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1. Appendix
1.1. Derivation of Surrogate Objective Function

Using the Jensen’s inequality, we have following inequality
for all c and 4:
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The equation holds if and only if wu, = ,u,(bk) and
am, = a™* . Therefore, we have Qojew > Le and

RQoemjem = Lew.

1.2. Derivation of Learning Algorithm

We have surrogate objective function I’ = —Qgjem +
045||A||1 + OanAHLQ + OéPE@I@(k)(A), where Q =
—Qojom ++apEgjom (A) is the data fidelity term. Sim-
ilar to (Simon et al., 2013), we choose a group a,., =

[al,y .y a,]T to rnin(irr)lize and fix other parameters.
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Given current estimate a, /,, we majorize () as
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Introducing (1) to the surrogate objective function, we
rewrite the optimization problem as
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Because both Q| (k) and V,, Q| (k) are known, we add

Aoyt

Ve, Ql, w ||2 to the objective functlon of (2) and re-
duce Q| *) from it, and obtain an equivalent optimization
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The objective function in (3) is convex, so the optimal so-
lution is characterized by the subgradient equations.
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v = [, yum] ", where 7, = 1if a™, > 0, and in
[0,1] otherwise. 3 = ﬁQ if ayy # 0, and in the

set {z|||z]|2 < 1} otherwise. Combining the subgradient
equations with the basic algebra in (Simon et al., 2013), we
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where S,(z) = sign(z)(]z2| — )4+ achieves soft-
thresholding for each element of input. Taking the norm
on both sides, ||@y./||2 can be replaced by
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Replacing the ||, |2 in (5) with (6), we obtain the gener-
alized gradient step:
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1.3. Details of Basis Function Selection

In our model, the intensity function of Hawkes process over
all dimensions is:
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Applying Fourier transform, we have
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In other words, the spectral of A(t) is the weighted sum of
those of basis functions. Therefore, the cut-off frequency
of basis function is bounded by that of intensity function.

As we show in our paper, given training sequences S =
{5.C,,, where 5. = {(t5,u$)}N<,, we can estimate A(t)

empirically via a Gaussian-based kernel density estimator:
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Here t{ is the time stamp of the i-th event at the c-th se-
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quence. Gp(t — t§) = exp(—
with the bandwidth h.

) is a Gaussian kernel

Because we only care about the selection of basis func-
tions, we just need to estimate the spectral of \(t) rather
than compute (10) directly. Specifically, applying Silver-
man’s rule of thumb (Silverman, 1986), we first set optimal
h=(3 é‘ich )0-2, where 6 is the standard deviation of time
stamps {t;} Applying Fourier transform, we compute an
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upper bound for the spectral of \(t) as
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Furthermore, we can compute the upper bound of the abso-
lute sum of the spectral higher than wy as
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where erf(x) f I,

Therefore, give a bAound of residual €, we can find an wy
guaranteeing f CAMw)|dw < € or erf(woh) > V2 —

M
m=1

. The proposed basis functions { Ky, (t, tm)

are selected where wq is the cut-off frequency of basis

m—1)T w
function and t,,, = DT pf = [T,

1.4. Configuration of Parameters

With the help of cross validation, we test our algorithm with
various parameters in a wide range, where ap, ag, ag €
[1072,10%]. According to the measure Loglike, we set
as = 10, ag = 100, ap = 1000. The curves of Log-
like w.r.t. the three parameters are shown in the following
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figure. We can find that the learning result is relatively sta-
ble when changing the parameters in a wide range.
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(b) Piecewise constant case

Figure 1. The curves of Loglike w.r.t. the change of ap, ag and
as are shown. In each subfigure, left: ag = 100, as = 10,
ap € [1072,10%; middle: ag = 100, ap = 1000, as €
[1072,10%]; right: ap = 1000, as = 10, ag € [1072,10%).
The number of training sequence is 250.
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