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5. Appendix A: Proof for Theorem 2

Recall that the Augmented Lagrangian £(W7, Ws,Y") is of
the form

(D, W) + (Y. Wi = Wa) + £ Wy — Wa .

Then let X = [WW5; W3] be the primal variables and denote
X(Y) ={X|X =arg n;}nL(X, Y)}

with - -
X' = argmin || X — X",
Xex(vt)
and let
Wi
AX=[1 -I] [ m } W W (23)
and
D" [wm
cx=| o] [ W |=ww e

The Augmented Lagrangian can be re-written as

LOXY) = (C.X) + (V. AX) + EJAX |2 25)

The dual function is

diy) = min

_ L(X,Y)
XeConv(A)xConv(G)

and
d* = maxd(Y)
Y

is the optimal dual function value. Then we measure the
sub-optimality of iterates {(X*, Y*)}L , given by GDMM
in terms of dual function difference
AL =d* —d(Y")

and the primal function difference for a given dual iterate
Yt

AL = L(X"L YY) —d(Y")
yielded by X! obtained from AFW steps. Then we have
following lemma.

Lemma 1 (Dual Progress). Each iteration of GDMM (Al-
gorithm 1) has

AL — AT < —p(AXHT(AXY). (26)

Proof.
Al — AT = (d —d(Y?Y)) -
= L(XLyth - (XYY
< LXLYThH - £(X Y
= (Y Yt AX")
= —n(AX" AX?)

d* —d(Y'h)

where the first inequality follows from the optimality of
X' for the function £(X,Y* 1) defined by Y*~!, and
the last equality follows from the dual update in GDMM
(14). O

On the other hand, the following lemma gives an expres-
sion on the primal progress that is independent of the algo-
rithm used for minimizing Augmented Lagrangian

Lemma 2 (Primal Progress). Each iteration of GDMM (Al-
gorithm 1) has

AL — AT <X YY) - (X YY)
+AX" — AX'|? - n(AX", AXY)

Proof.

AL — AL?
=L(X"TL YY) — £(XT YY) — (d(Y?) —d(Y'TY)
=L(X"L YY) - L(XE YY) + L(X5 YY) - (XYY
+ (Y —d(Y"))
<L(XTL YY) — £(X5 YY) + )| AXY12 — n(AXT, AXT)

where the last inequality uses Lemma 1 on d(Y'™1) —
d(Yt) = Al — A O

By combining results of Lemma 1 and 2, we can obtain a
joint progress of the form

1 _

AG— AT AL A

< LXTLYH) - £(XE YY) 4+ | AXT — AX?

- AX"||?

27

Note the only term that can be positive in (27) is the second.
To guarantee descent of the joint progress, we bound the
second term with the primal gap £(X*,Y*) — d(Y'?) given
by the following lemma

Lemma 3.
JAX" — AX'[2 < 2(L(X,Y") - £(X, YY) @8)
P
Proof. Let
L(X,Y) =h(X)+ g(AX),
where
P
g(AX) = Lax)?
and

h(X) = (C,X) + (Y,AX) + Ixec
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, Where I'xcec = 0if X € C and I xcc = oo otherwise,
and

C = {(W1,W3) | Wy € Conv(A), Wy € Conv(G)}.
5 5 (29)
Note we have £(X!,Y!) = L£(X!1,Y?), L(X!,Y?!) =
L(X*Y") due to feasible iterates. According to the def-
inition of d(Y"), we know that

0€0xL(X",Y) =0h(X") +ATVg(A(XY)

And by the convexity of h(-) and the strong convexity of
g(+), we have

h(X') — B(X") > (Oh(X!), Xt — X1)
and
g(A(X")) — g(A(X"))
>(AT(Vg(A(XN)), X' = X*) + gIIA(Xt)) —A(XY)|?

The the above two together implies
LIX"Y") = L(XYT) > gHA(Xt)) —AXY?
which leads to our conclusion. O

Then to guarantee significant descent of (27) relative to the
current sub-optimality, we need to lower bound the magni-
tude of first term £(X'F1 Y?) — £(X*! V") and last term
—n||AX*||?. Note by Danskins theorem, we have

Vd(Y') = AX!

and we have the following lower bound on ||A X*|| by the
concavity of d(Y)

d*—d(Y'") < (AX', Y™ — Y
< |AX Y™ - Y|
< |AX"||Ry

where Y* is the maximizer of d(Y') that is closest to Y
and Ry is an upper bound on the distance (in ¢ norm) of
dual iterates {Y*}7_; to its projection to the set of maxi-
mizer of d(Y'). Therefore, the progress (27) can be lower
bounded as

AG— AT A AL
§£(§t+l7yt) —ﬁ(Xt,Yt) (30)
+ 2 L(X YY) — LK YY) — b AR

p Ry
The remaining thing to do is show that one good step
of Away-Step Frank-Wolfe iterate suffices to give descent
amount £( X1 V) — £(X*, Y*) lower bounded by some

constant multiple of the primal sub-optimality £(X* Y?)—
L(X!,Y?"). Then by selecting GDMM step size 7 small
enough, the RHS of (30) leads to a positive descent amount.
Note this can be achieved by leveraging recent result from
(Lacoste-Julien & Jaggi, 2015), who shows a linear-type
convergence of AFW, even for non-strongly convex func-
tion of form (25). We thus provide the following lemma.

Lemma 4. The AFW (Algorithm 2) performed on X =
(W1, W) gives descent amount

LXTL YY) — £(XE YY)

C (XYt - L(XYY)

- 31)
- 14k

where K = uf/(80}4), oy is the generalized geometric
strong convexity constant for function L(.) in domain C,
and C’J’?‘ is the corresponding smoothnesss constant.

Proof. Note the AL (25) is of the form

F(X)=L(X,Y)=(C,X)+ f(AX) (32)
where f(AX) = £||AX +Y/p||* + const. is a p-strongly
convex function w.r.t. to AX, and we are minimizing
the function subject to a polyhedral domain C (defined at
(29)). Therefore, by Theorem 10 of (Lacoste-Julien &
Jaggi, 2015), we have the generalized geometrical strong
convexity constant y ¢ for function £(.) in domain C that
has

g = p(PWidth(C)) (33)

where PWidth(C) > 0 is the pyramidal width of polyhe-
dron C and p is the generalized strong convexity constant
of function (32) defined in Lemma 9 of (Lacoste-Julien &
Jaggi, 2015). By definition of the geometric strong convex-
ity constant, we have

2

* 9%
F(X)—-F" < —=— (34)

(X) o

from (28) in (Lacoste-Julien & Jaggi, 2015), where gx =
(VF(X),vpw(X) —va(X)) for any FW atom v pyy (X)
and away atom v 4(X) at point X . Note, since the convex
polyhedron C is separable w.r.t. W7, W5, we have

e
vrw(X)=| & (35)
Vrw
and
e
va(X)=| (36)
Uy

Then consider the progress given by a non-drop (’good”)
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step at iterate s of the AFW. We have

y ¢
F(X™) = F(X®) < =590+ 77
2
9s
§716C}4 37
_pp(F(X®) — F)
= A
8C7
assuming v* = g¢,/(2C) < 1, where g; =

(=VE,vpw(X?®) — va(X?)), C}“ is the curvature con-
stant of £'(X) on domain C (eq. (26) in (Lacoste-Julien &
Jaggi, 2015)). The first inequality follows from the fact that
AFW chooses the smaller one between (VF,dpw ) and
(VF,d,) as the descent direction. The second inequal-
ity is given by minimizing RHS w.r.t. v € [0,1]. And the
third inequality is from (34). In case v* = g¢,/(2C) > 1,
we have v = 1 and
vy L CF
FX*) — F(X*) < L, + 2
< —gs/4 < —(F(X®) - F7)/4

upF(X®) - F)

sC7

IN

(38)
which leads to the same result.

Then let k = uf/(SC]’?). We have

F(XtJrl) _ F(Xt) F(Xs+1) o F(XS)
—K(F(X?) = F7)

—k(F(X") — F¥)

IANCIA A

where the first inequality is due to F/(X?) > F(X*) (since
AFW is an descent algorithm). Through rearrangement we
have

1
FXt-‘rl _F*<
( ) T 14k

(F(X') = F)
which then leads to the conclusion. O
Now we provide proof of the main theorem 2 as follows.

Proof. By lemma 4 and (30), we have

Aj— AT+ AL - AT

—K t vty prwt vt
§1+/§(£(X’Y) L(X', YY) (39)
+ e xt vt — £(X YY) — R%Ag.
P Y

Then by choosing 1 < %, we have guaranteed descent

on A, + Aq4 for each GDMM iteration. By choosing n <

Kp
Ty Ve have

(AL + AL — (AT + ALY

—K _ n

< t vty t vty t2

_2(1+I€) (‘C(X »Y) £(X 7Y)) R%Ad
—K Kp

<7At—7At2

“2(1+k) P 41 +r)RE

—K

< t2 Kkp £2
T2(1+k)(AY + Ag)AP Bd

4(1+ K)R2

B . 1 P t £)2
< _
= <4(1 T R) mm(Ag TAY 2R2Y)) (Ap +Aa)

where the third inequality is by non-increasing of {A; +
A%}9,. Then recursion of the form A? — AP=1 < ¢A#2
leads to the conclusion. O



