Learning Granger Causality for Hawkes Processes Supplementary File

Hongteng Xu

School of ECE, Georgia Institute of Technology

Mehrdad Farajtabar

College of Computing, Georgia Institute of Technology

Hongyuan Zha

College of Computing, Georgia Institute of Technology

HXU42@GATECH.EDU

MEHRDAD@GATECH.EDU

ZHA@CC.GATECH.EDU

1. Appendix

1.1. Derivation of Surrogate Objective Function

Using the Jensen's inequality, we have following inequality for all c and i:

$$\log \left(\mu_{u_i^c} + \sum_{m=1}^{M} \sum_{j=1}^{i-1} a_{u_i^c u_j^c}^m \kappa(\tau_{ij}^c) \right)$$

$$\geq p_{ii} \log \left(\frac{\mu_{u_i^c}}{p_{ii}} \right) + \sum_{m=1}^{M} \sum_{j=1}^{i-1} p_{ij}^m \log \left(\frac{a_{u_i^c u_j^c}^m \kappa(\tau_{ij}^c)}{p_{ij}^m} \right).$$

The equation holds if and only if $\mu_u = \mu_u^{(k)}$ and $a_{uu'}^m = a_{uu'}^{m,(k)}$. Therefore, we have $Q_{\Theta|\Theta^{(k)}} \geq \mathcal{L}_{\Theta}$ and $Q_{\Theta^{(k)}|\Theta^{(k)}} = \mathcal{L}_{\Theta^{(k)}}$.

1.2. Derivation of Learning Algorithm

We have surrogate objective function $F = -Q_{\Theta|\Theta^{(k)}} + \alpha_S \|\mathbf{A}\|_1 + \alpha_G \|\mathbf{A}\|_{1,2} + \alpha_P E_{\Theta|\Theta^{(k)}}(\mathbf{A})$, where $Q = -Q_{\Theta|\Theta^{(k)}} + +\alpha_P E_{\Theta|\Theta^{(k)}}(\mathbf{A})$ is the data fidelity term. Similar to (Simon et al., 2013), we choose a group $a_{uu'} = [a_{uu'}^1, ..., a_{uu'}^M]^\top$ to minimize and fix other parameters. Given current estimate $a_{uu'}^{(k)}$, we majorize Q as

$$Q \leq Q|_{a_{uu'}^{(k)}} + (a_{uu'} - a_{uu'}^{(k)}) \nabla_{a_{uu'}} Q|_{a_{uu'}^{(k)}} + \frac{1}{2\eta} ||a_{uu'} - a_{uu'}^{(k)}||_{2}^{2}.$$

$$(1)$$

Introducing (1) to the surrogate objective function, we rewrite the optimization problem as

$$\min_{a_{uu'} \geq \mathbf{0}} Q|_{a_{uu'}^{(k)}} + (a_{uu'} - a_{uu'}^{(k)}) \nabla_{a_{uu'}} Q|_{a_{uu'}^{(k)}}
+ \frac{1}{2\eta} ||a_{uu'} - a_{uu'}^{(k)}||_{2}^{2} + +\alpha_{S} ||a_{uu'}||_{1}
+ \alpha_{G} ||a_{uu'}||_{2}.$$
(2)

Because both $Q\big|_{a^{(k)}_{uu'}}$ and $\nabla_{a_{uu'}}Q\big|_{a^{(k)}_{uu'}}$ are known, we add $\frac{\eta}{2}\|\nabla_{a_{uu'}}Q\big|_{a^{(k)}_{uu'}}\|_2^2$ to the objective function of (2) and reduce $Q\big|_{a^{(k)}_{uu'}}$ from it, and obtain an equivalent optimization problem

$$\begin{split} \min_{a_{uu'} \geq \mathbf{0}} \frac{1}{2\eta} \|a_{uu'} - (a_{uu'}^{(k)} - \eta \nabla_{a_{uu'}} Q|_{a_{uu'}^{(k)}})\|_2^2 \\ + \alpha_S \|a_{uu'}\|_1 + \alpha_G \|a_{uu'}\|_2. \end{split} \tag{3}$$

The objective function in (3) is convex, so the optimal solution is characterized by the subgradient equations.

$$a_{uu'}^{(k)} - \eta \nabla_{a_{uu'}} Q|_{a_{uu'}^{(k)}} - a_{uu'} = \eta \alpha_S \gamma + \eta \alpha_G \beta. \tag{4}$$

 $\gamma = [\gamma_1, ..., \gamma_M]^\top$, where $\gamma_m = 1$ if $a_{uu'}^m > 0$, and in [0,1] otherwise. $\beta = \frac{a_{uu'}}{\|a_{uu'}\|_2}$ if $a_{uu'} \neq \mathbf{0}$, and in the set $\{x|\|x\|_2 \leq 1\}$ otherwise. Combining the subgradient equations with the basic algebra in (Simon et al., 2013), we get that $a_{uu'} = \mathbf{0}$ if $\|S_{\eta\alpha_S}(a_{uu'}^{(k+1)} - \eta \nabla_{a_{uu'}}Q|_{a_{uu'}^{(k)}})\|_2 \leq \eta\alpha_G$ holds, otherwise $a_{uu'}$ satisfies

$$\left(1 + \frac{\eta \alpha_G}{\|a_{uu'}\|_2}\right) a_{uu'}
= S_{\eta \alpha_S} (a_{uu'}^{(k)} - \eta \nabla_{a_{uu'}} Q|_{a_{uu'}^{(k)}}),$$
(5)

where $S_{\alpha}(z) = sign(z)(|z| - \alpha)_{+}$ achieves soft-thresholding for each element of input. Taking the norm on both sides, $\|a_{uu'}\|_{2}$ can be replaced by

$$(\|S_{\eta\alpha_S}(a_{uu'}^{(k)} - \eta \nabla_{a_{uu'}} Q|_{a^{(k)}})\|_2 - t\eta\alpha_G)_+.$$
 (6)

Replacing the $||a_{uu'}||_2$ in (5) with (6), we obtain the generalized gradient step:

$$a_{uu'}^{(k+1)} = \left(1 - \frac{\eta \alpha_G}{\|S_{\eta \alpha_S}(a_{uu'}^{(k+1)} - \eta \nabla_{a_{uu'}} Q|_{a_{uu'}^{(k)}})\|_2}\right)_{+} (7)$$

$$\times S_{\eta \alpha_S}(a_{uu'}^{(k+1)} - \eta \nabla_{a_{uu'}} Q|_{a_{uu'}^{(k)}})$$

1.3. Details of Basis Function Selection

In our model, the intensity function of Hawkes process over all dimensions is:

$$\lambda(t) = \sum_{u=1}^{U} \lambda_{u}(t)$$

$$= \sum_{u=1}^{U} \left(\mu_{u} + \sum_{u'=1}^{U} \int_{0}^{t} \phi_{uu'}(s) dN_{u'}(t-s) \right)$$

$$= \sum_{u=1}^{U} \mu_{u} + \sum_{u=1}^{U} \sum_{t_{i} < t} \phi_{uu_{i}}(t-t_{i})$$

$$= \sum_{u=1}^{U} \mu_{u} + \sum_{u=1}^{U} \sum_{t_{i} < t} \sum_{m=1}^{M} a_{uu_{i}}^{m} \kappa_{m}(t-t_{i}).$$
(8)

Applying Fourier transform, we have

$$\hat{\lambda}(\omega) = \sum_{u=1}^{U} \mu_u \sqrt{2\pi} \delta(\omega)$$

$$+ \sum_{u=1}^{U} \sum_{t_i < t} \sum_{m=1}^{M} a_{uu_i}^m e^{-j\omega t_i} \hat{\kappa}_m(\omega).$$
(9)

In other words, the spectral of $\lambda(t)$ is the weighted sum of those of basis functions. Therefore, the cut-off frequency of basis function is bounded by that of intensity function.

As we show in our paper, given training sequences $\mathcal{S} = \{s_c\}_{c=1}^C$, , where $s_c = \{(t_i^c, u_i^c)\}_{i=1}^{N_c}$, we can estimate $\lambda(t)$ empirically via a Gaussian-based kernel density estimator:

$$\lambda(t) = \sum_{c=1}^{C} \sum_{i=1}^{N_c} G_h(t - t_i^c).$$
 (10)

Here t_i^c is the time stamp of the *i*-th event at the *c*-th sequence. $G_h(t-t_i^c)=\exp(-\frac{(t-t_i^c)^2}{2h^2})$ is a Gaussian kernel with the bandwidth h.

Because we only care about the selection of basis functions, we just need to estimate the spectral of $\lambda(t)$ rather than compute (10) directly. Specifically, applying Silverman's rule of thumb (Silverman, 1986), we first set optimal $h = (\frac{4\hat{\sigma}^5}{3\sum_c N_c})^{0.2}$, where $\hat{\sigma}$ is the standard deviation of time stamps $\{t_i^c\}$. Applying Fourier transform, we compute an

upper bound for the spectral of $\lambda(t)$ as

$$|\hat{\lambda}(\omega)| = \left| \int_{-\infty}^{\infty} \lambda(t) e^{-j\omega t} dt \right|$$

$$= \left| \sum_{c=1}^{C} \sum_{i=1}^{N_c} \int_{-\infty}^{\infty} e^{-\frac{(t-t_i^c)^2}{2h^2}} e^{-j\omega t} dt \right|$$

$$\leq \sum_{c=1}^{C} \sum_{i=1}^{N_c} \left| \int_{-\infty}^{\infty} e^{-\frac{(t-t_i^c)^2}{2h^c}} e^{-j\omega t} dt \right|$$

$$= \sum_{c=1}^{C} \sum_{i=1}^{N_c} \left| e^{-j\omega t_i^c} e^{-\frac{\omega^2 h^2}{2}} \sqrt{2\pi h^2} \right|$$

$$\leq \sum_{c=1}^{C} \sum_{i=1}^{N_c} \left| e^{-j\omega t_i^c} \right| \left| e^{-\frac{\omega^2 h^2}{2}} \sqrt{2\pi h^2} \right|$$

$$= \left(\sum_{c=1}^{C} N_c \sqrt{2\pi h^2} \right) e^{-\frac{\omega^2 h^2}{2}}.$$
(11)

Furthermore, we can compute the upper bound of the absolute sum of the spectral higher than ω_0 as

$$\int_{\omega_{0}}^{\infty} |\hat{\lambda}(\omega)| d\omega$$

$$\leq \left(\sum_{c=1}^{C} N_{c} \sqrt{2\pi h^{2}}\right) \int_{\omega_{0}}^{\infty} e^{-\frac{\omega^{2} h^{2}}{2}} d\omega$$

$$= 2\pi \left(\sum_{c=1}^{C} N_{c}\right) \int_{\omega_{0}}^{\infty} \frac{h}{\sqrt{2\pi}} e^{-\frac{\omega^{2} h^{2}}{2}} d\omega$$

$$= 2\pi \left(\sum_{c=1}^{C} N_{c}\right) \left(\frac{1}{2} - \int_{0}^{\omega_{0}} \frac{h}{\sqrt{2\pi}} e^{-\frac{\omega^{2} h^{2}}{2}} d\omega\right)$$

$$= 2\pi \left(\sum_{c=1}^{C} N_{c}\right) \left(\frac{1}{2} - \frac{1}{2} \int_{-\omega_{0}}^{\omega_{0}} \frac{h}{\sqrt{2\pi}} e^{-\frac{\omega^{2} h^{2}}{2}} d\omega\right)$$

$$= \pi \left(\sum_{c=1}^{C} N_{c}\right) \left(1 - \frac{1}{\sqrt{2}} \operatorname{erf}(\omega_{0} h)\right),$$
(12)

where $\operatorname{erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2} dt$.

Therefore, give a bound of residual ϵ , we can find an ω_0 guaranteeing $\int_{\omega_0}^{\infty} |\hat{\lambda}(\omega)| d\omega \leq \epsilon$, or $\operatorname{erf}(\omega_0 h) \geq \sqrt{2} - \frac{\sqrt{2}\epsilon}{\pi \sum_{c=1}^C N_c}$. The proposed basis functions $\{\kappa_{\omega_0}(t,t_m)\}_{m=1}^M$ are selected, where ω_0 is the cut-off frequency of basis function and $t_m = \frac{(m-1)T}{M}$, $M = \lceil \frac{T\omega_0}{\pi} \rceil$.

1.4. Configuration of Parameters

With the help of cross validation, we test our algorithm with various parameters in a wide range, where $\alpha_P, \alpha_S, \alpha_G \in [10^{-2}, 10^4]$. According to the measure *Loglike*, we set $\alpha_S = 10$, $\alpha_G = 100$, $\alpha_P = 1000$. The curves of *Loglike* w.r.t. the three parameters are shown in the following

figure. We can find that the learning result is relatively stable when changing the parameters in a wide range.

Figure 1. The curves of Loglike w.r.t. the change of α_P , α_G and α_S are shown. In each subfigure, left: $\alpha_G=100,\ \alpha_S=10,\ \alpha_P\in[10^{-2},10^4];$ middle: $\alpha_G=100,\ \alpha_P=1000,\ \alpha_S\in[10^{-2},10^4];$ right: $\alpha_P=1000,\ \alpha_S=10,\ \alpha_G\in[10^{-2},10^4].$ The number of training sequence is 250.

References

Silverman, Bernard W. Density estimation for statistics and data analysis, volume 26. CRC press, 1986.

Simon, Noah, Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert. A sparse-group lasso. *Journal of Computational and Graphical Statistics*, 22(2):231–245, 2013.