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6. Appendix A: Convergence Proof

The proofs of Theorem 1, 2 are similar to that in (Lacoste-
Julien et al., 2013). To be self-contained, we provide proofs
in the following.

6.1. Proof for Theorem 1

The dual problem (14) has (generalized) Hessian for ¢-th
block of variable o’ being upper bounded by
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where ); = ||z;||?>. Since the active set includes the
most-violating pair (19) that defines the Frank-Wolfe di-
rection al.y;, satisfying (18), the update given by solving
the active-set subproblem (21) has
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for any v € [0,1], where ||at, — a'||? < R? = 4C?
since both ak.y;, a® lie within the domain (16). Taking
expectation w.r.t. ¢ (uniformly sampled from [N]), we have
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where ) = vazl (;. Then denote a* as an optimal solu-
tion, by convexity and the definition of Frank-Wolfe direc-
tion we have
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where G* := G(a*). Together with (31), we have
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for any v € [0,1], where AG! = E[G(a!
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%, the recurrence (32) leads to the result

2(QR? + AGY)
t < -~ @ 7
AGT s t/N+2

which can be verified via induction as in the proof of
Lemma C.2 of (Lacoste-Julien et al., 2013).

*http://research.microsoft.com/en-
us/um/people/manik/code/SLEEC/download.html

6.2. Proof for Theorem 2

The approximation criteria (24) searches active label from
one out of v partitions of [K]. Suppose in the ¢-th itera-
tion, a subset not containing most-violating label (20) was
chosen, we have
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and suppose a subset containing most-violating label was
chosen, we have
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where ¢, is the error caused by sampling (25). Since (33),
(34) happen with probabilities 1—1/v and 1 /v respectively,
we have expected descent amount
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following the same reasoning of (31) and (32). For
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Therefore, by choosing v = W, we have
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7. Appendix B: Additional Statistics

Table 4. Default parameter setting used in SLEEC’s code. One
might need to refer to their webpage ®for explanation of parame-

ters.
num_learners | num_clusters | SVP_neigh
5 5 50
out_ Dim w_thresh sp_thresh
75 0.75 0.5
cost NNtest normalize
0.1 20 1
Table 5. Statistics for heldout and test data set
Data Sets Train Size | Heldout Size | Test Size.
LSHTC-wiki 2355436 5000 5000
EUR-Lex 15643 1738 1933
bibtex 5991 665 739
RCV1-regions 20835 2314 5000
LSHTC 83805 5000 5000
aloi.bin 90000 10000 8000
Dmoz 310562 34506 38340
ImageNet 1125264 10000 126140
sector 7793 865 961

8. Appendix C: Bounds for Approximation
(25)

Let o2, be the variance of C(D;). We have
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, where R? is an upper bound on Py 2o(wi;)?.

For ¢ = O(]|x;||1 R ), Bernstein-Type inequality gives
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Suppose we want to approximate (w}, ;) within eg for
all k € [K] with failure probability at most §. Combining
(37), (38) and using union bound, we only need
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Also, look at the dual objective function in (14), initially
we have G(a) = G(0) = 0. Since our method is dual-
descent, we have G(at!) < 0, thus
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where the last inequality follows from (16).



