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6. Appendix A: Convergence Proof
The proofs of Theorem 1, 2 are similar to that in (Lacoste-
Julien et al., 2013). To be self-contained, we provide proofs
in the following.

6.1. Proof for Theorem 1
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which can be verified via induction as in the proof of
Lemma C.2 of (Lacoste-Julien et al., 2013).

4http://research.microsoft.com/en-
us/um/people/manik/code/SLEEC/download.html

6.2. Proof for Theorem 2

The approximation criteria (24) searches active label from
one out of ⌫ partitions of [K]. Suppose in the t-th itera-
tion, a subset not containing most-violating label (20) was
chosen, we have
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and suppose a subset containing most-violating label was
chosen, we have
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where ✏
d

is the error caused by sampling (25). Since (33),
(34) happen with probabilities 1�1/⌫ and 1/⌫ respectively,
we have expected descent amount
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following the same reasoning of (31) and (32). For
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7. Appendix B: Additional Statistics

Table 4. Default parameter setting used in SLEEC’s code. One
might need to refer to their webpage 6for explanation of parame-
ters.

num learners num clusters SVP neigh
5 5 50

out Dim w thresh sp thresh
75 0.75 0.5

cost NNtest normalize
0.1 20 1

Table 5. Statistics for heldout and test data set
Data Sets Train Size Heldout Size Test Size.

LSHTC-wiki 2355436 5000 5000
EUR-Lex 15643 1738 1933

bibtex 5991 665 739
RCV1-regions 20835 2314 5000

LSHTC 83805 5000 5000
aloi.bin 90000 10000 8000
Dmoz 310562 34506 38340

ImageNet 1125264 10000 126140
sector 7793 865 961

8. Appendix C: Bounds for Approximation
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Also, look at the dual objective function in (14), initially
we have G(↵) = G(0) = 0. Since our method is dual-
descent, we have G(↵
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where the last inequality follows from (16).


