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Abstract
An important question in feature selection is
whether a selection strategy recovers the “true”
set of features, given enough data. We study this
question in the context of the popular Least Ab-
solute Shrinkage and Selection Operator (Lasso)
feature selection strategy. In particular, we con-
sider the scenario when the model is misspecified
so that the learned model is linear while the un-
derlying real target is nonlinear. Surprisingly, we
prove that under certain conditions, Lasso is still
able to recover the correct features in this case.
We also carry out numerical studies to empiri-
cally verify the theoretical results and explore the
necessity of the conditions under which the proof
holds.

1. Introduction
Feature selection is an extremely important part of ma-
chine learning algorithms. Finding a good set of features
reduces overfitting, improves robustness to noise and en-
ables faster convergence to the target. Various strategies
have been proposed in the literature for feature selection,
including filter-based, wrapper-based and embedded meth-
ods. In this work, we are interested in embedded feature
selection methods. Here, the learning objective for a clas-
sifier is modified by introducing an extra term which typi-
cally encourages “sparsity” in the solution. If the hypoth-
esis space being explored is linear, this means that many
coefficients associated with the features will be zero. Thus
they will be eliminated from the learned model.

One of the most well known examples of the embedded ap-
proach is the Least Absolute Shrinkage and Selection Op-
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erator, or Lasso (Tibshirani, 1996). In the Lasso, feature
sparsity is encouraged through the addition of a λ‖w‖1
term, where λ is a coefficient that trades off the impor-
tance of the loss and Lasso terms. This L1 norm term
is the best smooth approximation to the L0 norm, which
directly counts nonzero feature coefficients. Further, the
resulting optimization problem remains convex if the loss
term is convex, so that there is a well-defined global opti-
mum. Finally, recent advances in convex optimization have
made great strides in designing efficient and effective so-
lution methods for objective functions extended with the
Lasso term (Boyd, 2010). As a result, the Lasso is one of
the most widely used embedded feature selection strategies
in machine learning, and has consistently shown good em-
pirical results.

In this paper, we are interested in theoretically character-
izing the behavior of the Lasso. For any feature selection
strategy, a key question is whether, given enough data, it
can recover the “true” underlying set of features for differ-
ent target concepts. This question can be expressed through
selection consistency: given enough data, can we be sure
that the set of nonzero coefficients in the learned solution
will be the same as that in the target? Selection consistency
is clearly a good property to be able to guarantee for a fea-
ture selection strategy.

Typically, we are interested in the selection consistency of
a feature selection technique under model misspecification.
After all, in general we do not know what the target concept
looks like. Thus in general, the hypothesis space explored
during learning may not contain the target. A key question
then is whether a feature selection strategy can be selection
consistent even in this case.

In this work, we focus on the Lasso feature selection oper-
ator, when the hypothesis space is linear (commonly used
in many machine learning applications), and ask if the pro-
cedure is selection consistent when the underlying target is
nonlinear. Building on prior work (Brillinger, 1982; Plan
& Vershynin, 2015), we prove that, for certain data dis-
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tributions and nonlinear targets, the answer is affirmative.
This seems a surprising result and may further explain the
empirical success of the Lasso. This result extends to the
group Lasso as well. We then perform numerical studies to
support the theoretical results and investigate to what extent
the theoretical assumptions we make to prove our result are
necessary.

The paper is organized as follows: in section 2, we set up
our model and describe our basic assumptions, and then
discuss related work. Section 3 contains the main result.
Numerical experiments are shown in section 4, and we dis-
cuss the results and conclude in section 5.

2. Definitions, Notation and Related Work
Model setup. Assume we are given n independent ob-
servations (xi, yi), i = 1, 2, ..., n which are generated by
some non-linear regression model:

yi = g(xTi w) + εi, i = 1, 2, ..., n,

where ε′is are i.i.d. Gaussian random variables, εi ∼
N (0, σ2), function g : R → R is a non-linear map-
ping function which is not known a priori, x′is ∈ Rp

are i.i.d. feature vectors. In this work, following prior
work in this area (Brillinger, 1982), we assume that the
xi’s are generated from an underlying Gaussian distri-
bution, xi ∼ N (0,Σ). w ∈ Rp is the weight vec-
tor we want to recover. We assume w has unit l2-norm,
‖w‖2 = 1. Without loss of generality, we assume w =
(w1, w2, ..., wq, wq+1, ..., wp)T , where wj 6= 0 for j =
1, ..., q, and wj = 0 for j = q + 1, ..., p. Let wr =
(w1, wz, ..., wq)T and wz = (wq+1, ..., wp)T denote the
non-zero and zero parts of w respectively. Here the sub-
scripts r and z can be read as “representable parts” and
“zeros”.

Let y = (y1, y2, ..., yn)T , ε = (ε1, ε2, ..., εn)T and X be
the n×p data matrix whose ith row is xTi . We consider the
following feature selection model:

min
w
‖Xw − y‖22 + λf(w).

f : Rp → R is a convex regularization function, which
is ‖ · ‖1 for classical Lasso and ‖ · ‖1,2 for group Lasso.
Here, for a given vector w ∈ Rp parsed into m groups
(not necessarily equal size), the l1,2 norm is defined as
‖w‖1,2 :=

∑m
j ‖wj‖2.

The solution ŵn to this model is defined as:

ŵn = argmin
w
‖Xw − y‖22 + λnf(w). (*)

We use the superscript n to emphasize that the solution of
the Lasso may depend on the number of the observations.

Likewise, the regularization parameter λ may depend on
n as well, and we use λn when we wish to make this de-
pendence explicit. We next formalize the notion of consis-
tency, which is used to evaluate the goodness of the tech-
nique.

Definition 2.1 (Estimation Consistency). The solution ŵn

obtained from (*) is called estimation consistent if

‖ŵn − w‖2 →p 0, n→∞.

Here→p means converges in probability.

Definition 2.2 (Selection Consistency). The solution ŵn

obtained from (*) is called selection consistent if

P (supp(ŵn) = supp(w))→ 1, n→∞,

where supp(w) = {i|wi 6= 0} is the support of w.

Note that one consistency result does not necessarily imply
the other. For example, consider ŵn = (1, 2, 1

n ,
1
n2 , ...)

and w = (1, 2, 0, 0, ...). Then ‖w − ŵn‖2 can be small
enough such that ŵn is estimation consistent with w, but
the supports are different for any arbitrary large n. One can
also easily construct an example that is selection consistent
but not estimation consistent.

We now introduce a set of sufficient conditions that will
allow us to guarantee selection consistency for the Lasso
even though the underlying model is generated by some
unknown nonlinear link function.

Assumptions. Using the notation of representable parts
and zeros above, we write the data covariance matrix Σ ∈
Rp×p as:

Σ =

(
Σrr Σrz

Σzr Σzz

)
We assume Σ is invertible and Σrr has bounded positive
eigenvalues away from 0, that is, 0 < Λmin ≤ Λ(Σrr) ≤
Λmax < ∞, for some constants Λmin and Λmax. Here
Λ(Σrr) denotes the eigenvalues of Σrr. Furthermore, We
assume the following:

• y has finite fourth moment E(y)4 <∞;

• The link function g is differentiable almost every-
where and E(|g(t)|) < ∞ and E(|g′(t)|) < ∞, for
t ∼ N (0, 1);

• E(xTj xj |g(xTi w)|2) <∞, for j = 1, 2, ..., n.

The last two assumptions are closely related to the exis-
tence of a practical solution as well as sufficient for ac-
complishing the desired result. We show in Section 4 that
for some experimental functions that violate these assump-
tions, the Lasso fails to select the right features.
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2.1. Related Work

The Lasso selection model (Tibshirani, 1996) has been in-
tensively studied in the past two decades. In the context of
signal processing, this approach corresponds to basis pur-
suit, pioneered by (Chen et al., 1998). When the data has no
noise, a solid theoretical foundation has been built by many
researchers, e.g. (Feuer & Nemirovski, 2003; Donoho &
Tanner, 2005; Cands et al., 2006; Donoho, 2006).

The closest line of work to ours starts with (Knight & Fu,
2000), where the authors analyze the estimation consis-
tency conditions for various Lasso type models: the reg-
ularization term f(w) is not only l1 norm, but any lq norm
with q ∈ (0, 2]. In particular, they show that by choosing
λ ∼ n1/2, Lasso tends to select the true model with non-
vanishing probability as n grows. A sufficient condition to
guarantee the selection consistency of the Lasso, namely
irrepresentable condition, was independently proposed by
(Zhao & Yu, 2006) and (Meinshausen & Bhlmann, 2006).
The necessity of this condition was proved in later work
(Zou, 2006; Yuan & Lin, 2007). A precise characteriza-
tion of the relation between the regularization parameter
λ, n and p (the dimension of w) to guarantee consistent
selection is shown in (Wainwright, 2009). In order to se-
lect the true features with high probability, one should ex-
pect λ = Ω((log p−1/2)n1/2). While these results are sub-
stantially based on sparse linear regression, consistency re-
sults on other generalized linear models such as logistic re-
gression have also been developed (Bunea, 2008; Raviku-
mar et al., 2010). In the context of non-linear regression,
(Tateishi et al., 2010) show the advantage of the Lasso
through numerical experiments when the mapping function
is linearized by finite Gaussian basis functions.

Prior work (Cands & Recht, 2013; Negahban et al., 2012)
provides a systematic approach to analyze the estimation
consistency of general sparse models. (Negahban et al.,
2012) introduces the notion of restricted strong convexity, a
property that guarantees nice curvature structure of the loss
function near the true features, and establishes a series of
estimation error bounds on sparse regression models. This
framework is extended to selection consistency analysis by
(Lee et al., 2015).

Much of the analysis mentioned above relies on the tar-
get regression function being known to be a linear or lo-
gistic regression relation, even though obviously the Lasso
model itself does not impose any prior knowledge of such.
Recent work (Thrampoulidis et al., 2015) has investigated
the case of nonlinear link functions and presented consis-
tency results for the Lasso. However, their results are only
precise in the context of the estimation consistency which
is not directly applicable in feature selection perspective.
The work we present does not impose any prior knowledge
on the form of the regression function beyond the qualifi-

cations outlined above, and is applicable to the standard,
fixed-dimensional feature selection case with a fixed and
unknown subset of relevant features.

3. Selection Consistency of the Lasso
Before we proceed to our main results, we first introduce
some concepts and present several useful lemmas.

3.1. Theoretical preparations

In prior work (Brillinger, 1982) [in section 3, theorem 1],
it is shown that even when the observed y′is are generated
by some unknown link function g, under certain assump-
tions, the least squares estimator with linear regression fit
is asymptotically centered around the true predictor times a
scaling constant.

Theorem 3.1. (Brillinger, 1982) Suppose the assumptions
in Section 2 hold. Let yi = g(xTi w) + εi, i = 1, ..., n,
x′is are independent normals with mean 0 and non-singular
covariance matrix Σ, ε′is are independent of x′is and have
finite variance σ2. Let ŵ be the ordinary least squares es-
timator, i.e.,

ŵ = arg min
w
‖Xw − y‖22.

Then
√
n(ŵ − µw) is asymptotically normal with mean 0

and covariance matrix

σ2Σ−1 + Σ−1E{h(x)2xxT }Σ−1,

where h(x) = g(xTw) − µxTw − γ, γ = E{g(xTw) −
µxTw} and µ = Cov{g(xTw), xTw}/V ar{xTw}. Fur-
thermore, if w is scaled properly such that ‖

√
Σw‖ = 1,

then µ = E[tg(t)], t ∼ N (0, 1).

This implies the following result.

Corollary 3.1.1. For the ordinary least squares with lin-
ear observations, µ = E(t2) = 1 with t ∼ N (0, 1) and
h(x) = 0, we then have the classical asymptotic estima-
tion on least squares solution

√
n(ŵ − w)→d N (0, σ2Σ−1),

where ‘→d’ means convergence in distribution.

In order to be able to select the right features, the intuition
is that the irrelevant features cannot be highly correlated to
the relevant features. The following definition is the same
as the strong irrepresentable condition proposed by (Zhao
& Yu, 2006) which describes this property quantitatively.
To be consistent with the framework in this paper, we call
this strong µ−irrepresentable condition:

Definition 3.1. (Strong µ−irrepresentable condition). We
say that strong µ−irrepresentable condition holds, if there



On the Consistency of Feature Selection With Lasso for Non-linear Targets

exists a constant s ∈ (0, 1], such that

|Σzr(Σrr)−1 sign(µw)| ≤ 1− s.

Here Σzr and Σrr are the sub covariance matrices of x′is
defined in Section 2 and the “≤” holds element-wise.

Here the sign(·) denotes an element-wise application of
the standard sign function.

The following proposition (Plan & Vershynin, 2015) [Sec-
tion 4] indicates that after appropriate scaling, even though
the discrepancy y − µXw may generally depend on both
X and w, the projection of it onto X is well behaved in the
sense that the expectation of the projection is zero.
Proposition 3.2. (Plan & Vershynin, 2015) Let X̃ =
XQ−1, z̃i = g(x̃Ti w) − µ̃x̃Ti w, i = 1, 2, ..., n where
QTQ = Σ, µ̃ = Cov(g(x̃Tw), x̃Tw)/V ar(x̃Tw), x̃i is
the ith row of X̃ , then

E(X̃T z̃) = 0.

Note that in the linear setting when y = Xw + ε, z be-
comes ε which is independent of the columns of X , and
thus proposition 3.2 holds naturally. It can be verified that
the proposition fails to hold without the transformation on
X . 1

Note that since we require E(y)4 < ∞, we will be able
to use a bootstrap strategy to estimate the covariance ma-
trix by re-sampling the data x′is and thus make confidence
intervals on ŵ for large enough n.

3.2. Main Result

With the above preparation, given our prior assumptions in
Section 2, we consider the solution ŵn to the generalized
Lasso, where in this paper we assume f(x) is either ‖ · ‖1
for the classical Lasso or ‖ · ‖1,2 for the group Lasso:

ŵn = argmin
w
‖Xw − y‖2 + λnf(w), (*)

where yi = g(xTi w) + εi, εi ∼ N (0, σ2), X is the data
matrix with i.i.d. rows and the ith row xTi satisfies xi ∼
N (0,Σ), i = 1, 2, ..., n.

First, consider the case f(w) = ‖w‖1. Let Xr be the first
q columns of X corresponding to the non-zero entries in
w and Xz be the rest p − q columns. Then the following
probability events hold:
Proposition 3.3. Assume the strong µ− irrepresentable
condition holds for some constant s > 0. Then for large
enough n, we have

P (sign(ŵ) = sign(µw)) ≥ P (Ω1 ∩ Ω2),

1Further details can be found from https://filer.
case.edu/wxg49/.

with

Ω1 = {|Σ−1rr Dr| <
√
n(|µwr| −

λn

2n
Σ−1rr sign(µwr))},

Ω2 = {|ΣzrΣ−1rr Dr −Dz| ≤
λn

2
√
n
s},

where

Dr = XT
r (y − µXw)/

√
n,

Dz = XT
z (y − µXw)/

√
n,

and µ is a constant defined in Section 3.1.

Here Ω1 and Ω2 come directly from the first order optimal-
ity conditions of (∗). The proof is shown in the appendix.

After combining this proposition with the proper concen-
tration inequalities, we are able to establish the selection
consistency of the Lasso. In other words, we will be able
to select significant features with high probability:
Theorem 3.4. (µ−sign consistency) Under the assump-
tions in Section 2 and the strong µ−irrepresentable con-
dition, if λn is chosen such that λn ∼ nk3 , with some con-
stant k3 satisfying max{ 1+k1

2 , 1+k2
2 } < k3 < 1, 0 ≤ k1 <

1, 0 ≤ k2 ≤ 1, we have

P (sign(ŵ) = sign(µw)) ≥ 1−O(e−n
k1

)

−O(
1

n2k3−1−k2s2
).

Here k2 depends on the choice of g. In particular, k2 = 0
when g is linear.

Proof. First, according to proposition 3.3, we have

P (sign(ŵ) = sign(µw)) ≥ P (Ω1 ∩ Ω2).

Since the first q entries are non-zeros, we have

1−P (Ω1 ∩ Ω2) ≤ P (Ωc
1) + P (Ωc

2)

≤
q∑

i=1

P (|αi| ≥
√
n(|µwr| −

λn

2n
|Σ−1rr sign(µwr)|))+

p∑
i=q+1

P (|βi| ≥
λn

2
√
n

(1− |ΣzrΣ−1rr sign(µwr)|)),

where α = Σ−1rr Dr and β = ΣzrΣ−1rr Dr −Dz .

First we analyze the distribution of α. By definition,

Dr = XT
r (y − µXw)/

√
n, Dz = XT

z (y − µXw)/
√
n.

Furthermore, as w = [wr, wz], wz = 0, one can verify that
Xw = Xrwr. Therefore,

α = Σ−1rr Dr = n(XT
r Xr)−1XT

r (y − µXw)/
√
n

=
√
n(XT

r Xr)−1XT
r (y − µXrwr)

=
√
n(X†ry − µwr).

https://filer.case.edu/wxg49/
https://filer.case.edu/wxg49/
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Since X†ry is the least squares estimate coming from
min ‖y−Xrwr‖22 = ‖y−Xw‖22, by theorem 3.1, the least
squares estimator has the following asymptotic behavior
√
n(ŵ − µw) ∼ N (0, σ2Σ−1 + Σ−1E{h(x)2xxT }Σ−1),

where h(x) = g(xTw) − µxTw − γ, γ = E{g(xTw) −
µxTw}, µ = Cov{g(xTw), xTw}/V ar{xTw}.

Therefore α behaves asymptotically as:

α ∼ N (0, σ2Σ−1rr + Σ−1rr E{h(xr)2xrx
T
r }Σ−1rr ).

By our assumption, the covariance matrix of α is well de-
fined, thus α behaves as a Gaussian variable with mean 0
and bounded variance element-wise. The standard Gaus-
sian tail estimation shows that if λn/n(1+k1)/2 → ∞ and
λn/n→ 0, for some constant 0 ≤ k1 < 1 then

q∑
i=1

P (|αi| ≥
√
n(|µwr| −

λn

2n
|Σ−1rr sign(µwr)|))

= O(exp(−n−k1)).

Now we estimate β:

β = ΣzrΣ−1rr Dr −Dz

= (ΣzrΣ−1rr X
T
r −XT

z )G(Xrwr)/
√
n

+ (ΣzrΣ−1rr X
T
r −XT

z )ε/
√
n+O(1),

where mapping functionG : Rn → R is defined as a vector
version of g, that is, G(w) := (g(w1), g(wz), ..., g(wn))T .
The O(1) term comes from the empirical estimation rate of
Σ. As ε is independent of X , the second term of β has 0
mean and bounded variance element-wise. The first term of
β characterizes the ‘linearity’ of functionG(w): ifG(w) is
linear, then the first term vanishes to O(1). One should be
aware that Xz is not independent of Xr and hence in gen-
eral E(XT

z G(Xrwr)) 6= 0. However, we will show that
the expectation of β is still under control with our assump-
tions.

If Σ = Ip×p, then from proposition 3.2, E(XT z) = 0. So
we have:

E(XT z) = E

(
XT

r y
XT

z y

)
− nµ

(
Σrrwr

Σzrwr

)
= 0.

This leads to:

E(β) = nµ(ΣzrΣ−1rr Σrrwr − Σzrwr) = 0.

For more general Σ, we use the multivariate Stein’s lemma
(Stein, 1972) (Liu, 1994) [Lemma 1]:

Lemma 3.5. Let x = (x1, ..., xn) be multivariate normally
distributed with mean vector µ and covariance matrix Σ.

For any function h(x1, ..., xn) such that ∂h/∂xi exists al-
most everywhere and E|( ∂

∂xi
h(x))| < ∞, i = 1, 2, ...n,

the following fact holds:

Cov(x1, h(x)) =

n∑
i=1

Cov(x1, xi)E(
∂

∂xi
h(x)).

Using this lemma, the expectation of β:

E(β) = (ΣzrΣ−1rr E(XT
r G(Xrwr))−

E(XT
z G(Xrwr)))/

√
n+O(1)

= (ΣzrwrE(

n∑
j=1

g′(

q∑
i=1

wixji))−

ΣzrwrE(

n∑
j=1

g′(

q∑
i=1

wixji)))/
√
n+O(1)

= O(1).

Finally, in order to apply the concentration inequality, we
estimate the variance of β. First notice that by the strong
µ−irrepresentable condition,

‖ΣzrΣ−1rr X
T
r G(Xrwr)‖2 < 2

√
p− q‖XT

r G(Xrwr)‖2.

Notice that Xrwr follows N (0, q2wT
r Σrrwr) distribution

element-wise. Thus each element of Xrwr is bounded be-
tween [−4q2Λmax, 4q

2Λmax] with probability 1. Based
on our assumption, g(w) is differentiable a.e. and
E(|g′(w)|) < ∞. Expanding the product of XT

r G(Xrwr)
leads to

V ar(XT
r G(Xrwr)/

√
n) < c(g,Λ(Σrr), p, q)n,

where c(g,Λ(Σrr), p, q) is a constant that depends on
g,Λ(Σrr), p and q. The same argument can be applied to
XT

z G(Xrwr). The second term of β can be derived from a
classical result (Knight & Fu, 2000):

V ar((Σ−1rr X
T
r −XT

z )ε/
√
n) = Σzz − ΣzrΣ−1rr Σrz.

We get V ar(β) = O(n). Indeed, this is the worst
case analysis. For general functions that satisfy our as-
sumptions, V ar(β) can be smaller. More precisely, let
V ar(β) = Θ(nk2), for some constant 0 ≤ k2 ≤ 1.

Finally, using Chebyshev’s inequality and by choosing
λn such that λn ∼ nk3 for some constant k3 such that
max{k1+1

2 , k2+1
2 } < k3 < 1 and 0 ≤ k1 < 1 , k2 is a

constant depending on V ar(β), we get
p∑

i=q+1

P (|βi| ≥
λn

2
√
n

(1− |Σn
zr(Σn

rr)−1 sign(µwr)|))

= O(
4nV ar(β)

(λn)2s2
) = O(

1

n2k3−1−k2s2
).

Combining the results of α and β completes the proof.
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What this theorem shows is that, by maintaining regulariza-
tion parameter λn at a certain level, the sign of the solution
of model (*) will be the same as the sign of a constant times
the true solution with high probability with n large enough.
The constant k2 depends on the non-linearity of link func-
tion g. The theorem matches the intuition that in order to
select the features with high probability, the worse the g is
(k2 is closer to 1), the more regularization we need (a larger
k3 so that the last big-O term vanishes at a certain rate).

The practical use of this theorem is that, given enough data,
by proper sampling, one can estimate the sign of µ by its
definition using an empirical procedure. This can verify
whether ŵ and w have same or opposite signs.

By applying theorem 3.4, we can derive the classical con-
vergence rate for the probability of sparse linear selection:

Corollary 3.5.1. When g(w) is linear, we have µ = 1 and
k2 = 0. By choosing λ ∼ nk3 , for some k1+1

2 ≤ k3 < 1,
0 ≤ k1 < 1, the probability of successful selection is:

P (sign(ŵ) = sign(w)) ≥ 1−O(e−n
k1

)−O(
1

n2k3−1s2
).

The classical results (Zhao & Yu, 2006; Meinshausen &
Bhlmann, 2006; Wainwright, 2009) show that in the linear
setting, we have P (sign(ŵ) = sign(w)) = 1 − O(e−n

c

)
for some constant c > 0. Thus our lower bound result is
consistent with the classical version. By further looking
into the details of the proof, one can verify that the differ-
ence comes from the different inequalities used: Gaussian
tail inequality (in classical analysis) and Chebyshev’s in-
equality (in our setting). The former achieves an exponen-
tial decay and thus the two big-Os are combined.

Extension to Group Lasso. A natural extension of the
Lasso is the group Lasso, where the regularization f(x)
becomes ‖ · ‖1,2. Given data X = (X1, X2, ..., Xm), each
Xj ∈ Rn×pj represents data in group j. A formal defini-
tion of the group Lasso corresponds to:

min ‖
m∑
j=1

Xjwj − y‖2 + λn
m∑
j=1

dj‖wj‖

Here dj > 0 is a fixed weight for each group. In our setting,
we consider yi = g(

∑m
j=1Xijwj) + εi, εi ∈ N (0, σ2),

Xj ∼ N (0,Σj), i = 1, ..., n, j = 1, ...,m. For any mini-
mizer of E(Xw − y)2, we assume that E((Xw − y)2|X)
is almost surely greater than some constant c > 0. We
will further assume that w is normalized with Σj such that
‖Σjwj‖2 = 1, for j = 1, 2, ...,m. Similar to the Lasso,
we have the strong irrepresentable condition for the group
Lasso (Bach, 2008):

Definition 3.2. (Strong irrepresentable condition for the
Group Lasso) The group Lasso is said to satisfy the strong

irrepresentable condition if there exists s ∈ (0, 1], such that

max
i∈Jc

1

dj
‖ΣXiXJ

Σ−1XJXJ
Diag(dj/‖wj‖)wJ‖ ≤ 1− s.

Here Diag(dj/‖wj‖ denotes a block diagonal matrix with
each block dj/‖wj‖Ipj

, J denotes the index set of the
groups with all wJ non-zeros, Jc denotes its compliment.
(Bach, 2008) shows that with properly chosen λn, one gets
successful group selection with probability tending to 1
with large enough n. The following corollary continues
this in general:

Corollary 3.5.2. If the strong irrepresentability condition
for the group Lasso holds, and if λn ∼ nk3 such that
max{ 1+k1

2 , 1+k2
2 } < k3 < 1, 0 ≤ k1 < 1, 0 ≤ k2 ≤ 1,

with k2 depending on the choice of g, the probability of suc-
cessful group selection: P (sign(ŵ) = sign(µw)) → 1,
with n large enough.

The proof is similar to that in (Bach, 2008) in which the
author does not assume any regression relation between X
and y which naturally suits our setting. Combining with
theorem 3.1, we get the desired result. 2

4. Numerical Experiments
In this section, we present some numerical studies explor-
ing the theoretical results described above. We describe
experiments both to verify and illustrate our theoretical re-
sults as well as to test some of the assumptions we make.

Our setup for these studies is as follows. We generate
data using several nonlinear targets and then solve a least
squares problem with a linear hypothesis extended with a
Lasso term:

Data: yi = g(xTi w) + εi,

Model: ŵ = argmin
w
‖Xw − y‖22 + λ‖w‖1.

The data matrix X is generated in a way that each row
xi ∼ N (0,Σ). Here Σ is either an identity matrix I or
has power-decay entries Σij = ρ|i−j|, 0 < ρ < 1. We
denote the latter as Σ(ρ). Both of these choices satisfy the
strong irrepresentability condition. Other types of satisfy-
ing covariance matrices are shown in previous work (Zhao
& Yu, 2006). The noise ε ∼ N (0, 0.04I) and w ∈ R100

with the first 10 entries non-zeros. The optimization prob-
lem is solved using the ADMM algorithm (Boyd, 2010).

To make the experiments comprehensive, we select a vari-
ety of functions as well as one negative example of which

2Further details can be found from https://filer.
case.edu/wxg49/.

https://filer.case.edu/wxg49/
https://filer.case.edu/wxg49/
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the link function fails to satisfy our assumptions:

Polynomials: g1(u) = um + um−1 + ...+ 1 (m > 2),

Sine: g2(u) = sin(mu) + ...+ sin(u) + 1,

Mixed: g3(u) = cos(u) +
1

1 + e−u
− u3 − 2,

False: g4(u) = 1/u,

Test: g5(u) = (u+ 1)2 − 2u+ exp(u) + 1.

Figure 1 shows two examples illustrating the ‘scaling’ phe-
nomenon: the solution of the selection model ŵ is close to
the underlying truth w up to a scaling factor µ. In this fig-
ure, we plot the coefficients for g1(u) withm = 3 (left) and
g3(u) (right). The training sample has 2000 examples gen-
erated with Σ = Σ(0.8). The regularization parameter λn

is set to 0.8 during optimization. As the figure shows, the
found solution ŵ is linearly related to w, though the sign
may be different. The left panel and the right panel corre-
sponds to positive and negative µ respectively (µ1 ≈ 3.73
(left) , µ2 ≈ −2.53 (right)).
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Figure 1. Illustration of scaling in the recovered model. Left:
g1(u) with m = 3, Right: g3(u).

We next verify our main result. In Figure 2 we plot the
probability of a relevant feature being successfully selected
versus the sample size n for different link functions g and
covariance matrices Σ. Each mark on the curves corre-
sponds to an average over 200 trials using different random
training samples.

To overcome the difficulty of not knowing the constants in
theorem 3.4, we uniformly sample λ from n0.6 to n1.2. The
reason this upper-bound exceeds n here is for experimen-
tal selection. As we only know λ = Θ(nk), k ∈ ( 1

2 , 1),
we use this setting to search for the unknown constant fac-
tor. The numerical results in figure 2 are consistent with
our theoretical results. The Lasso model is able to select
the right features with a large enough sample size even for
highly non-linear functions such as polynomials and sine
functions. Even though w ∈ R100, figure 2 also indicates
that 2400 to 4000 of samples are sufficient to achieve suc-
cessful selection almost surely while in the linear case this
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Figure 2. Numerical simulations on the probability of successful
selection with different sample size n and Σ. The first row are
simulations on g1(w), m = 1 corresponds to the linear mapping
function, second row corresponds to g2(w). The first column has
Σ = I , second column has Σ = Σ(0.2).

reduces to only 200 to 500. Thus under the right conditions
we may expect the Lasso to be very successful at selecting
relevant features even with modest sample sizes.

Our theorem indicates that a consistent successful selection
probability can be achieved by setting λ in the order of nk,
where k is a constant depending on the noise. Figure 3
shows the numerical demonstration of this statement. The
weight vectorw ∈ R100 has been normalized as ‖w‖2 = 1.
The y-axis is obtained from log(λ)/ log(n) which is equiv-
alent to k with a shifting constant. The black pixels indi-
cates successful selections with probability over 95%. This
figure indicates that we can consistently choose λ as nk

with k as a constant to achieve satisfying selection perfor-
mance.
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k and the sample size n with fixed amount of noise ε. Left: g1(u)
with m = 3, ε ∼ N (0, 2I). Right: g1(u) with m = 5, ε ∼
N (0, I).
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Figure 4 shows the results of consistency tests for the group
Lasso. For simplicity, we only show this for the polynomial
families. In this test, w ∈ R80 has eight groups of ten.
The last four groups are set to be zeros. The w in the first
four groups are randomly chosen to be ±1. The results are
consistent with our theory. Note that a relative large sample
size may be required for successful group selection.
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Figure 4. Numerical simulations on the probability of successful
group selection with different sample size n and Σ for polyno-
mial families. The first row are simulations on g1(w), m = 1
corresponds to the linear mapping function, second row corre-
sponds to g2(w). The first column has Σ = I , second column
has Σ = Σ(0.2).

Next, we study the necessity of some of our assumptions.
Throughout the paper we have used the assumption that
the data follows a Gaussian distribution, following related
work. To get more insight into the Lasso as well as the ne-
cessity of this assumption, we run numerical tests on data
X generated from a variety of distributions. We use a test
function g5, a randomly chosen function that does not have
any special patterns. Figure 5 shows the test results. We
also test our assumptions on the link function from Sec-
tion 2 through the target g4, which fails to satisfy our ex-
pectation assumptions on the link function. In particular,
E(g′4(t)) does not exist when t ∼ N (0, 1).

From Figure 5 we observe the following. First, feature se-
lection from g4, which violates our conditions, fails com-
pletely. Second, for the given function g5, along with the
Gaussian, the uniform distribution as well as Weibull dis-
tribution with parameter 1 and 1.5 also lead to success-
ful feature selection. The former maintains thinner tails
than the Gaussian while the latter has heavier tails. How-
ever, the convergence rate of the probability for Gaussian
distribution outperforms the other two. Interestingly, two
very similar distributions show different behavior. The
Beta(2, 2) distribution also has finite support as the uni-
form and t(ν = 1) maintains heavier tails than the Gaus-
sian, but both of them fail to achieve selection consistency.
These results indicate that there may be some room to relax
the requirements we assume, but not much. Understanding
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Figure 5. Numerical tests on the necessity of assumptions.
U [−1, 1] is uniform distribution on [−1, 1], t(nv = 1) is t-
distribution with freedom ν = 1, Beta(2, 2) corresponds to Beta
distribution with α = β = 2, Weibull(1, 1.5) is Weibull dis-
tribution with scale 1, shape 1.5, N(0, 1) is standard normal for
comparison. The “False Eg” line corresponds to tests on g4 with
data from Gaussian distribution Σ = I .

the gap between the necessary and sufficient conditions is
a direction for future work.

5. Conclusion
In this paper, we have studied the selection consistency of
the Lasso when the observations are generated from some
unknown link function that might be nonlinear while the
learning happens with a linear hypothesis class. We prove
that under suitable assumptions, the Lasso model is still
able to select the right features, though the recovered coeffi-
cients may either be dampened or amplified by an unknown
constant. We have described the asymptotic probability be-
havior of the selection consistency of the Lasso solution
and derived the classical consistency results as a special
case. These results extend to the group Lasso as well. Our
numerical studies verify the predicted behavior and also in-
dicate the necessity of our assumptions on the link function,
though there may be room to relax some other assumptions
on the data distribution. In future work, we plan to inves-
tigate this and study the necessary conditions that lead to
consistent selection, the Lasso with non-Gaussian noise, as
well as the case when the number of features are larger than
the number of samples.
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