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Abstract

Planning plays an important role in the broad class of decision theory. Planning has drawn much

attention in recent work in the robotics and sequential decision making areas. Recently, Reinforce-

ment Learning (RL), as an agent-environment interaction problem, has brought further attention to

planning methods. Generally in RL, one can assume a generative model, e.g. graphical models,

for the environment, and then the task for the RL agent is to learn the model parameters and find

the optimal strategy based on these learnt parameters. Based on environment behavior, the agent

can assume various types of generative models, e.g. Multi Armed Bandit for a static environment,

or Markov Decision Process (MDP) for a dynamic environment. The advantage of these popular

models is their simplicity, which results in tractable methods of learning the parameters and finding

the optimal policy. The drawback of these models is again their simplicity: these models usually

underfit and underestimate the actual environment behavior. For example, in robotics, the agent

usually has noisy observations of the environment inner state and MDP is not a suitable model.

More complex models like Partially Observable Markov Decision Process (POMDP) can com-

pensate for this drawback. Fitting this model to the environment, where the partial observation

is given to the agent, generally gives dramatic performance improvement, sometimes unbounded

improvement, compared to MDP. In general, finding the optimal policy for the POMDP model is

computationally intractable and fully non convex, even for the class of memoryless policies. The

open problem is to come up with a method to find an exact or an approximate optimal stochastic

memoryless policy for POMDP models.

1. Introduction

The concept of planning, as a part of decision theory, in the AI literature has a long

history. It is the bases for a variety of popular agent-environment interaction problems

like Reinforcement Learning (RL). RL is an effective approach to solve the problem of

sequential decision making under uncertainty. RL agents learn how to maximize long-

term reward using a experience obtained by direct interaction with a stochastic environ-

ment (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998). Since the environment is

initially unknown, the agent has to balance between exploring the environment to estimate

its structure, and exploiting the estimates to compute a policy that maximizes the long-term

reward. As a result, designing a RL algorithm requires three different elements: 1) an
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estimator for the environment’s structure, 2) a planning algorithm to compute the optimal

policy of the estimated environment (LaValle, 2006), and 3) a strategy to make a trade off

between exploration and exploitation to minimize the regret, i.e., the difference between

the performance of the exact optimal policy and the rewards accumulated by the agent over

time.

Most of RL literature assumes that the environment can be modeled as a Markov deci-

sion process (MDP), with a Markovian state evolution that is fully observed. A number of

exploration–exploitation strategies have been shown to have strong performance guaran-

tees for MDPs, either in terms of regret or sample complexity Auer et al. (2009). However,

the assumption of full observability of the state evolution is often violated in practice, and

the agent may have only noisy observations of the true state of the environment (e.g., noisy

sensors in robotics). In this case, it is more appropriate to use the partially-observable MDP

(POMDP) (Sondik, 1971) model.

Many challenges arise in designing RL algorithms for POMDPs. Unlike in MDPs,

the estimation problem (element 1) involves identifying the parameters of a latent vari-

able model (LVM). The planning problem (element 2), i.e., computing the optimal policy

for a POMDP with known parameters, is PSPACE-complete (Papadimitriou and Tsitsiklis,

1987), and it requires solving an augmented MDP built on a continuous belief space (i.e., a

distribution over the hidden state of the POMDP). Finally, integrating estimation and plan-

ning in an exploration–exploitation strategy (element 3) with guarantees is non-trivial and

no no-regret strategies are currently known.

Previous works Ross et al. (2007) and Poupart and Vlassis (2008) present new active learn-

ing algorithms to estimate the belief state in a model-based Bayesian RL approach, where

a distribution over possible MDPs is updated over time. The proposed algorithms are such

that the Bayesian inference can be done at each step, a POMDP is sampled from the pos-

terior and the corresponding optimal policy is executed. The regret bound and sample

complexity are not provided.

Recently, the learning POMDP model parameter and imposing trade off between ex-

ploration and estimation (elements 1 and 3), are done at Azizzadenesheli et al. (2016).

They propose the theoretical guaranty on regret bound given the oracle memoryless pol-

icy. Therefore to close the learning, planing, and exploration-exploitation loop, the miss-

ing part, planning (element 2), is the remaining part. Therefore, planing is a problem of

finding the optimal memoryless policy, under uncertainty, in the class of stochastic mem-

oryless polices. The overview complexity of planing in POMDP domain is discussed in

Kaelbling et al. (1998).

2. Formal Definition

A POMDP M is a tuple 〈X ,A,Y ,R, fT , fR, fO〉, where X is a finite state space with cardi-

nality |X | = X , A is a finite action space with cardinality |A| = A, Y is a finite observation

space with cardinality |Y| = Y , and R is a finite reward space with cardinality |R| = R

and largest reward rmax. In addition fT denotes the transition density, so that fT (x
′|x, a) is

the probability of transition to x′ given the state-action pair (x, a), fR is the reward density,

so that fR(r|x, a) is the probability of receiving the reward in R corresponding to the value
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Figure 1: Graphical model of a POMDP under memoryless policies.

of the indicator vector r given the state-action pair (x, a), and fO is the observation density,

so that fO(y|x) is the probability of receiving the observation in Y corresponding to the

indicator vector y given the state x. Whenever convenient, we use tensor forms for the den-

sity functions such that Ti,j,l = P[xt+1 = j|xt = i, at = l] = fT (j|i, l), s.t. T ∈ R
X×X×A,

On,i = P[y = en|x = i] = fO(en|i), s.t. O ∈ R
Y×X , and Γi,l,m = P[r = em|x =

i, a = l] = fR(em|i, l), s.t. Γ ∈ R
X×A×R. We also denote by T:,j,l the fiber (vector) in

R
X obtained by fixing the arrival state j and action l and by T:,:,l ∈ R

X×X the transition

matrix between states when using action l. The graphical model associated to the POMDP

is illustrated in Fig. 1.

We focus on stochastic memoryless policies which map observations to actions and for

any policy π we denote by fπ(a|y) its density function. Acting according to a policy π in

a POMDP M defines a Markov chain characterized by a transition density fT,π(x
′|x) =∑

a

∑
y
fπ(a|y)fO(y|x)fT (x

′|x, a), and a stationary distribution ωπ over states such that

ωπ(x) =
∑

x′ fT,π(x
′|x)ωπ(x

′). The expected average reward performance of a policy π is

η(π;M) =
∑

x ωπ(x)rπ(x), where rπ(x) is the expected reward of executing policy π in

state x defined as rπ(x) =
∑

a

∑
y
fO(y|x)fπ(a|y)r(x, a), and r(x, a) =

∑
r rfR(r|x, a)

is the expected reward for the state-action pair (x, a).
The best stochastic memoryless policy is π∗ = argmax

π
η(π;M) and we denote by

η∗ = η(π∗;M) its average reward. Finding the optimal policy π∗ requires solving non-

convex optimization and it is the desired open problem.

3. Related Work

Planning on uncertainty in a dynamic internal process is studied for infinite horizon Sondik

(1978). It is shown that, finding the exact optimal policy for POMDP is followed by the

curse of dimensionality and the curse of history. People uses point-based value iteration

Pineau et al. (2006) to reduce the complexity of the planning. It is also common to use

heuristic search value iteration Smith and Simmons (2004) and also policy tree with limited

depth Kaelbling et al. (1998) to reduce the planning complexity. For a finite horizonBut the

computation complexity of finding optimal policy grows exponentially by horizon. For an

infinite horizon, each vector of state distribution can be any point in the continues space

of the simplex subspace. This means the planning is over the continuous space which is

PSPACE-complete. Sondik (1978) presented a method to partition the continuous space
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of the state distribution and then the policy is just a mapping from these partitions to the

action.

In general, planning in the space of memoryless policy has a lower level of complexity.

Although, it is easier than belief based planning, it is still an NP − hard problem. To

breaking down this complexity, Li et al. (2011) presented a novel method for finding the

optimal policy in the class of deterministic memoryless policies. Meanwhile, deterministic

policies act poorly in the general case of POMDPs. Therefore, proposing a novel method

to find the exact or approximated optimal memoryless policy (policy with performance

ǫ − close to the performance of optimal policy) or limited history dependent policy is the

next step in the world of POMDP planning.
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