (5), we have
fq ∈ HNd+1

, for q ∈ Λd1. The key step in establishing (19)
is to show that the operator Uk, k ∈ {1, 2, . . . , d}, defined
in (4) satisfies the relation

(Uk[λk]Tmf) = Tm/Sk
(Uk[λk]f), (E.6)

for f ∈ HNk
, m ∈ Z with m

Sk
∈ Z, and λk ∈ Λk. With the

definition of U [q] in (5) this then yields

(U [q]Tmf) = Tm/(S1···Sd)(U [q]f), (E.7)

for f ∈ HN1
, m ∈ Z with m

S1...Sd
∈ Z, and q ∈ Λd1. The

identity (19) is then a direct consequence of (E.7) and the
translation-covariance of the circular convolution operator
(which holds thanks to m

S1...Sd
∈ Z):

ΦdΩ(Tmf) =
{(
U [q]Tmf

)
∗ χd

}
q∈Λd

1

=
{(
Tm/(S1···Sd)U [q]f

)
∗ χd

}
q∈Λd

1

=
{
Tm/(S1···Sd)

(
(U [q]f) ∗ χd

)}
q∈Λd

1

= Tm/(S1···Sd)Φ
d
Ω(f),

for f ∈ HN1
and m ∈ Z with m

S1...Sd
∈ Z. It remains to

establish (E.6):

(Uk[λk]Tmf) =
(
Pk
(
ρk((Tmf) ∗ gλk

)
))

=
(
Pk
(
ρk(Tm(f ∗ gλk

))
))

(E.8)

=
(
Pk
(
Tm(ρk(f ∗ gλk

))
))
, (E.9)

where in (E.8) we used the translation covariance of the cir-
cular convolution operator (which holds thanks to m ∈ Z),
and in (E.9) we used the fact that point-wise non-linearities
commute with the translation operator thanks to

(ρkTmf)[n] = ρk((Tmf)[n])

= ρk(f [n−m]) = (Tmρkf)[n],

for f ∈ HNk
, n ∈ INk

, and m ∈ Z. Next, we note
that the pooling operators Pk in Section 2.3.1 (namely,
sub-sampling, average pooling, and max-pooling) can all
be written as (Pkf)[n] = (P ′kf)[Skn], for some P ′k that
commutes with the translation operator, namely, for (i)
sub-sampling (P ′kf)[n] = f [n], with (P ′kTmf)[n] =
(Tmf)[n] = f [n−m] = (TmP

′
kf)[n], (ii) average pooling

(P ′kf)[n] =
∑n+Sk−1
l=n αl−nf [l] with

(P ′kTmf)[n] =

n+Sk−1∑
l=n

αl−nf [l −m]

=

(n−m)+Sk−1∑
l′=(n−m)

αl−(n−m)f [l′]

= (TmP
′
kf)[n],

and for (iii) max-pooling (P ′kf)[n] =
maxl∈{n,...,n+Sk−1} |f [l]| with

(P ′kTmf)[n] = max
l∈{n,...,n+Sk−1}

|f [l −m]|

= max
(l−m)∈{n−m,...,(n−m)+Sk−1}

|f [l −m]|

= max
l′∈{(n−m),...,(n−m)+Sk−1}

|f [l′]|

= (TmP
′
kf)[n],

in all three cases for f ∈ HNk
, n ∈ INk

, and m ∈ Z. This
then yields

(PkTmf)[n] = (P ′kTmf)[Skn] = (TmP
′
kf)[Skn]

= P ′k(f)[Skn−m]

= P ′k(f)[Sk(n− S−1
k m)]

= Pk(f)[n− S−1
k m]

= (Tm/Sk
Pkf)[n], (E.10)

for f ∈ HNk
and n ∈ INk+1

. Here, we used m/Sk ∈
Z, which is by assumption. Substituting (E.10) into (E.9)
finally yields

(Uk[λk]Tmf) = Tm/Sk
Uk[λk]f,

for f ∈ HNk
, m ∈ Z with m

Sk
∈ Z, and λk ∈ Λk. This

completes the proof of (E.6) and hence establishes (19).
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