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Abstract
In this paper we address the identifiability and
efficient learning problems of finite mixtures of
Plackett-Luce models for rank data. We prove
that for any k ≥ 2, the mixture of k Plackett-
Luce models for no more than 2k−1 alternatives
is non-identifiable and this bound is tight for k =
2. For generic identifiability, we prove that the
mixture of k Plackett-Luce models over m alter-
natives is generically identifiable if k ≤ bm−22 c!.
We also propose an efficient generalized method
of moments (GMM) algorithm to learn the mix-
ture of two Plackett-Luce models and show that
the algorithm is consistent. Our experiments
show that our GMM algorithm is significantly
faster than the EMM algorithm by Gormley &
Murphy (2008), while achieving competitive sta-
tistical efficiency.

1. Introduction
In many machine learning problems the data are composed
of rankings over a finite number of alternatives (Marden,
1995). For example, meta-search engines aggregate rank-
ings over webpages from individual search engines (Dwork
et al., 2001); rankings over documents are combined to find
the most relevant document in information retrieval (Liu,
2011); noisy answers from online workers are aggregated
to produce a more accurate answer in crowdsourcing (Mao
et al., 2013). Rank data are also very common in eco-
nomics and political science. For example, consumers of-
ten give discrete choices data (McFadden, 1974) and voters
often give rankings over presidential candidates (Gormley
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& Murphy, 2008).

Perhaps the most commonly-used statistical model for rank
data is the Plackett-Luce model (Plackett, 1975; Luce,
1959). The Plackett-Luce model is a natural generaliza-
tion of multinomial logistic regression. In a Plackett-Luce
model, each alternative is parameterized by a positive num-
ber that represents the “quality” of the alternative. The
greater the quality, the the chance the alternative will be
ranked at a higher position.

In practice, mixtures of Plackett-Luce models can provide
better fitness than a single Plackett-Luce model. An ad-
ditional benefit is that the learned parameter of a mixture
model can naturally be used for clustering (McLachlan
& Basford, 1988). The k-mixture of Plackett-Luce com-
bines k individual Plackett-Luce models via a linear vector
of mixing coefficients. For example, Gormley & Murphy
(2008) propose an Expectation Minorization Maximization
(EMM) algorithm to compute the MLE of Plackett-Luce
mixture models. The EMM was applied to an Irish election
dataset with 5 alternatives and the four components in the
mixture model are interpreted as voting blocs.

Surprisingly, the identifiability of Plackett-Luce mixture
models is still unknown. Identifiability is an important
property for statistical models, which requires that different
parameters of the model have different distributions over
samples. Identifiability is crucial because if the model is
not identifiable, then there are cases where it is impossi-
ble to estimate the parameter from the data, and in such
cases conclusions drawn from the learned parameter can
be wrong. In particular, if Plackett-Luce mixture models
are not identifiable, then the voting bloc produced by the
EMM algorithm of Gormley & Murphy (2008) can be dra-
matically different from the ground truth.

In this paper, we address the following two important ques-
tions about the theory and practice of Plackett-Luce mix-
ture models for rank data.
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Q1. Are Plackett-Luce mixture models identifiable?

Q2. How can we efficiently learn Plackett-Luce mixture
models?

Q1 can be more complicated than one may think be-
cause the non-identifiability of a mixture model usually
comes from two sources. The first is label switching,
which means that if we label the components of a mixture
model differently, the distribution over samples does not
change (Stephens, 2000). This can be avoided by ordering
the components and merging the same components in the
mixture model. The second is more fundamental, which
states that the mixture model is non-identifiable even after
ordering and merging duplicate components. Q1 is about
the second type of non-identifiability.

The EMM algorithm by Gormley & Murphy (2008) con-
verges to the MLE, but as we will see in the experiments, it
can be very slow when the data size is not too small. There-
fore, to answer Q2, we want to design learning algorithms
that are much faster than the EMM without sacrificing too
much statistical efficiency, especially mean squared error
(MSE).

1.1. Our Contributions

We answer Q1 with the following theorems. The answer
depends on the number of components k in the mixture
model and the number of alternatives m.

Theorem 1 and 2. For any m ≥ 2 and any k ≥ m+1
2 , the

k-mixture Plackett-Luce model (denoted by k-PL) is non-
identifiable. This lower bound on k as a function of m is
tight for k = 2 (m = 4).

The second half of the theorem is positive: the mixture of
two Plackett-Luce models is identifiable for four or more
alternatives. We conjecture that the bound is tight for all
k > 2.

The k-PL is generically identifiable for m alternatives, if
the Lebesgue measure of non-identifiable parameters is 0.
We prove the following positive results for k-PL.

Theorem 3. For any m ≥ 6 and any k ≤ bm−22 c!, the
k-PL is generically identifiable.

We note that bm−22 c! is exponentially larger than the lower
bound m+1

2 for (strict) identifiability. One interpretation of
the theorem is that, when m

2 + 1 ≤ k ≤ bm−22 c!, even
though k-PL is not identifiable in the strict sense, one may
not need to worry too much in practice due to generic iden-
tifiability.

For Q2, we propose a generalized method of moments

(GMM)1 algorithm (Hansen, 1982) to learn the k-PL. We
illustrate the algorithm for k = 2 andm ≥ 4, and prove that
the algorithm is consistent, which means that when the data
are generated from k-PL and the data size n goes to infinity,
the algorithm will reveal the ground truth with probability
that goes to 1. We then compare our GMM algorithm and
the EMM algorithm (Gormley & Murphy, 2008) w.r.t. sta-
tistical efficiency (mean squared error) and computational
efficiency in synthetic experiments. As we will see, in Sec-
tion 5, our GMM algorithm is significantly faster than the
EMM algorithm while achieving competitive statistical ef-
ficiency. Therefore, we believe that our GMM algorithm is
a promising candidate for learning Plackett-Luce mixture
models from big rank data.

1.2. Related Work and Discussions

Most previous work in mixture models (especially Gaus-
sian mixture models) focuses on cardinal data (Teicher,
1961; 1963; McLachlan & Peel, 2004; Kalai et al., 2012;
Dasgupta, 1999). Little is known about the identifiability
of mixtures of models for rank data.

For rank data, Iannario (2010) proved the identifiability
of the mixture of shifted binomial model and the uniform
models. Awasthi et al. (2014) proved the identifiability
of mixtures of two Mallows’ models. Mallows mixture
models were also studied by Lu & Boutilier (2014) and
Chierichetti et al. (2015). Our paper, on the other hand,
focuses on mixtures of Plackett-Luce models.

Technically, part of our (non-)identifiability proofs is mo-
tivated by the work of Teicher (1963), who obtained suf-
ficient conditions for the identifiability of finite mixture
models. However, technically these conditions cannot be
directly applied to k-PL because they work either for fi-
nite families (Theorem 1 in (Teicher, 1963)) or for cardinal
data (Theorem 2 in (Teicher, 1963)). Neither is the case
for mixtures of Plackett-Luce models. To prove our (non-
)identifiability theorems, we develop novel applications of
the Fundamental Theorem of Algebra to analyze the rank
of a matrix Fkm that represents k-PL (see Preliminaries
for more details). Our proof for generic identifiability is
based on a novel application of the tensor-decomposition
approach that analyzes the generic Kruskal’s rank of matri-
ces advocated by Allman et al. (2009).

In addition to being important in their own right, our (non)-
identifiability theorems also carry a clear message that has
been overlooked in the literature: when using Plackett-
Luce mixture models to fit rank data, one must be very
careful about the interpretation of the learned parameter.
Specifically, when m ≤ 2k − 1, it is necessary to double-
check whether the learned parameter is identifiable (Theo-

1This should not be confused with Gaussian mixture models.
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rem 1), which can be computationally hard. On the positive
side, identifiability may not be a big concern in practice un-
der a much milder condition (k ≤ bm−22 c!, Theorem 3).

Gormley & Murphy (2008) used 4-PL to fit an Irish elec-
tion dataset with 5 alternatives. According to our Theo-
rem 1, 4-PL for 5 alternatives is non-identifiable. More-
over, our generic identifiability theorem (Theorem 3) does
not apply becausem = 5 < 6. Therefore, it is possible that
there exists another set of voting blocs and mixing coeffi-
cients with the same likelihood as the output of the EMM
algorithm. Whether it is true or not, we believe that it is im-
portant to add discussions and justifications of the unique-
ness of the voting blocs obtained by Gormley & Murphy
(2008).

Parameter inference for single Plackett-Luce models is
studied in (Cheng et al., 2010) and (Azari Soufiani et al.,
2013). Azari Soufiani et al. (2013) proposed a GMM,
which is quite different from our method, and cannot be ap-
plied to Plackett-Luce mixture models. The MM algorithm
by Hunter (2004), which is compared in (Azari Soufiani
et al., 2013), is also very different from the EMM that is
being compared in this paper.

2. Preliminaries
Let A = {ai|i = 1, 2, · · · ,m} denote a set of m alter-
natives. Let L(A) denote the set of linear orders (rank-
ings), which are transitive, antisymmetric and total bi-
nary relations, over A. A ranking is often denoted by
ai1 � ai2 � · · · � aim , which means that ai1 is the
most preferred alternative, ai2 is the second preferred, aim
is the least preferred, etc. Let P = (V1, V2, · · · , Vn) de-
note the data (also called a preference profile), where for
all j ≤ n, Vj ∈ L(A).

Definition 1 (Plackett-Luce model). The parameter space
is Θ = {~θ = {θi|i = 1, 2, · · · ,m, θi ∈ [0, 1],

∑m
i=1 θi =

1}}. The sample space is S = L(A)n. Given a parameter
~θ ∈ Θ, the probability of any ranking V = ai1 � ai2 �
· · · � aim is

PrPL(V |~θ) =
θi1
1 ×

θi2∑
p>1 θip

× · · · × θim−1

θim−1
+θim

We assume that data are generated i.i.d. in the Plackett-
Luce model. Therefore, given a preference profile P and
~θ ∈ Θ, we have PrPL(P |~θ) =

∏n
j=1 PrPL(Vj |~θ).

The Plackett-Luce model has the following intuitive expla-
nation. Suppose there are m balls, representing m alterna-
tives in an opaque bag. Each ball ai is assigned a quality
value θi. Then, we generate a ranking in m stages. In each
stage, we take one ball out of the bag. The probability for
each remaining ball being taken out is the value assigned
to it over the sum of the values assigned to the remaining

balls. The order of drawing is the ranking over the alterna-
tives.

We require
∑
i θi = 1 to normalize the parameter so that

the Plackett-Luce model is identifiable. It is not hard to
verify that for any Plackett-Luce model, the probability for
the alternative ap (p ≤ m) to be ranked at the top of a
ranking is θp; the probability for ap to be ranked at the top
and aq ranked at the second position is θpθq

1−θp , etc.

Definition 2 (k-mixture Plackett-Luce model). Givenm ≥
2 and k ≥ 2, we define the k-mixture Plackett-Luce model
as follows. The sample space is S = L(A)n. The pa-
rameter space has two parts. The first part is the mixing
coefficients (α1, . . . , αk) where for all r ≤ k, αr ≥ 0, and∑k
r=1 αr = 1. The second part is (~θ(1), ~θ(2), . . . , ~θ(k)),

where ~θ(r) = [θ
(r)
1 , θ

(r)
2 , · · · , θ(r)m ]> is the parameter of the

r-th Plackett-Luce component. The probability of a ranking
V is

Prk-PL(V |~θ) =
∑k
r=1 αr PrPL(V |~θ(r)),

where PrPL(V |~θ(r)) is the probability of V in the r-th
Plackett-Luce model given ~θ(r).

For simplicity we use k-PL to denote the k-mixture
Plackett-Luce model.

Definition 3 (Identifiability) LetM = {Pr(·|~θ) : ~θ ∈ Θ}
be a statistical model.M is identifiable if for all ~θ,~γ ∈ Θ,
we have Pr(·|~θ) = Pr(·|~γ) =⇒ ~θ = ~γ.

In this paper, we slightly modify this definition to elim-
inate the label switching problem. We say that k-PL is
identifiable if there do not exist (1) 1 ≤ k1, k2 ≤ k,
non-degenerate ~θ(1), ~θ(2), · · · , ~θ(k1), ~γ(1), ~γ(2), · · · , ~γ(k2),
which means that these k1 + k2 vectors are pairwise
different; (2) all strictly positive mixing coefficients
(α

(1)
1 , . . . , α

(1)
k1

) and (α
(2)
1 , . . . , α

(2)
k2

), so that for all rank-
ings V we have∑k1

r=1 α
(1)
r PrPL(V |~θ(r)) =

∑k2
r=1 α

(2)
r PrPL(V |~γ(r))

Throughout the paper, we will represent a distribution over
the m! rankings over m alternatives for a Plackett-Luce
component with parameter ~θ(r) as a column vector ~fm(~θ)
with m! elements, one for each ranking and whose value is
the probability of the corresponding ranking. For example,
when m = 3, we have

~f3(~θ) =



Pr(a1 � a2 � a3|~θ)
Pr(a1 � a3 � a2|~θ)
Pr(a2 � a1 � a3|~θ)
Pr(a2 � a3 � a1|~θ)
Pr(a3 � a1 � a2|~θ)
Pr(a3 � a2 � a1|~θ)


=



θ1θ2
1−θ1
θ1θ3
1−θ1
θ1θ2
1−θ2
θ2θ3
1−θ2
θ1θ3
1−θ3
θ2θ3
1−θ3


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Given ~θ(1), . . . , ~θ(2k), we define Fkm as a m! × 2k matrix
for k-PL with m alternatives

Fkm =
[
~fm(~θ(1)) ~fm(~θ(2)) · · · ~fm(~θ(2k))

]
(1)

We note that Fkm is a function of ~θ(1), . . . , ~θ(2k), which
are often omitted. We prove the identifiability or non-
identifiability of k-PL by analyzing the rank of Fkm. The
reason that we consider 2k components is that we want to
find (or argue that we cannot find) another k-mixture model
that has the same distribution as the original one.

3. Identifiability of Plackett-Luce Mixture
Models

We first prove a general lemma to reveal a relationship be-
tween the rank of Fkm and the identifiability of Plackett-
Luce mixture models. We recall that a set of vectors is
non-degenerate if its elements are pairwise different.

Lemma 1 If the rank of Fkm is 2k for all non-degenerate
~θ(1), . . . , ~θ(2k), then k-PL is identifiable. Otherwise (2k −
1)-PL is non-identifiable.

Proof: Suppose for the sake of contradiction the
rank of Fkm is 2k for all non-degenerate ~θ(1), . . . , ~θ(2k)

but k-PL is non-identifiable. Then, there exist non-
degenerate ~θ(1), ~θ(2), · · · , ~θ(k1), ~γ(1), ~γ(2), · · · , ~γ(k2) and
all strictly positive mixing coefficients (α

(1)
1 , . . . , α

(1)
k1

) and

(α
(2)
1 , . . . , α

(2)
k2

), such that for all rankings V , we have∑k1
r=1 α

(1)
r PrPL(V |~θ(r)) =

∑k2
r=1 α

(2)
r PrPL(V |~γ(r))

Let ~δ(1), ~δ(2), . . . , ~δ(2k−(k1+k2)) denote
any 2k − (k1 + k2) vectors so that
{~θ(1), . . . , ~θ(k1), ~γ(1), . . . , ~γ(k2), ~δ(1), . . . , ~δ(2k−(k1+k2))}
is non-degenerate. It follows that the rank of the cor-
responding Fkm is strictly smaller than 2k, because∑k1
r=1 α

(1)
r PrPL(V |~θ(r)) −

∑k2
r=1 α

(2)
r PrPL(V |~γ(r)) +∑(2k−k1−k2)

r=1
~δ(r) · 0 = 0. This is a contradiction.

On the other hand, if rank(Fkm) < 2k for some non-
degenerate ~θ’s, then there exists a nonzero vector ~α =
[α1, α2, . . . , α2k]> such that Fkm · ~α = 0. Suppose in ~α
there are k1 positive elements and k2 negative elements,
then it follows that max{k1, k2}-mixture model is not iden-
tifiable, and max{k1, k2} ≤ 2k − 1. �

Theorem 1 For any m ≥ 2 and any k ≥ m+1
2 , the k-PL is

non-identifiable.

Proof sketch: The proof is constructive and is based on
a refinement of the second half of Lemma 1. For any k

and m = 2k − 1, we will define ~θ(1), . . . , ~θ(2k) and ~α =
[α1, . . . , α2k]T such that (1) Fkm · ~α = 0 and (2) ~α has k
positive elements and k negative elements. In each ~θ(r),
the value for alternatives {a2, . . . , am} are the same. The
proof for any m < 2k − 1 is similar.

Formally, let m = 2k− 1. For all i ≥ 2 and r ≤ 2k, we let

θ
(r)
i =

1−θ(r)1

2k−2 , where θ(r)i is the parameter corresponding
to the ith alternative of the rth model. We use er to repre-

sent θ(r)1 and we use br to represent 1−θ(r)1

2k−2 . It is not hard
to check that the probability for a1 to be ranked at the ith
position in the rth Plackett-Luce model is

(2k − 2)!

(2k − 1− i)!
er(br)

i−1∏i−1
p=0(1− pbr)

(2)

Then Fkm can be reduced to a (2k − 1)× (2k) matrix. Be-
cause rank(Fkm) ≤ 2k − 1 < 2k, Lemma 1 immediately
tells us that (2k−1)-PL is non-identifiable for 2k−1 alter-
natives, but this is much weaker than what we are proving
in this theorem. We now define a new (2k − 1) × (2k)
matrix Hk obtained from Fkm by performing the following
linear operations on row vectors. (i) Make the first row of
Hk to be ~1; (ii) for any 2 ≤ i ≤ 2k − 1, the ith row of
Hk is the probability for a1 to be ranked at the (i − 1)-th
position according to (2); (iii) remove all constant factors.

More precisely, for any er we define the following function.

~f∗(er) =



1
er

er(1−er)
er+2k−3

...
er(1−er)2k−3

(er+2k−3)···((2k−3)er+1)


Then we define Hk = [ ~f∗(e1), ~f∗(e2), · · · , ~f∗(e2k)].

Lemma 2 If there exist all different e1, e2, · · · , e2k < 1
and a non-zero vector ~β∗ = [β∗1 , β

∗
2 , · · · , β∗2k]> such that

(i) Hk ~β∗ = 0 and (ii) ~β∗ has k positive elements and k
negative elements, then k-PL for 2k − 1 alternatives is not
identifiable.

Then, the theorem is proved by showing that the following
~β∗ satisfies the conditions in Lemma 2. For any r ≤ 2k,

β∗r =

∏2k−3
p=1 (per + 2k − 2− p)∏

q 6=r(er − eq)
(3)

Note that the numerator is always positive. �

Theorem 2 For k = 2, and any m ≥ 4, the 2-PL is identi-
fiable.
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Proof sketch: We will apply Lemma 1 to prove the the-
orem. That is, we will show that for all non-degenerate
~θ(1), ~θ(2), ~θ(3), ~θ(4) such that rank(F2

4) = 4. We recall that
F2

4 is a 24 × 4 matrix. Instead of proving rank(F2
4) = 4

directly, we will first obtain a 4×4 matrix F∗ = T ×F2
4 by

linearly combining some row vectors of F2
4 via a 4×24 ma-

trix T . Then, we show that rank(F∗) = 4, which implies
that rank(F2

4) = 4.

For simplicity we use [er, br, cr, dr]
> to denote the pa-

rameter of r-th Plackett-Luce component for a1, a2, a3, a4
respectively. Namely,

[
~θ(1) ~θ(2) ~θ(3) ~θ(4)

]
=

e1 e2 e3 e4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

 =


~ω(1)

~ω(2)

~ω(3)

~ω(4)

, where for each r ≤ 4,

~ω(r) is a row vector. We further let ~1 = [1, 1, 1, 1].

Clearly we have
∑4
i=1 ~ω

(i) = ~1. Therefore, if there
exist three ~ω’s, for example {~ω(1), ~ω(2), ~ω(3)}, such
that ~ω(1), ~ω(2), ~ω(3) and ~1 are linearly independent, then
rank(F2

4) = 4 because each ~ω(i) corresponds to the
probability of ai being ranked at the top, which means
that ~ω(i) is a linear combination of rows in F2

4. Be-
cause ~θ(1), ~θ(2), ~θ(3), ~θ(4) is non-degenerate, at least one
of {~ω(1), ~ω(2), ~ω(3), ~ω(4)} is linearly independent of ~1.
W.l.o.g. suppose ~ω(1) is linearly independent of ~1. This
means that not all of e1, e2, e3, e4 are equal. The theorem
will be proved in the following two cases.

Case 1. ~ω(2), ~ω(3), and ~ω(4) are all linear combinations of
~1 and ~ω(1).

Case 2. There exists a ~ω(i) (where i ∈ {2, 3, 4}) that is
linearly independent of ~1 and ~ω(1).

We will only show the proof for a subcase of Case 1 to
illustrate the main idea. The full proof is quite involved
and can be found in the full version on arXiv. In Case 1, for
all i = 2, 3, 4 we can rewrite ~ω(i) = pi~ω

(1) + qi for some
constants pi, qi. Because ~ω(1) + ~ω(2) + ~ω(3) + ~ω(4) = ~1,
we have p2 + p3 + p4 = −1 and q2 + q3 + q4 = 1.

In this case for each r ≤ 4, the r-th column of F2
4, which

is ~f4(~θ(r)), is a function of er. Because the ~θ’s are non-
degenerate, e1, e2, e3, e4 must be pairwise different. We
will show the proof for the following subcase of Case 1.

Case 1.1: p2 + q2 6= 0 and p2 + q2 6= 1.

For this case we first define a 4× 4 matrix F̂ as in Table 1.
We use ~1 and ~ω(1) to denote the first two rows of F̂ . ~ω(1)

corresponds to the probability that a1 is ranked at the top.
We call such a probability a moment. Each moment is the
sum of probabilities of some rankings. For example, the
“a1 � others” moment is the total probability for {V ∈
L(A) : a1 is ranked at the top of V }. It follows that there

F̂ Moments
1 1 1 1
e1 e2 e3 e4
e1b1
1−b1

e2b2
1−b2

e3b3
1−b3

e4b4
1−b4

e1b1
1−e1

e2b2
1−e2

e3b3
1−e3

e4b4
1−e4


~1

a1 � others
a2 � a1 � others
a1 � a2 � others

Table 1. F̂.

exists a 4× 24 matrix T̂ such that F̂ = T̂ × F2
4.

Define ~θ(b) = [ 1
1−b1 ,

1
1−b2 ,

1
1−b3 ,

1
1−b4 ], where bi = p2ei+

q2. We then define ~θ(e) = [ 1
1−e1 ,

1
1−e2 ,

1
1−e3 ,

1
1−e4 ], and let

F∗ =


~1
~ω(1)

~θ(b)

~θ(e)

. It can be verified that F̂ = T ∗ × F∗, where

T ∗ =


1 0 0 0
0 1 0 0

− 1
p2

−1 1−q2
p2

0

−(p2 + q2) −p2 0 p2 + q2


Because Case 1.1 assumes that p2 + q2 6= 0 and we can
select a2 such that p2 6= 0, q2 6= 1, we have that T ∗ is
invertible. Therefore, F∗ = (T ∗)−1× F̂, which means that
F∗ = T × F2

4 for some 4× 24 matrix T .

We now prove that rank(F∗) = 4. For the sake of contra-
diction, suppose that rank(F∗) < 4. It follows that there
exist a nonzero row vector ~t = [t1, t2, t3, t4], such that
~t · F∗ = 0. This means that for all r ≤ 4,

t1 + t2er +
t3

1− p2er − q2
+

t4
1− er

= 0

Let f(x) = t1 + t2x + t3
1−p2x−q2 + t4

1−x . Let g(x) =

(1− p2x− q2)(1−x)f(x). We recall that e1, e2, e3, e4 are
four roots of f(x), which means that they are also the four
roots of g(x). Because in Case 1.1 we assume that p2 +
q2 6= 1, it can be verified that not all coefficients of g(x)
are zero. We note that the degree of g(x) is 3. Therefore,
due to the Fundamental Theorem of Algebra, g(x) has at
most three different roots. This means that e1, e2, e3, e4
are not pairwise different, which is a contradiction.

Therefore, rank(F∗) = 4, which means that rank(F2
4) = 4.

This finishes the proof for Case 1.1. All missing proofs can
be found in the full version on arXiv. �

Slightly abusing the notation, we say that a parameter of k-
PL is identifiable, if there does not exist a different param-
eter modulo label switching with the same probability dis-
tribution over the sample space. The next theorem proves
that the Lebesgue measure (in the km− 1 dimensional Eu-
clidean space) of non-identifiable parameters of k-PL for
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m alternatives is 0 (generic identifiability as is defined in
Section 1.1).

Theorem 3 For 1 ≤ k ≤ bm−22 c!, k-PL over m ≥ 6 al-
ternatives is generically identifiable.

Proof: The theorem is proved by analyzing the unique-
ness of tensor decomposition. We construct a rank-one ten-
sor for each Plackett-Luce component. Then the k-mixture
model can be represented by another tensor, which is the
weighted sum of k rank-one tensors. If the tensor decom-
position is unique, then k-PL is identifiable.

To construct the rank-one tensor Tr for the r-th Plackett-
Luce component, we partition the set of alternatives into
three sets. In the rest of the proof we assume that m is
even. The theorem can be proved similarly for odd m.

SA = {a1, a2, · · · , am−2
2
}

SB = {am
2
, am+2

2
, · · · , am−2}

SC = {am−1, am}

There are n1 = n2 = m−2
2 ! rankings over SA and SB re-

spectively, and two rankings over SC (n3 = 3). Let the
three coordinates in the tensor Tr for the r-th Plackett-
Luce model (with parameter ~θ(r) be p

(r)
A ,p

(r)
B ,p

(r)
C that

represent probabilities of all rankings within SA, SB , SC
respectively.

Then, for any rankings VA ∈ L(SA), VB ∈ L(SB), and
VC ∈ L(SC), we can prove that PrPL(VA, VB , VC |~θ(r)) =

PrPL(VA|~θ(r))× PrPL(VB |~θ(r))× PrPL(VC |~θ(r)). That is,
VA, VB and VC are independent given ~θ(r). We will prove
this result for a more general class of models called random
utility models (RUM), of which the Plackett-Luce model is
a special case (Thurstone, 1927).

Lemma 3 Given a random utility modelM(~θ) over a set
of m alternatives A, let A1,A2 be two non-overlapping
subsets of A, namely A1,A2 ⊂ A and A1 ∩ A2 = ∅. Let
V1, V2 be rankings over A1 and A2, respectively, then we
have Pr(V1, V2|~θ) = Pr(V1|~θ) Pr(V2|~θ).

Because SA, SB , and SC are non-overlapping, it fol-
lows that Tr = p

(r)
A ⊗ p

(r)
B ⊗ p

(r)
C . Because k ≤

bm−22 c!, we have min{k, |L(SA)|} + min{k, |L(SB)|} +
min{k, |L(SC)|} = 2k + 2. By Corollary 3 in (Allman
et al., 2009), k-PL is generically identifiable. For complete-
ness we include Corollary 3 here. LetM(k;n1, n2, n3) be
a k-mixture, 3-feature statistical model, where n1, n2, n3
are the cardinalities of the three sets of events we defined.

The parameters of the model M(k;n1, n2, n3) are
generically identifiable, up to label switching, provided
min(k, n1) + min(k, n2) + min(k, n3) ≥ 2k + 2.

Since n1 = n2 = m−2
2 !, n3 ≥ 2, this condition holds. �

4. A Generalized Method of Moments
Algorithm for 2-PL

In a generalized method of moments (GMM) algorithm, a
set of q ≥ 1 moment conditions g(V, ~θ) are specified. Mo-
ment conditions are functions of the parameter and the data,
whose expectations are zero at the ground truth. g(V, ~θ) ∈
Rq has two inputs: a data point V and a parameter ~θ. For
any ~θ∗, the expectation of any moment condition should
be zero at ~θ∗, when the data are generated from the model
given ~θ∗. Formally E[g(V, ~θ∗)] = ~0. In practice the ob-
served moment values should match the theoretical values
from the model. In our algorithm, each moment condition
corresponds to an event in the data, e.g. a1 is ranked at the
top. We use moments to denote such events. Given any
preference profile P , we let g(P, ~θ) = 1

n

∑
V ∈P g(V, ~θ),

which is a function of ~θ. The GMM algorithm we will use
then computes the parameter that minimizes the 2-norm of
the empirical moment conditions in the following way.

GMMg(P ) = inf
~θ
||g(P, ~θ)||22 (4)

In this paper, we will show results for m = 4 and k = 2.
Our GMM works for other combinations of k and m, if
the model is identifiable. Otherwise the estimator is not
consistent. For m = 4 and k = 2, the parameter of the 2-
PL is ~θ = (α, ~θ(1), ~θ(2)). We will use the following q = 20
moments from three categories.

(i) There are four moments, one for each of the four alter-
natives to be ranked at the top. Let {gi : i ≤ 4} denote the
four moment conditions. Let pi = αθ

(1)
i +(1−α)θ

(2)
i . For

any V ∈ L(A), we have gi(V, ~θ) = 1− pi if and only if ai
is ranked at the top of V ; otherwise gi(V, ~θ) = −pi.

(ii) There are 12 moments, one for each combination of
top-2 alternatives in a ranking. Let {gi1i2 : i1 6= i2 ≤ 4}

denote the 12 moment conditions. Let pi1i2 = α
θ
(1)
i1
θ
(1)
i2

1−θ(1)i1

+

(1− α)
θ
(2)
i1
θ
(2)
i2

1−θ(2)i1

. For any V ∈ L(A), we have gi1i2(V, ~θ) =

1 − pi1i2 if and only if ai1 is ranked at the top and ai2 is
ranked at the second in V ; otherwise gi1i2(V, ~θ) = −pi1i2 .

(iii) There are four moments that correspond to the follow-
ing four rankings a1 � a2 � a3 � a4, a2 � a3 � a4 � a1,
a3 � a4 � a1 � a2, a4 � a1 � a2 � a3. The correspond-
ing gi1i2i3i4 ’s are defined similarly.

To illustrate how GMM works, we give the following ex-
ample. Suppose the data P contain the following 20 rank-
ings.
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Figure 1. The MSE and running time of GMM and EMM. EMM-20-1 is 20 iterations of EMM overall with 1 iteration of MM for each
M step. Likewise, EMM-10-1 is 10 iterations of EMM with 1 iteration of MM each time. Values are calculated over 2000 datasets.

8 @ a1 � a2 � a3 � a4
4 @ a2 � a3 � a4 � a1
3 @ a3 � a4 � a1 � a2
3 @ a4 � a1 � a2 � a3
2 @ a3 � a1 � a4 � a2

Then, for example, g1(P, ~θ) = 8
20 − (αθ

(1)
1 + (1−α)θ

(2)
1 ),

corresponding to the moment that a1 is ranked at top (cate-

gory i). g34(P, ~θ) = 3
20 − (

αθ
(1)
3 θ

(1)
4

θ
(1)
1 +θ

(1)
2 +θ

(1)
4

+
(1−α)θ(2)3 θ

(2)
4

θ
(2)
1 +θ

(2)
2 +θ

(2)
4

),

corresponding to the moment of a3 � a4 � others (cate-

gory ii). g2341(P, ~θ) = 4
20 − (

αθ
(1)
2 θ

(1)
3 θ

(1)
4

(θ
(1)
3 +θ

(1)
4 +θ

(1)
1 )(θ

(1)
4 +θ

(1)
1 )

+

(1−α)θ(2)2 θ
(2)
3 θ

(2)
4

(θ
(2)
3 +θ

(2)
4 +θ

(2)
1 )(θ

(2)
4 +θ

(2)
1 )

), corresponding to the moment

of a2 � a3 � a4 � a1 (category iii). Remember that∑4
i=1 θ

(1)
i =

∑4
i=1 θ

(2)
i = 1.

The choices of these moment conditions are based on the
proof of Theorem 2, so that the 2-PL is strictly identifi-
able w.r.t. these moment conditions. Therefore, our simple
GMM algorithm is the following.

Algorithm 1 GMM for 2-PL
Input: Preference profile P with n full rankings.
Compute the frequency of each of the 20 moments
Compute the output according to (4)

The theoretical guarantee of our GMM is its consistency,
as we defined in Section 1.1.

Theorem 4 Algorithm 1 is consistent w.r.t. 2-PL, where
there exists ε > 0 such that each parameter is in [ε, 1].

Originally all parameters lie in open intervals (0, 1]. The
ε requirement in the theorem is introduced to make the pa-

rameter space compact, i.e. all parameters are chosen from
closed intervals. The proof is done by applying Theorem
3.1 in (Hall, 2005). The main hardness is the identifiabil-
ity of 2-PL w.r.t. the moment conditions used in our GMM.
Our proof of the identifiability of 2-PL (Theorem 2) only
uses the 20 moment conditions described above.2

Complexity of GMM. For learning k-PL with m alter-
natives and n rankings with EMM, each E-step performs
O(nk2) operations and each iteration of the MM algorithm
for the M-step performs O(m2nk) operations. Our GMM
for k = 2 and m = 4 has overall complexity O(n). The
complexity of calculating moments is O(n) and the com-
plexity of optimization depends only on m and k.

5. Experiments
The performance of our GMM algorithm (Algorithm 1)
is compared to the EMM algorithm (Gormley & Murphy,
2008) for 2-PL with respect to running time and statisti-
cal efficiency for synthetic data. The synthetic datasets are
generated as follows.

• Generating the ground truth: for k = 2 mixtures and
m = 4 alternatives, the mixing coefficient α∗ is gener-
ated uniformly at random and the Plackett-Luce compo-
nents ~θ(1) and ~θ(2) are each generated from the Dirichlet
distribution Dir(~1).

• Generating data: given a ground truth ~θ∗, we generate

2In fact our proof only uses 16 of them (4 out of the 12 mo-
ment conditions in category (ii) are redundant). However, our
synthetic experiments show that using 20 moments improves sta-
tistical efficiency without sacrificing too much computational ef-
ficiency.
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Figure 2. The MSE and running time of GMM. GMM-Moments is the time to calculate the moment condition values observed in the
data and GMM-Opt is the time to perform the optimization. Values are calculated over 50000 trials.

each ranking with probability α∗ from the PL model pa-
rameterized by ~θ(1) and with probability 1 − α∗ from the
PL model parameterized by ~θ(2) up to 45000 full rankings.

The GMM algorithm is implemented in Python 3.4 and
termination criteria for the optimization are convergence
of the solution and the objective function values to within
10−10 and 10−6 respectively. The optimization of (4) uses
the fmincon function through the MATLAB Engine for
Python.

The EMM algorithm is also implemented in Python 3.4 and
the E and M steps are repeated together for a fixed num-
ber of iterations without convergence criteria. The running
time of EMM is largely determined by the total number of
iterations of the MM algorithm and we look to compare the
best EMM configuration with comparable running time to
GMM. We have tested all configurations of EMM with 10
and 20 overall MM iterations, respectively. We found that
the optimal configurations are EMM-10-1 and EMM-20-
1 (shown in Figure 1, results for other configurations are
omitted), where EMM-20-1 means 20 iterations of E step,
each of which uses 1 MM iteration.

We use the Mean Squared Error (MSE) as the measure of
statistical efficiency defined as MSE = E(‖ ~θ − ~θ∗ ‖22).

All experiments are run on an Ubuntu Linux server with
Intel Xeon E5 v3 CPUs each clocked at 3.50 GHz.

Results. The comparison of the performance of the GMM
algorithm to the EMM algorithm is presented in Figure 1
for up to n = 2000 rankings. Statistics are calculated over
2000 trials (datasets). We observe that:

•GMM is significantly faster than EMM. The running time
of GMM grows at a much slower rate in n.

• GMM achieves competitive MSE and the MSE of EMM
does not improve over n. In particular, when n is more than
1000, GMM achieves smaller MSE.

The implication is that GMM may be better suited for rea-
sonably large datasets where running time becomes infeasi-
bly large with EMM. Moreover, it is possible that the GMM
algorithm can be further improved by using a more accu-
rate optimizer or another set of moment conditions. GMM
can also be used to provide a good initial point for other
methods such as the EMM.

For larger datasets, the performance of the GMM algorithm
is shown in Figure 2 for up to n = 45000 rankings calcu-
lated over 50000 trials. As the data size increases, GMM
converges toward the ground truth, which verifies our con-
sistency theorem (Theorem 4). The overall running time of
GMM shown in the figure is comprised of the time to calcu-
late the moments from data (GMM-Moments) and the time
to optimize the objective function (GMM-Opt). The time
for calculating the moment values increases linearly in n,
but it is dominated by the time to perform the optimization.

6. Future Work
There are many directions for future research. An obvious
open question is whether k-PL is identifiable for 2k alter-
natives for k ≥ 3, which we conjecture to be true. It is im-
portant to study how to efficiently check whether a learned
parameter is identifiable for k-PL when m < 2k. Can we
further improve the statistical efficiency and computational
efficiency for learning k-PL? We also plan to develop effi-
cient implementations of our GMM algorithm and apply it
widely to various learning problems with big rank data.
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