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Abstract
We consider the noisy power method algorithm, which has wide applications in machine learn-
ing and statistics, especially those related to principal component analysis (PCA) under resource
(communication, memory or privacy) constraints. Existing analysis of the noisy power method
(Hardt and Price, 2014; Li et al., 2016) shows an unsatisfactory dependency over the “consecutive”
spectral gap (σk − σk+1) of an input data matrix, which could be very small and hence limits the
algorithm’s applicability. In this paper, we present a new analysis of the noisy power method that
achieves improved gap dependency for both sample complexity and noise tolerance bounds. More
specifically, we improve the dependency over (σk−σk+1) to dependency over (σk−σq+1), where q
is an intermediate algorithm parameter and could be much larger than the target rank k. Our proofs
are built upon a novel characterization of proximity between two subspaces that differ from canon-
ical angle characterizations analyzed in previous works (Hardt and Price, 2014; Li et al., 2016).
Finally, we apply our improved bounds to distributed private PCA and memory-efficient streaming
PCA and obtain bounds that are superior to existing results in the literature.
Keywords: principal component analysis, noisy power method, spectral gap.

1. Introduction

Principal Component Analysis (PCA) is a fundamental problem in statistics and machine learning.
The objective of PCA is to find a small number of orthogonal directions in the d-dimensional Eu-
clidean space Rd that have the highest variance of a given sample set. Mathematically speaking,
given a d × d positive semi-definite matrix A of interest (A is usually the sample covariance ma-
trix A = 1

n

∑n
i=1 ziz

>
i for n data points z1, · · · , zn), one wishes to find the top-k eigen-space of

A, where k is the number of principal directions of interest and is typically much smaller than the
ambient dimension d. A popular algorithm for computing PCA is the matrix power method, which
starts with a random d × p matrix (p ≥ k) X0 with orthonormal columns and iteratively performs
the following computation for ` = 1, · · · , L:

1. Subspace iteration: Y` = AX`−1.

2. QR factorization: Y` = X`R`, where X` ∈ Rd×p has orthonormal columns and R` ∈ Rp×p
is an upper-triangular matrix.

It is well-known that when the number of iterations L is sufficiently large, the span of the output
XL can be arbitrarily close to Uk, the top-k eigen-space of A; that is, ‖(I−XLX>L )Uk‖2 ≤ ε for
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arbitrarily small ε > 0. One particular drawback of power method is that the rate of convergence
depends on the consecutive eigengap (σk−σk+1) when p = k (i.e., X` has exactly the same number
of columns as the target rank k). The consecutive eigengap could be very small for practical large-
scale matrices. As a remedy, practitioners generally set p to be slightly larger than k for faster
convergence and numerical stability (Musco and Musco, 2015). Gu (2015) formally justifies this
process by proving that under mild conditions, the dependency on (σk − σk+1) could be improved
to the “larger” spectral gap (σk−σq+1), for some k ≤ q ≤ p, which may be significantly larger than
the consecutive gap even if q is at the same order of k. 1 Despite the wide applicability and extensive
analysis of the (exact) matrix power method, in practice it is sometimes desired to analyze a noisy
version of power method, where each subspace iteration computation is corrupted with noise. Such
noise could come from resource constraints such as inherent machine precision or memory storage,
or artificially imposed constraints for additional objectives such as data privacy preservation. In
both cases, the noise model can be expressed as Y` = AX`−1 + G`, where G` is a d × p noise
matrix for iteration ` that can be either stochastic or deterministic (adversarial). Note that G` could
differ from iteration to iteration but the QR factorization step Y` = X`R` is still assumed to be
exact. The noisy power method has attracted increasing interest from both machine learning and
theoretical computer science societies due to its simplicity and broad applicability (Hardt and Price,
2014; Li et al., 2016; Musco and Musco, 2015; Mitliagkas et al., 2013). In particular, (Hardt and
Price, 2014) establishes both convergence guarantees and error tolerance (i.e., the largest magnitude
of the noise matrix G` the algorithm allows to produce consistent estimates of Uk) of the noisy
power method. (Hardt and Price, 2014) also applied their results to PCA with resource (privacy,
memory) constraints and obtained improved bounds over existing results.

1.1. Our contributions

Improved gap dependency analysis of the noisy power method Our main contribution is a new
analysis of the noisy power method with improved gap dependency. More specifically, we improve
the prior gap dependency (σk − σk+1) to (σk − σq+1), where q is certain integer between the
target rank k and the number of columns used in subspace iteration p. Our results partially solve
a open question in (Hardt and Price, 2014), which conjectured that such improvement over gap
dependency should be possible if p is larger than k. To our knowledge, our bounds are the first to
remove dependency over the consecutive spectral gap (σk − σk+1) for the noisy power method.

Gap-independent bounds As a by-product of our improved gap dependency analysis, we apply
techniques in a recent paper (Musco and Musco, 2015) to obtain gap-independent bounds for the
approximation error ‖A − XLX>LA‖2. This partially addresses another conjecture in (Hardt and
Price, 2014) regarding gap-independent approximation error bounds with slightly worse bounds on
magnitude of error matrices G`.

Applications The PCA problem has been previously considered under various resource con-
straints. Two particularly important directions are private PCA (Hardt and Roth, 2013; Dwork et al.,
2014; Chaudhuri et al., 2012; Hardt and Price, 2014), where privacy of the data matrix being ana-
lyzed is formally preserved, and distributed PCA (Balcan et al., 2014; Boutsidis et al., 2015) where
data matrices are stored separately on several machines and communications among machines are

1. Sec. 2 provides such an example matrix with power-law decaying spectrum.
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constrained. In this paper we propose a distributed private PCA problem that unifies these two set-
tings. Our problem includes the entrywise private PCA setting in (Hardt and Roth, 2013; Hardt and
Price, 2014) and distributed PCA setting in (Balcan et al., 2014) as special cases and we demonstrate
improved bounds over existing results for both problems.

We also apply our results to the memory-efficient streaming PCA problem considered in (Hardt
and Price, 2014; Li et al., 2016; Mitliagkas et al., 2013), where data points arrive in streams and
the algorithm is only allowed to use memory proportional to the size of the final output. Built upon
our new analysis of the noisy power method we improve state-of-the-art sample complexity bounds
obtained in (Hardt and Price, 2014).

Proof techniques The noisy power method poses unique challenges for an improved gap depen-
dency analysis. In the analysis of (Hardt and Price, 2014) the largest principal angle between X`

and Uk is considered for every iteration `. However, such analysis cannot possibly remove the
dependency over (σk − σk−1), as we discuss in Sec. 2.1. To overcome such difficulties, we pro-
pose in Eq. (3) a novel characterization between a rank-p subspace X` and the rank-k target space
Uk through an intermediate subspace Uq, which we name as rank-k perturbation on Uq by X`.
This quantity does not correspond to any principal angle between linear subspaces when p > k.
Built upon the shrinkage behavior of the proposed quantity across iterations, we are able to obtain
improved gap dependency for the noisy power method. We hope our proof could shed light to the
analysis of an even broader family of numerical linear algebra algorithms that involve noisy power
iterations.

1.2. Setup

For a d × d positive semi-definite matrix A, we denote A = UΣU> as its eigen-decomposition,
where U is an orthogonal d × d matrix and Σ = diag(σ1, · · · , σd) is a d × d diagonal matrix
consisting eigenvalues of A, sorted in descending order: σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0. The spec-
tral norm ‖A‖2 and Frobenious norm ‖A‖F can then be expressed as ‖A‖2 = σ1 and ‖A‖F =√
σ2

1 + · · ·+ σ2
d. For an integer k ∈ [d] , we define Uk as a d×k matrix with orthonormal columns,

whose column space corresponds to the top-k eigen-space of A. Similarly, Σk = diag(σ1, · · · , σk)
corresponds to the top-k eigenvalues of A. Let Ak ∈ argminB:rank(B)≤k‖A−B‖ξ be the optimal
rank-k approximation of A. It is well-known that Ak = UkΣkU

>
k is the optimal approximation

for both spectral norm (ξ = 2) and Frobenious norm (ξ = F ) (Eckart and Young, 1936).
QR Factorization is a process to obtain an orthonormal column basis of a matrix. For a d × p

matrix Y, QR factorization gives us Y = XR where X ∈ Rd×p is orthonormal and R ∈ Rp×p is
an upper triangular matrix (Trefethen and Bau III, 1997).

2. An improved analysis of the noisy power method

The noisy power method is described in Algorithm 1. (Hardt and Price, 2014) provides the first
general-purpose analysis of the convergence rate and noise tolerance of Algorithm 1. We cite their
main theoretical result below:

Theorem 2.1 (Hardt and Price (2014)) Fix ε ∈ (0, 1/2) and let k ≤ p. Let Uk ∈ Rd×k be the
top-k eigenvectors of a positive semi-definite matrix A and let σ1 ≥ · · · ≥ σn ≥ 0 denote its
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Algorithm 1: The noisy matrix power method
Data: positive semi-definite data matrix A ∈ Rd×d, target rank k, iteration rank p ≥ k, number of

iterations L.
Result: approximated eigen-space XL ∈ Rd×p, with orthonormal columns.
Initialization: orthonormal X0 ∈ Rd×p by QR decomposition on a random Gaussian matrix G0;
for ` = 1 to L do

Observe Y` = AX`−1 + G` for some noise matrix G`;
QR factorization: Y` = X`R`, where X` consists of orthonormal columns;

end

eigenvalues. Suppose at every iteration of the noisy power method the noise matrix G` satisfies

5‖G`‖2 ≤ ε(σk − σk+1) and 5‖U>k G`‖2 ≤ (σk − σk+1)

√
p−
√
k − 1

τ
√
d

for some fixed constant τ . Assume in addition that the number of iterations L is lower bounded as

L = Ω

(
σk

σk − σk+1
log

(
dτ

ε

))
.

Then with probability at least 1− τ−Ω(p+1−k) − e−Ω(d) we have ‖(I−XLX>L )Uk‖2 ≤ ε.

Theorem 2.1 has one major drawback: both bounds for noise tolerance and convergence rate
depend crucially on the “small” singular value gap (σk − σk+1). This gap could be extremely
small for most data matrices in practice since it concerns the difference between two consecutive
singular values. We show in later paragraphs an example where such gap-dependency could lead
to significant deterioration in terms of both error tolerance and computing. A perhaps even more
disappointing fact is that the dependency over (σk − σk+1) cannot be improved under the existing
analytical framework by increasing p, the number of components maintained by X` at each iteration.
On the other hand, one expects the noisy power method to be more robust to per-iteration noise
when p is much larger than k. This intuition has been formally established in (Gu, 2015) under the
noiseless setting and was also articulated as a conjecture in (Hardt and Price, 2014):

Conjecture 2.1 (Hardt and Price (2014)) The noise tolerance terms in Theorem 2.1 can be im-
proved to

5‖G`‖2 ≤ ε(σk − σp+1) and 5‖U>k G`‖2 ≤
√
p−
√
k − 1

τ
√
d

. (1)

In this section, we provide a more refined theoretical analysis of the noisy matrix power method pre-
sented in Algorithm 1. Our analysis significantly improves the gap dependency over existing results
in Theorem 2.1 and partially solves Conjecture 2.1 up to additional constant-level dependencies:

Theorem 2.2 (Improved gap-dependent bounds for noisy power method) Let k ≤ q ≤ p. Let
Uq ∈ Rd×q be the top-q eigenvectors of a positive semi-definite matrix A and let σ1 ≥ · · · ≥ σd ≥ 0

denote its eigenvalues and fix any ε between 0 and O

(
σq
σk
·min

{
1

log
(
σk
σq

) , 1
log(τd)

})
. Suppose at
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every iteration of the noisy power method the noise matrix G` satisfies

‖G`‖2 = O (ε(σk − σq+1)) and ‖U>q G`‖2 = O

(
ε (σk − σq+1)

√
p−
√
q − 1

τ
√
d

)
for some constant τ > 0. Then after

L = Θ

(
σk

σk − σq+1
log

(
τd

ε

))
.

iterations, with probability at least 1− τ−Ω(p+1−q) − e−Ω(d), we have

‖(I−XLX>L )Uk‖2 ≤ ε.

Furthermore, ∥∥∥A−XLX>LA
∥∥∥2

2
≤ σ2

k+1 + ε2σ2
k∥∥∥A−XLX>LA

∥∥∥2

F
≤

d∑
i=k+1

σ2
i + kε2σ2

k

Discussion Compared to existing bounds in Theorem 2.1, the noise tolerance as well as con-
vergence rate of noisy power method is significantly improved in Theorem 2.2, where the main
gap-dependent term (σk − σk+1) is improved to (σk − σq+1) for some intermediate singular value
σq with k ≤ q ≤ p. Since the singular values are non-increasing, setting a large value of q in The-
orem 2.2 would improve the bounds. However, q cannot be too close to p due to the presence of a
(
√
p−
√
q − 1) term. In addition, the convergence rate (i.e., bound on L) specified in Theorem 2.2

reproduces recent results in (Gu, 2015) for noisy power method under noiseless settings (G` = 0).
There are three main differences between our theorems and the conjecture raised by (Hardt and
Price, 2014). First, the strength of projected noise U>q G also depends on ε. However, in many
applications, this assumption is implied by the ‖G`‖2 = O (ε(σk − σq+1)) assumption. Second,
we have

(√
p−
√
q − 1

)
instead of

(√
p−
√
k − 1

)
dependence. When q = Θ (k) and p ≥ 2q,

then this term is the at the same order as in the conjecture. Lastly, we notice that the second term of
(1) is totally independent of σk, σp+1 and their gap, which seems to be either a typo or unattainable
result. Nonetheless, Theorem 2.2 has shown significant improvement on Theorem 2.1.

To further shed light on the nature of our obtained results, we consider the following example
to get a more interpretable comparison between Theorem 2.2 and 2.1:

Example: power-law decaying spectrum We consider the example where the spectrum of the
input data matrix A has power-law decay; that is, σk � k−α for some parameter α > 1. Many data
matrices that arise in practical data applications have such spectral decay property (Liu et al., 2015).
The small eigengap (σk − σk+1) is on the order of k−α−1. As a result, the number of iterations L
should be at least Ω(k log(d/ε)), which implies a total running time of O(dk3 log(d/ε)). On the
other hand, by setting q = ck for some constant c > 1 the “large” spectral gap (σk − σq+1) is on
the order of k−α. Consequently, the number of iterations L under the new theoretical analysis only
needs to scale as Ω(log(d/ε)) and the total number of flops is O(dk2 log(d/ε)). This is an O(k)
improvement over existing bounds for noisy power method.
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Apart from convergence rates, our new analysis also improves the noise tolerance (i.e., bounds
on ‖G`‖2) in an explicit way when the data matrix A is assumed to have power-law spectral decay.
More specifically, old results in (Hardt and Price, 2014) requires the magnitude of the noise matrix
‖G`‖2 to be upper bounded by O(εk−α−1), while under the new analysis (Theorem 2.2) a bound
of the form ‖G`‖2 = O(εk−α) suffices, provided that q = ck for some constant c > 1 and ε is
small. This is another O(k) improvement in terms of bounds on the maximum tolerable amount of
per-iteration noise.

2.1. Proof of Theorem 2.2

Before presenting our proof of the main theorem (Theorem 2.2), we first review the arguments in
(Hardt and Price, 2014) and explain why straightforward adaptations of their analysis cannot lead
to improved gap dependency. (Hardt and Price, 2014) considered the tangent of the kth principle
angle between Uk and X`:

tan θk(Uk,X`) =
∥∥∥(U>d−kX`)(U

>
k X`)

†
∥∥∥

2
, (2)

where Ud−k ∈ Rd×(d−k) is the orthogonal complement of the top-k eigen-space Uk ∈ Rd×k of
A. It can then be shown that when both ‖G`‖2 and ‖U>k G`‖2 are properly bounded, the angle
geometrically shrinks after each power iteration; that is, tan θk(Uk,X`+1) ≤ ρ tan θk(Uk,X`)
for some fixed ρ ∈ (0, 1). However, as pointed outed by (Hardt and Price, 2014), this geometric
shrinkage might not hold with larger level of noise.

To overcome such difficulties, in our analysis we consider a different characterization between
Uk (or Uq) and X` at each iteration. Let Uk ∈ Rd×k, Uq ∈ Rd×q be the top k and top q eigen-
vectors of X and let Ud−q ∈ Rd×(d−p) be the remaining eigenvectors. For an orthonormal matrix
X` ∈ Rd×p, define the rank-k perturbation on Uq by X` as

h` :=

∥∥∥∥(U>d−qX`)(U
>
q X`)

†
(

Ik×k
0

)∥∥∥∥
2

. (3)

Our definition of h` is motivated by Ming Gu’s recent analysis on improved gap dependency of exact

(noiseless) power method (Gu, 2015), which considered H̃` = Σ`
d−q

(
U>d−qX0

) (
U>q X0

)†(Σ−`k
0

)
as the reference matrix for their analysis. Here X0 is the initial matrix and ` is the number of it-
erations. Compared to the classical quantity (U>d−kX0)(U>k X0)† in Eq. (3), H̃` consists of the
enlarged top-q eigenspace and have the singular value matrices Σ`

d−q and Σ−`k multiplied on both

sides of the quantity. By analyzing properties of H̃`, Gu (2015) demonstrated enlarged spectral gap
(σk − σq+1) in power iteration convergence. However, H̃` is defined over the intial test matrix X0

and thus cannot handle a large amount of noise across power iterations. To adapt the analysis in Gu

(2015) to noisy power method, we consider a variant of H̃`: H` =
(
U>d−qX`

) (
U>q X`

)†(Ik×k
0

)
,

where the Σd−q and Σk terms are removed and X0 is replaced with X`. Because H` is based on the
possibly noisy test matrix X` after ` iterations, it automatically adjusts itself towards the presence of
noise across power iterations and thus leads to relaxed spectral gap bound for noisy power method.
Note also that H` reduces to H̃` when exact (noiseless) power iterations X` = A`X0 is carried out.

We can then show the following shrinkage results for h` across iterations:
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Lemma 2.1 If the noise matrix at each iteration satisfies

‖G`‖2 ≤ cε (σk − σq+1) ,
∥∥∥U>q G`

∥∥∥
2
≤ c ·min{ε (σk − σq+1) cos θq(Uq,X`), σq cos θq(Uq,X`)},

for some sufficiently small absolute constant 0 < c < 1, define

ρ :=
σq+1 + Cε (σk − σq+1)

σk
.

we then have

h`+1 −
Cε (σk − σq+1)

(1− ρ)σk
≤ ρ

(
h` −

Cε (σk − σq+1)

(1− ρ)σk

)
,

for some sufficiently small global constant 0 < C < 1.

The following lemma bounds the rank-k perturbation on Uq by X0 when it is initialized via QR
decomposition on a random Gaussian matrix G0, as described in Algorithm 1.

Lemma 2.2 With all but τ−Ω(p+1−q) + e−Ω(d) probability, we have that

h0 ≤ tan θq(Uq,X0) ≤ τ
√
d

√
p−
√
q − 1

.

Finally, Lemma 2.3 shows that small hL values imply small angles between XL and Uk.

Lemma 2.3 For any ε ∈ (0, 1), if hL ≤ ε/4 then tan θk(Uk,XL) ≤ ε.

The proofs of Lemma 2.1, 2.2 and 2.3 involve some fairly technical matrix computations and is
thus deferred to Appendix A. We are now ready to prove Theorem 2.2:
Proof [Theorem 2.2] First, the chosen ε ensures Corollary A.1 in Appendix A holds, therefore, the
noise conditions in Theorem 2.2 imply those noise conditions in Lemma 2.1 with high probability.
As a result, the following holds for all ` ∈ [L]:

h`+1 −
Cε (σk − σq+1)

(1− ρ)σk
≤ ρ

(
h` −

Cε (σk − σq+1)

(1− ρ)σk

)
, (4)

where ρ =
σq+1+Cε(σk−σq+1)

σk
and C is an absolute constant. Define g` := h`− Cε(σk−σq+1)

(1−ρ)σk
. Eq. (4)

is then equivalent to g`+1 ≤ ρg`. In addition, Lemma 2.2 yields

g0 ≤ h0 ≤
τ
√
d

√
p−
√
q − 1

with high probability. Consequently, with L = O(log(g0/ε)/ log(1/ρ)) iterations we have gL ≤
ε/2. hL can then be bounded by

hL = gL +
Cε(σk − σq+1)

(1− ρ)σk
=
ε

2
+
Cε (σk − σq+1)

σk
· σk
σk − σq+1 − Cε (σk − σq+1)

≤ ε.

Subsequently, invoking Lemma 2.3 we get ‖(I−XLX>L )Uk‖2 = sin θk(Uk,X`) ≤ tan θk(Uk,X`) ≤
8ε = O(ε), where we adopt the definition of sin θk(Uk,X`) from (Hardt and Price, 2014). By
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Lemma A.5 and A.6 we also obtain the reconstruction error bounds. The constant in O(ε) can be
absorbed into the bounds of G` and L.

We next simplify the bound L = O(log(g0/ε)/ log(1/ρ)). We first upper bound the shrinkage
parameter ρ as follows:

ρ =
σq+1

σk
+
C (σk − σq+1) ε

σk
≤ σq+1 + (σk − σq+1) ε/4

σq+1 + (σk − σq+1) /2

=
σq+1 + (σk − σq+1) /4

σq+1 + (σk − σq+1) /2
· σq+1

σq+1 + (σk − σq+1) /4
+

(σk − σq+1) /4

σq+1 + (σk − σq+1) /2
· ε

≤max

(
σq+1

σq+1 + (σk − σq+1) /4
, ε

)
,

where the last inequality is due to that weighted mean is no larger than the maximum of two terms.
Then we further have

log(1/ρ) ≥ log

[
min

(
σq+1 + (σk − σq+1)/4

σq+1
,
1

ε

)]
≥ min

(
log

σk + 3σq+1

4σq+1
, 1

)
≥min

(
1− 4σq+1

σk + 3σq+1
, 1

)
= 1− 4σq+1

σk + 3σq+1
=

σk − σq+1

σk + 3σq+1

where the last inequality results from log
σk+3σq+1

4σq+1
≥ 1− 4σq+1

σk+3σq+1
. Subsequently, log(g0/ε)/ log(1/ρ)

can be upper bounded as

log (g0/ε)

log (1/ρ)
= O

(
log (tan θq (Uq,X0) /ε)

(σk − σq+1)/(σk + 3σq+1)

)
= O

(
σk

σk − σq+1
log

(
τd

ε

))
,

where we use the fact that g0 ≤ h0 ≤ tan θq (Uq,X0) and the term 3σq+1 is absorbed to σk.

2.2. Gap-independent bounds

We lead a slight astray here to consider gap-independent bounds for the noisy power method, which
is a straightforward application of our derived gap-dependent bounds in Theorem 2.2. It is clear that
the angle sin θk(Uk,XL) = ‖(I−XLX>L )Uk‖2 cannot be gap-free, because the top-k eigen-space
Uk is ill-defined when the spectral gap (σk−σk+1) or (σk−σq+1) is small. On the other hand, it is
possible to derive gap-independent bounds for the approximation error ‖A −XLX>LA‖2 because
XL does not need to be close to Uk to achieve good approximation of the original data matrix A.
This motivates Hardt and Price to present the following conjecture on gap-independent bounds of
noisy power method:

Conjecture 2.2 (Hardt and Price (2014)) 2 Fix ε ∈ (0, 1), p ≥ 2k and suppose G` satisfies

‖G`‖2 = O(εσk+1), ‖U>k G`‖2 = O
(
εσk+1

√
k/d
)

(5)

for all iterations ` = 1, · · · , L. Then with high probability, after L = O( log d
ε ) iterations we have

‖A−XLX>LA‖2 ≤ (1 +O(ε))‖A−Ak‖2 = (1 +O(ε))σk+1.

2. We rephrase the original conjecture to make ε not scale with singular values.
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Built upon the gap-dependent bound we derived in the previous section and a recent technique
introduced in (Musco and Musco, 2015) for the analysis of block Lanczos methods, we are able to
prove the following theorem that partially solves Conjecture 2.2.

Theorem 2.3 Fix 0 < ε < 1 and suppose the noise matrix satisfies

‖G`‖2 = O
(
ε2σk+1

)
and

∥∥∥U>k G`

∥∥∥
2

= O

(
ε2
(√
p−
√
k − 1

)
σk+1

τ
√
d

)

for some constant τ > 0. Then after

L = Θ

(
1

ε
log

(
τd

ε

))
iterations, with probability at least 1− τ−Ω(p+1−q) − e−Ω(d), we have∥∥∥A−XLX>LA

∥∥∥
2
≤ (1 + ε) ‖A−Ak‖2 = (1 + ε)σk+1.

The major difference between Theorem 2.3 and its targeted Conjecture 2.2 is an extra O(ε)
term in the noise bound of both ‖G`‖2 and ‖U>k G`‖2. Whether such a gap can be closed remains
an important open question. The main idea of the proof is to find m = max0≤i≤k{σi − σk+1 ≥
εσk+1} and apply Theorem 2.2 with m as the new targeted rank and k as the intermediate rank q.
A complete proof is deferred to Appendix B. We notice that there are recent works on eigengap
independent bound for other numerical methods, such as stochastic gradient decent, which may
achieve even better result on specific problem such as low rank least-square problem (Sa et al.,
2015) and PCA (Shamir, 2015). However, those analysis could not be applied to the noisy power
method framework and thus we deem such studies orthogonal to ours.

3. Application to distributed private PCA

Our main result can readily lead to improvement of several downstream applications, which will
be highlighted in the this section and next. Specifically, we will discuss the benefit brought to
distributed private PCA setting in this section, and memory-efficient streaming PCA in the next.

3.1. The model

In our distributed private PCA model there are s ≥ 1 computing nodes, each storing a positive
semi-definite d× d matrix A(i). A(i) can be viewed as the sample covariance matrix of data points
stored on node i. There is also a central computing node, with no data stored. The objective is to
approximately compute the top-k eigen-space Uk of the aggregated data matrix A =

∑s
i=1 A(i)

without leaking information of each data matrix A(1), · · · ,A(s). Each of the s computing nodes can
and only can communicate with the central node via a public channel, where all bits communicated
are public to the other nodes as well as any malicious party. We are interested in algorithms that
meet the following formal guarantees:

9
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Privacy guarantee We adopt the concept of (ε, δ)-differential privacy proposed in (Dwork et al.,
2006). Fix privacy parameters ε, δ ∈ (0, 1). Let D be all bits communicated via the public channels
between the s computing nodes and the central node. For every i ∈ {1, · · · , s} and all A(i)′ that
differs from A(i) in at most one entry with absolute difference at most 1, the following holds

Pr
[
D ∈ D|A(i),A(−i)

]
≤ eε Pr

[
D ∈ D|A(i)′ ,A(−i)

]
+ δ, (6)

where A(−i) = (A(1), · · · ,A(i−1),A(i+1), · · · ,A(s)) and D is any measurable set of D bits com-
municated.

Utility guarantee Suppose XL is the d× p dimensional output matrix. It is required that

sin θk(Uk,XL) = ‖(I−XLX>L )Uk‖2 ≤ ε

with probability at least 0.9, where ε characterizes the error level and Uk is the top-k eigen-space
of the aggregated data matrix A = A(1) + · · ·+ A(s).

Communication guarantee The total amount of bits communicated between the s computing
nodes and the central node is constrained. More specifically, we assume only M real numbers can
be communicated via the public channels.

The model we considered is very general and reduces to several existing models of private or
communication constrained PCA as special cases. Below we give two such examples that were
analyzed in prior literature.

Remark 3.1 (Reduction from private PCA) Setting s = 1 in our distributed private PCA model
we obtain the private PCA model previously considered in (Hardt and Price, 2014; Hardt and Roth,
2013), 3 where neighboring data matrices differ by one entry with bounded absolute difference.

Remark 3.2 (Reduction from distributed PCA) Setting ε → ∞ and δ = 0 we obtain the dis-
tributed PCA model previously considered in (Balcan et al., 2014), where columns (data points) are
split and stored separately on different computing nodes.

3.2. Algorithm and analysis

We say an algorithm solves the (ε, δ, ε,M)-distributed private PCA problem if it satisfies all three
guarantees mentioned in Sec. 3.1 with corresponding parameters. Algorithm 2 describes the idea of
executing the noisy power method with Gaussian noise in a distributed manner.

The following theorem shows that Algorithm 2 solves the (ε, δ, ε,M)-distributed private PCA
problem with detailed characterization of the utility parameter ε and communication complexityM .
Its proof is deferred to Appendix C.

Theorem 3.1 (Distributed private PCA) Let s be the number of nodes and A(1), · · · ,A(s) ∈
Rd×d be data matrices stored separately on the s nodes. Fix target rank k, intermediate rank
q ≥ k and iteration rank p with 2q ≤ p ≤ d. Suppose the number of iterations L is set as

3. The s = 1 case is actually harder than models considered in (Hardt and Price, 2014; Hardt and Roth, 2013) in that
intermediate steps of noisy power method are released to the public as well. However this does not invalidate the
analysis of noisy power method based private PCA algorithms because of the privacy composition rule.

10
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Algorithm 2: Distributed private PCA via distributed noisy power method
Data: distributedly stored data matrices A(1), · · · ,A(s) ∈ Rd×d, number of iterations L, target

rank k, iteration rank p ≥ k, private parameters ε, δ.
Result: approximated eigen-space XL ∈ Rd×p, with orthonormal columns.
Initialization: orthonormal X0 ∈ Rd×p by QR decomposition on a random Gaussian matrix G0;
noise variance parameter ν = 4ε−1

√
pL log(1/δ);

for ` = 1 to L do
1. The central node broadcasts X`−1 to all s computing nodes;
2. Computing node i computes Y

(i)
` = A(i)X`−1 + G

(i)
` with G

(i)
` ∼ N (0, ‖X`−1‖2∞ν2)d×p

and sends Y
(i)
` back to the central node;

3. The central node computes Y` =
∑s

i=1 Y
(i)
` and QR factorization Y` = X`R`.

end

L = Θ( σk
σk−σq+1

log(d)). Let ε, δ ∈ (0, 1) be privacy parameters. Then Algorithm 2 solves the
(ε, δ, ε,M)-distributed PCA problem with

ε = O

(
ν
√
µ(A)s log d logL

σk − σq+1

)
and M = O(spdL) = O

(
σk

σk − σq+1
spd log d

)
.

Here assuming conditions in Theorem 2.2 are satisfied, ν = ε−1
√

4pL log(1/δ) and µ(A) is the in-
coherence (Hardt and Roth, 2013) of the aggregate data matrix A =

∑s
i=1 A(i); more specifically,

µ(A) = d‖U‖∞ where A = UΛU> is the eigen-decomposition of A.

It is somewhat difficult to evaluate the results obtained in Theorem 3.1 because our work, to our
knowledge, is the first to consider distributed private PCA with the public channel communication
model. Nevertheless, on the two special cases of private PCA in Remark 3.1 and distributed PCA
in Remark 3.2, our result does significantly improve existing analysis. More specifically, we have
the following two corollaries based on Theorem 3.1 and Theorem 2.2.

Corollary 3.1 (Improved private PCA) For the case of s = 1 and 2p ≤ q ≤ d, Algorithm 2 is
(ε, δ)-differentially private and XL satisfies

‖(I−XLX>L )Uk‖2 ≤ ε = O

(
ν
√
µ(A) log d logL

σk − σq+1

)

with probability at least 0.9. Here Uk is the top-k eigen-space of input data matrix A ∈ Rd×d.

Corollary 3.2 (Improved distributed PCA) Fix error tolerance parameter ε ∈ (0, 1) and set ν =
0, L = Θ( σk

σk−σq+1
log(d/ε)) in Algorithm 2. We then have with high probability,

‖(I−XLX>L )Uk‖2 ≤ ε.

Here Uk is the top-k eigen-space of the aggregated matrix A =
∑s

i=1 A(i).

11
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The proofs of Corollary 3.1 and 3.2 are simple and deferred to Appendix C. We now compare them
with existing results in the literature. For private PCA, our bound has better spectral-gap depen-

dency compared to the O(
ν
√
µ(A) log d logL

σk−σk−1
) bound obtained in (Hardt and Price, 2014). For dis-

tributed PCA, our bound achieves an exponential improvement over the O(spd/ε) communication
complexity bound obtained in (Balcan et al., 2014). 4

4. Application to memory-efficient streaming PCA

In the streaming PCA setting a computing machine receives a stream of samples z1, · · · zn ∈ Rd
drawn i.i.d from an unknown underlying distribution D. The objective is to compute the leading
k eigenvectors of the population covariance matrix Ez∼D[zz>] with memory space constrained to
the output size O(kd). (Mitliagkas et al., 2013) gave an algorithm for this problem based on the
noisy power method. Algorithm 3 gives the details.

Algorithm 3: Memory-efficient Streaming PCA (Mitliagkas et al., 2013)
Data: data stream z1, · · · , zn

i.i.d.∼ D, target rank k, iteration rank p ≥ k, number of iterations L.
Result: approximated eigen-space XL ∈ Rd×p, with orthonormal columns.
Initialization: uniformly sampled orthonormal matrix X0 ∈ Rd×p; T = bn/Lc;
for ` = 1 to L do

Power update: Y` = A`X`−1, where A` =
∑`T

i=(`−1)T+1 ziz
>
i ;

QR factorization: Y` = X`R`, where X` consists of orthonormal columns.
end

(Hardt and Price, 2014) are among the first ones that analyze Algorithm 3 for a broad class of
distributions D based on their analysis of the noisy power method. More specifically, (Hardt and
Price, 2014) analyzed a family of distributions that have fast tail decay and proved gap-dependent
sample complexity bounds for the memory-efficient streaming PCA algorithm.

Definition 4.1 ((B, p)-round distributions, (Hardt and Price, 2014)) A distributionD over Rd is
(B, p)− round if for every p-dimension projection Π and all t ≥ 1, we have that

max

{
Pr
z∼D

[‖z‖2 ≥ t] , Pr
z∼D

[
‖Πz‖2 ≥ t

√
Bp/d

]}
≤ exp(−t).

Theorem 4.1 ((Hardt and Price, 2014)) Suppose D is a (B, p)-round distribution over Rd. Let
σ1 ≥ · · · ≥ σd ≥ 0 be the singular values of the population covariance matrix Ez∼D[zz>]. If
Algorithm 3 is run with L = Θ( σk

σk−σk+1
log(d/ε)) and n satisfies 5

n = Ω̃

(
σkB

2p log2 d

(σk − σk+1)3dε2

)
,

then with probability at least 0.9 we have that ‖(I − XLX>L )Uk‖2 ≤ ε, where Uk is the top-k
eigen-space of Ez∼D[zz>].

4. Lemma 8 of Balcan et al. (2014) gives a communication upper bound that depends on all singular values bigger than
k. It is not obvious which bound is better, but in the worst case, their bound is still linear in 1

ε
.

5. In the Ω̃(·) notation we omit poly-logarithmic terms.
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Recently, (Li et al., 2016) proposed a modified power method that achieves a logarithmic sample
complexity improvement with respect to 1/ε. Nevertheless, both bounds in (Hardt and Price, 2014)
and (Li et al., 2016) depend on the consecutive spectral gap (σk−σk+1), which could be very small
for real-world data distributions. We are also aware of some recent results directly on incremen-
tal (Balsubramani et al., 2013) or streaming PCA (Jain et al., 2016), whose analysis, however, seem
not easy to be extended to the noise power method setting. Built upon our analysis for the noisy
power method, we obtain the following result for streaming PCA with improved gap dependencies:

Theorem 4.2 Fix k ≤ q ≤ p ≤ d. Suppose D is a (B, p)-round distribution over Rd. Let σ1 ≥
· · · ≥ σd ≥ 0 be the singular values of the population covariance matrix Ez∼D[zz>]. If Algorithm
3 is run with L = Θ( σk

σk−σq+1
log(d/ε)) and n satisfies

n = Ω̃

(
σkB

2p log2 d

(σk − σq+1)3dε2

)
,

then with probability at least 0.9 we have that ‖(I−XLX>L )Uk‖2 ≤ ε.

Proof Note that Algorithm 3 is a direct application of noisy power method with G` = (A−A`) X`−1,
where A = Ez∼D[zz>] is the covariance matrix of the population distribution of interest. By
Lemma 3.5 of (Hardt and Price, 2014), we have that

T = Ω̃

(
B2p log (d)

ε2 (σk − σq+1)2

)
,

is sufficient to guarantee that G` satisfy the conditions in Theorem 2.2 with high probability. There-
fore, in total we need n = LT = Ω̃( σkB

2p log2 d
(σk−σq+1)3dε2

) data points.

5. Conclusions and Future Work

In this paper we give a novel analysis of spectral gap dependency for noisy power method, which
partially solves a conjecture raised in (Hardt and Price, 2014) with additional mild conditions. As a
by product, we derive a spectral gap independent bound which partially solved another conjecture
in (Hardt and Price, 2014). Furthermore, our analysis directly leads to improved utility guarantees
and sample complexity for downstream applications such as distributed PCA, private PCA and
streaming PCA problems.

To completely solve the two conjectures in (Hardt and Price, 2014), we need a finer robustness
analysis of Up−k space. (Wang et al., 2015) gave a related analysis, but only for the noiseless case.
Potentially, we may define a new function (like Eq. (3) in our case) to characterize the convergence
behavior, and show it shrinks multiplicatively at each iteration.

In parallel to power method based algorithms, Krylov iteration is another method shown to
converge faster in the noiseless case (Musco and Musco, 2015). It is also interesting to give a noise
tolerance analysis for Krylov iteration and apply it to downstream applications.
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Appendix A. Proofs of technical lemmas in Sec. 2.1

Lemma A.1 (Lemma 2.1) If the noise matrix at each iteration satisfies

‖G`‖2 ≤ cε (σk − σq+1) ,
∥∥∥U>q G`

∥∥∥
2
≤ c ·min{ε (σk − σq+1) cos θq(Uq,X`), σq cos θq(Uq,X`)},

for some sufficiently small absolute constant 0 < c < 1, define

ρ :=
σq+1 + Cε (σk − σq+1)

σk
.

we then have

h`+1 −
Cε (σk − σq+1)

(1− ρ)σk
≤ ρ

(
h` −

Cε (σk − σq+1)

(1− ρ)σk

)
,

for some sufficiently small global constant 0 < C < 1.

Proof First notice that

U>q (AX` + G`) R−1
`+1

(
R`+1

(
U>q (AX` + G`)

)†)
= Iq×q.

Therefore, the pseudo-inverse of U>q (AX` + G`) R−1
`+1 is R`+1

(
U>q (AX` + G`)

)†. We can
then write out h`+1 explicitly:

h`+1 =

∥∥∥∥U>d−qX`+1

(
U>q X`+1

)†(Ik×k
0

)∥∥∥∥
2

=

∥∥∥∥U>d−q (AX` + G`) R−1
`+1

(
U>q (AX` + G`) R−1

`+1

)†(Ik×k
0

)∥∥∥∥
2

=

∥∥∥∥U>d−q (AX` + G`)
(
U>q (AX` + G`)

)†(Ik×k
0

)∥∥∥∥
2

15



BALCAN DU WANG YU

=

∥∥∥∥(Σd−qU
>
d−qX` + U>d−qG`

)(
ΣpU

>
q X` + UqG`

)†(Ik×k
0

)∥∥∥∥
2

=

∥∥∥∥(Σd−qU
>
d−qX` + U>d−qG`

)(
U>q X` + Σ−1

q UqG`

)†(Σ−1
k

0

)∥∥∥∥
2

.

Now we focus on the pseudo-inverse in the above expression. Our analysis relies on the following
singular value decomposition (SVD) of U>q X`:

U>q X` = ŨΣ̃Ṽ> ∈ Rp×q.

For simplicity, define

P̃ = ŨΣ̃.

Subsequently, we have that

U>q X` = P̃Ṽ> and X>` UqP̃
−> = Ṽ.

By definition of pseudo-inverse, we have(
U>q X` + Σ−1

q U>q G`

)†
=
(
U>q X` + Σ−1

q U>q G`

)> [(
U>q X` + Σ−1

q U>q G`

)(
U>q X` + Σ−1

q U>q G`

)>]−1

.

The inversion in the above expression can be related to our assumptions of noise:[(
U>q X` + Σ−1

q U>q G`

)(
U>q X` + Σ−1

q U>q G`

)>]−1

=
[(

P̃Ṽ> + ΣqU
>
q G`

)(
ṼP̃> + G>` UqΣ

−1
q

)]−1

=P̃−>
[(

Ṽ> + P̃−1Σ−1
q U>q G`

)(
Ṽ + G>` UqΣ

−1
q P̃−>

)]−1
P̃−1

=P̃−>
[
I + Ṽ>G>` UqΣ

−1
q P̃−> + P̃−1Σ−1

q U>q G`Ṽ + P̃−1Σ−1
q U>q G`G

>
` UqΣ

−1
q P̃−>

]−1
P̃−1

=P̃−>
(
I− (I + Y)−1 Y

)
P̃−1,

where Y = Ṽ>G>` UqΣ
−1
q P̃−> + P̃−1Σ−1

q U>q G`Ṽ + P̃−1Σ−1
q U>q G`G

>
` UqΣ

−1
q P̃−> and the

last equation is by Woodbury’s identity. Based on our noise assumptions, we can bound Y as

‖Y‖2 ≤ 2

∥∥U>q G`

∥∥
2

σqσmin

(
U>q X`

) +

∥∥U>q G`

∥∥2

2

σ2
qσ

2
min

(
U>q X`

) ≤ c1 min

{
ε (σk − σq+1)

σq
, 1

}
, (7)

for some constant 0 < c1 < 1. Subsequently, we have that∥∥∥(I + Y)−1 Y
∥∥∥

2
≤

‖Y‖2
1− ‖Y‖2

≤ c2
ε (σk − σq+1)

σq
, (8)
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for some constant 0 < c2 < 1. Applying triangle inequality we obtain upper bounds on h`+1:

h`+1 ≤
∥∥∥∥Σd−qU

>
d−qX`

(
U>q X` + Σ−1

q U>q G`

)†(Σ−1
k

0

)∥∥∥∥
2

+

∥∥∥∥Ud−qG`

(
U>q X` + Σ−1

q U>q G`

)†(Σ−1
k

0

)∥∥∥∥
2

.

We next bound the two terms in the right-hand side of the above inequality separately. For the first
term, we have that∥∥∥∥Σd−qU

>
d−qX`

(
U>q X` + Σ−1

q U>q G`

)†(Σ−1
k

0

)∥∥∥∥
2

=

∥∥∥∥Σd−qU
>
d−qX`

[(
U>q X`

)†
+ G>` UqΣ

−1
q P̃−>P̃−1

+
(
U>q X`

)>
P̃−> (I + Y)−1 YP̃−1 + G>` UqΣqP̃

−> (I + Y)−1 YP̃−1

(
Σ−1
k

0

)]∥∥∥∥
2

≤ 1

σk

(
σq+1h` +

c1σq+1ε (σk − σq+1)

σq
(1 + h`) +

c2σq+1ε (σk − σq+1)

σq
(1 + h`)

+
c1σq+1ε (σk − σq+1)

σq

c2ε (σk − σq+1)

σq
(1 + h`)

)
≤σq+1 + c4ε (σk − σq+1)

σk
h` +

c4ε (σk − σq+1)

σk
,

for some constant 0 < c4 < 1. Here the second inequality is due to Eq. (7,8) and Lemma A.2,
Similarly, for the second term related to Ud−qG` we have that∥∥∥∥Ud−qG`

(
U>q X` + Σ−1

q U>q G`

)†(Ik×k
0

)∥∥∥∥
2

≤ c5ε (σk − σq+1)

σk
h` +

c5ε (σk − σq+1)

σk
,

for some constant 0 < c5 < 1. Merging these two bounds we arrive at our desired result.

Lemma A.2 ∥∥∥∥P̃−1

(
Ik×k

0

)∥∥∥∥
2

≤ 1 + h`.

Proof∥∥∥∥P̃−1

(
Ik×k

0

)∥∥∥∥
2

=

∥∥∥∥(ŨΣ̃
)−1

(
Ik×k

0

)∥∥∥∥
2

=

∥∥∥∥Σ̃−1Ũ>
(

Ik×k
0

)∥∥∥∥
2

=

∥∥∥∥Ṽ>ṼΣ̃−1Ũ

(
Ik×k

0

)∥∥∥∥
2

≤
∥∥∥∥ṼΣ̃−1Ũ

(
Ik×k

0

)∥∥∥∥
2

=

∥∥∥∥(U>q X>`

)†(Ik×k
0

)∥∥∥∥
2

=

∥∥∥∥X>` X`

(
U>1 Xl

)†(Ik×k
0

)∥∥∥∥
2

≤
∥∥∥∥X`

(
U>1 Xl

)†(Ik×k
0

)∥∥∥∥
2
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=

∥∥∥∥(UqU
>
q + Ud−qU

>
d−q

)
X`

(
U>1 Xl

)†(Ik×k
0

)∥∥∥∥
2

≤ 1 +

∥∥∥∥U>2 X`

(
U>1 X`

)−1
(

Ik×k
0

)∥∥∥∥
2

= 1 + h`.

Lemma A.3 (Lemma 2.2) With all but τ−Ω(p+1−q) + e−Ω(d) probability, we have thta

h0 ≤ tan θq(Uq,X0) ≤ τ
√
d

√
p−
√
q − 1

.

Proof Notice that U>d−qX0

(
U>q X0

)†(Ik×k
0

)
is a sub-matrix of U>d−qX0

(
U>q X0

)†. Therefore,

h0 =

∥∥∥∥U>d−qX0

(
U>q X0

)†(Ik×k
0

)∥∥∥∥
2

≤
∥∥∥∥U>d−qX0

(
U>q X0

)†∥∥∥∥
2

= tan θq (Uq,X0) .

By X0 is the column space of a d × p random Gaussian matrix, Lemma 2.5 in (Hardt and Price,
2014) yields

tan θq (Uq,X0) ≤ τ
√
d

√
p−
√
q − 1

with all but τ−Ω(p+1−q) + e−Ω(d) probability.

Lemma A.4 (Lemma 2.3) If hL ≤ ε/4 then tan θk(Uk,XL) ≤ ε.

Proof First, we write XL as

XL = UU>XL = U

(
U>q XL

U>d−qXL

)
,

where U is the orthogonal space of A. Next, consider a p × q matrix X̂ that is orthogonal to(
U>q XL

)
; that is,

(
U>q XL

)
X̂ = 0. Following the techniques introduced in (Gu, 2015; Halko

et al., 2011), we consider the following matrix:

X =
((

U>q XL

)†
X̂.
)

By definition, we then have that

XLX = U

 I 0 0
0 I 0

H1 H2 H3

 ,

18
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where

H1 =
(
U>d−qXL

)(
U>q XL

)†(Ik×k
0

)
,

H2 =
(
U>d−qXL

)(
U>q XL

)†( 0
I(q−k)×(q−k)

)
,

H3 =
(
U>d−qXL

)
X̂.

Note that ‖H1‖2 = hL by definition. Under the condition of the lemma hL ≤ ε/4, we have that
‖H1‖2 ≤ ε/4. We next consider an alternative QR decomposition of XLX:

XLX = Q̂R̂ =
(
Q̂1 Q̂2 Q̂3

)R̂11 R̂12 R̂13

R̂22 R̂23

R̂33

 .

Because the projection matrix Q̂ is unique, we have Q̂Q̂> = XLX>L . Also note that the above QR
decomposition embeds another smaller one:

U

 I
0

H1

 = Q̂1R̂11.

The projection operator orthogonal to Q̂1 can be expressed as

I− Q̂1Q̂
>
1 = UU> − Q̂1Q̂

>
1

= U

 I
0

H1

 R̂−1
11 R̂−>11

(
I 0 H>1

)
U>

= U

 I−
(
I + H>1 H1

)−1
0 −

(
I + H>1 H1

)
H>1

0 I 0

−H1

(
I + H>1 H1

)−1
0 I−H1

(
I + H>1 H1

)−1
H>1

U>,

where in the last equation we use the fact that R̂11R̂11 =
(
I + H>1 H1

)−1. The principal angle
θk(Uk,XL) can then be bounded as

sin θk (Uk,XL) =
∥∥∥(I−XLX>L

)
Uk

∥∥∥
2

=
∥∥∥(I− Q̂Q̂>

)
Uk

∥∥∥
2

≤
∥∥∥(I− Q̂1Q̂

>
1

)
Uk

∥∥∥
2

=

∥∥∥∥∥∥∥U
 I−

(
I + H>1 H1

)−1
0 −

(
I + H>1 H1

)
H>1

0 I 0

−H1

(
I + H>1 H1

)−1
0 I−H1

(
I + H>1 H1

)−1
H>1

U>Uk

∥∥∥∥∥∥∥
2
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=

∥∥∥∥∥∥∥U
 I−

(
I + H>1 H1

)−1
0 −

(
I + H>1 H1

)
H>1

0 I 0

−H1

(
I + H>1 H1

)−1
0 I−H1

(
I + H>1 H1

)−1
H>1


Ik×k

0
0


∥∥∥∥∥∥∥

2

≤
∥∥∥∥I− (I + H>1 H1

)−1
∥∥∥∥

2

+

∥∥∥∥H1

(
I + H>1 H1

)−1
∥∥∥∥

2

,

where the first inequality is due to the space projected by Q̂1Q̂
>
1 is a subspace of that by Q̂Q̂>. By

Woodbury’s identity, we have that∥∥∥∥I− (I + H>1 H1

)−1
∥∥∥∥

2

=
∥∥∥H>1 (I + H1H

>
1

)
H1

∥∥∥
2
≤ (ε/4)2

1− (ε/4)2
≤ ε/2.

For the other term, we have∥∥∥∥H1

(
I + H>1 H1

)−1
∥∥∥∥

2

≤ ε/4

1− (ε/4)2
≤ ε/2.

Combing these two inequalities, we get

sin θk (Uk,XL) ≤ ε.

The proof is then completed by noting that sin θk (Uk,XL) ≤ ε/2 yields

tan θk (Uk,XL) =
sin θk (Uk,XL)√
1− sin2 (Uk,XL)

≤ ε.

An anonymous reviewer provides an much cleaner proof for Lemma 2.3.
Proof Since for any vector w ∈ Rd, we have

∥∥w −XX>w
∥∥

2
≤ ‖w − z‖2, for any vector z ∈

Span(X) if X is an orthonormal column matrix. Thus,∥∥∥(I−X`X
>
` )Uk

∥∥∥
2
≤
∥∥∥∥Uk −X`(U

>
q X`)

†
(

Ik×k
0

)∥∥∥∥
2

=

∥∥∥∥U>q (Uk −X`(U
>
q X`)

†
(

Ik×k
0

))∥∥∥∥
2

+

∥∥∥∥U>d−q (Uk −X`(U
>
q X`)

†
(

Ik×k
0

))∥∥∥∥
2

=

∥∥∥∥U>d−qX`(U
>
q X`)

†
(

Ik×k
0

)∥∥∥∥
2

≤ ε/2.

Therefore, again

tan θk (Uk,XL) =
sin θk (Uk,XL)√
1− sin2 (Uk,XL)

≤ ε.
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Lemma A.5 Under the same assumption as Theorem 2.1, if h` ≤ ε, then∥∥∥A−X`+1X
>
`+1A

∥∥∥2

2
≤ σ2

k+1 + ε2σ2
k

Proof We consider (`+ 1)-th iteration:

Y` = AX` + G`

= U

(
ΣqU

>
q X` + U>q G`

Σd−qU
>
d−qX` + U>d−qG`.

)
We use perturbation theory for analysis. Consider the following matrix

X =
((

ΣqU
>
q X` + U>q G`

)†
X̂
)
,

where
(
ΣqU

>
q X` + U>q G`

)
X̂ = 0. We then have

Y`X = U

 I 0 0
0 I 0

H1 H2 H3

 ,

where

H1 =
(
Σd−qU

>
q X` + U>d−qG`

)(
ΣqU

>
q X` + U>q G`

)†(Ik×k
0

)
H2 =

(
Σd−qU

>
q X` + U>d−qG`

)(
ΣqU

>
q X` + U>q G`

)†( 0
I(q−k)×(q−k)

)
H3 =

(
Σd−qU

>
q X` + U>d−qG`

)
X̂.

Similar to the proof of Lemma 2.3, the reconstruction error can be bounded in terms of Hq:∥∥∥(I−X`+1X
>
`+1

)
A
∥∥∥2

2
=
∥∥∥A(I−X`+1X

>
`+1

)
A
∥∥∥

2

≤

∥∥∥∥∥∥∥Σ
 I−

(
I + H>1 H1

)−1
0 −

(
I + H>1 H1

)
H>1

0 I 0

−H1

(
I + H>1 H1

)−1
0 I−H1

(
I + H>1 H1

)−1
H>1

Σ

∥∥∥∥∥∥∥
2

.

By Proposition 8.2 of (Halko et al., 2011), we have I−
(
I + H>1 H1

)−1
0 −

(
I + H>1 H1

)
H>1

0 I 0

−H1

(
I + H>1 H1

)−1
0 I−H1

(
I + H>1 H1

)−1
H>1


4

 H>1 H1 0 −
(
I + H>1 H1

)
H>1

0 I 0

−H1

(
I + H>1 H1

)−1
0 I

 .
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Thus by Proposition 8.3 of (Halko et al., 2011),∥∥∥(I−X`+1X
>
`+1

)
A
∥∥∥2

2

≤‖Σd−k‖22 +
∥∥∥ΣkH

>
1 H1Σk

∥∥∥
2

= ‖Σd−k‖22 + ‖H1Σk‖22 .

Thus we only need to bound ‖H1Σk‖2. By definition of H1, we have

‖H1Σk‖2 =

∥∥∥∥(Σd−qU
>
q X` + U>d−qG`

)(
ΣqU

>
q X` + U>q G`

)†(Σk

0

)∥∥∥∥
2

=

∥∥∥∥(Σd−qU
>
q X` + U>d−qG`

)(
U>q X` + Σ−1

q U>q G`

)†(Ik×k
0

)∥∥∥∥
2

(9)

Notice the similar forms of Eqn. (9) and h`+1 in the proof of Lemma 2.1. ‖H1Σk‖2 can be bounded
using the exactly same argument, so based on assumption on the noise and h`, we have:

‖H1Σk‖2 = O (ε (σk − σq+1)) +O (εσq+1) = O (εσk) .

Lemma A.6 Under the same assumption as Theorem 2.1, if h` ≤ ε, then

∥∥∥A−X`+1X
>
`+1A

∥∥∥2

F
≤

d∑
i=k+1

σ2
i + ε2kσ2

k

Proof By the proof of Theorem 4.4 of (Gu, 2015), we have∥∥∥(I−X`+1X
>
`+1

)
A
∥∥∥2

F
≤ ‖Σd−k‖2F + k ‖H1Σk‖22 ,

where H1 is defined similarly as in the proof of Lemma A.5.

Lemma A.7 Fix 0 < γ < 1. If at each iteration ` the noise matrix G` satisfies

‖G`‖2 = O (γσq) and
∥∥∥U>q G`

∥∥∥
2

= O

(√
p−
√
q − 1

τ
√
d

· γσq
)
,

then for all ` = O (1/γ), the following holds with probability all but τ−Ω(p+1−q) + e−Ω(d) proba-
bility:

tan θq (Uq,X`) = O

(
τ
√
d

√
p−
√
q − 1

)
, cos θq (Uq,X`) = Ω

(√
p−
√
q − 1

τ
√
d

)
.
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Proof By Lemma 2.2, the tangent of the qth principal angle between Uq and X0 can be bounded
as

tan θq(Uq,X0) ≤ τ
√
d

√
p−
√
q − 1

(10)

with high probability. We also consider the following inequality that upper bounds tan θq(Uq,X`)
in terms of tan θq(Uq,X0):

tan θq (Uq,X`) +
c1

c1 + c3
≤
(

1 + c1γ

1− c3γ

)`(
tan θq (Uq,X0) +

c1

c1 + c3

)
. (11)

Here c1, c2, c3 > 0 are universal constants. Eq. (10) and Eq. (11) imply tan θq(Uq,X`) = O( τ
√
d√

p−
√
q−1

)

for all ` = O(1/γ) because(
1 + c1γ

1− c3γ

)`
=

(
1 +

(c1 + c3) γ

1− c3γ

) (c1+c3)γ
1−c3γ

·
(

1−c3γ
(c1+c3)γ

)
·`
≤ exp

(
1− c3γ

(c1 + c3) γ
· `
)

= O(1),

if ` = O(1/γ). cos θq(Uq,X`) can subsequently be lower bounded as

cos (Uq,X`) ≥
1

1 + tan (Uq,X`)
= Ω

(√
p−
√
q − 1

τ
√
d

)
.

The rest of the proof is dedicated to prove Eq. (11) via mathematical induction. When ` = 0,
the statement is trivially true. Suppose for Eq. (11) is true for all ` = 1, · · · , s. We want to prove
that Eq. (11) is also true for ` = s+ 1. By definition,

tan θq (Uq,X`) = min
Π∈Pp

max
‖w‖=1,Πw=w

∥∥∥U>d−qX`w
∥∥∥∥∥U>q X`w
∥∥ = max

‖w‖=1,Π?w=w

∥∥∥U>d−qX`w
∥∥∥∥∥U>q X`w
∥∥ .

HerePp denotes the set of all projection matrices on Rp and Π∗ is the projection matrix that achieves
the minimum value in the second term. We then have

tan θq (Uq,X`+1) = tan θq (Uq,AX` + G`)

= min
Π∈Pp

max
‖w‖2=1,Πw=w

∥∥∥U>d−q (AX` + G`) w
∥∥∥∥∥U>q (AX` + G`) w
∥∥

≤ max
‖w‖2=1,Π?w=w

∥∥∥Σd−qU
>
d−qX`w

∥∥∥
2

+ ‖Ud−qG`w‖2∥∥ΣqU>q X`w
∥∥

2
−
∥∥U>q G`w

∥∥
2

≤ max
‖w‖2=1,Π?w=w

σq+1

∥∥∥U>d−qX`w
∥∥∥

2
/
∥∥U>q X`w

∥∥
2

+ ‖G`‖2 /
∥∥U>q X`w

∥∥
2

σq −
∥∥U>q G`w

∥∥
2
/
∥∥U>q X`w

∥∥
2

(12)

By definition of the principal angles, we have

max
‖w‖2=1,Π?w=w

∥∥∥U>d−qX`w
∥∥∥

2
/
∥∥∥U>q X`w

∥∥∥
2

= tan (Uq,X`) ,
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max
‖w‖2=1,Π?w=w

1∥∥U>q X`w
∥∥

2

=
1

cos (Uq,X`)
≤ 1 + tan (Uq,X`) .

Also, conditions on the noise matrices G` read

‖G`‖2 =≤ c1γσq,
∥∥∥U>q G`

∥∥∥
2
≤ c3γσq cos (Uq,X`) .

Plugging these inequalities into Eq. (12), we obtain

tan (Uq,X`+1) ≤ σq+1 tan (Uq,X`) + c1γ (1 + tan (Uq,X`))

σq − c3γσq

≤
(

1 + c1γ

1− c3γ

)
tan (Uq,X`) +

c1γ

1− c3γ

≤
(

1 + c1γ

1− c3γ

)`(
tan θq (Uq,X0) +

c1

c1 + c3

)
,

where the last inequality is due to induction hypothesis placed on Eq. (11).

Corollary A.1 Fix ε = O

(
σq
σk
·min

{
1

log
(
σk
σq

) , 1
log(τd)

})
. Suppose at each iteration the noise

matrix G` satisfies

‖G`‖2 = O (ε (σk − σq+1)) and
∥∥∥U>q G`

∥∥∥ = O

(√
p−
√
q − 1

τ
√
d

·min{ε (σk − σq+1) , σq}
)
,

then for all ` = O
(

σk
σk−σq+1

log
(
τd
ε

))
the following holds with all but τ−Ω(p+1−q) + e−Ω(d) prob-

ability:

tan θq (Uq,X`) = O

(
τ
√
d

√
p−
√
q − 1

)
, cos θq (Uq,X`) = Ω

(√
p−
√
q − 1

τ
√
d

)
.

Proof Apply Lemma A.7 with γ = min{ ε(σk−σq+1)
σq

, 1}.

Appendix B. Proof of Theorem 2.3

Proof Definem = argmaxi{σi−σk+1 ≥ εσk+1}. Ifm = 0, then we are done since
∥∥A−XLX>LA

∥∥
2
≤

‖A‖2 ≤ σ1 ≤ (1 + ε)σk+1 = (1 + ε) ‖A−Ak‖2. Otherwise, consider the case that our target
rank is m, and the leading rank-k subspace. By our definition on m and noise conditions, we have

‖G‖2 = O
(
ε2σk+1

)
= O (ε (σm − σk+1)) ;∥∥∥U>k G

∥∥∥
2

= O

(
ε2
(√
p−
√
k − 1

)
σk+1

τ
√
d

)
= O

(
ε
(√
p−
√
k − 1

)
(σm − σk+1)

τ
√
d

)
.
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Next, by Lemma B.1, for all ` = O
(

1
ε2

)
the cosine principal angle cos θq(Uq,X`) can be lower

bounded as

cos (Uk,X`) = Ω

(√
p−
√
k − 1

τ
√
d

)
.

Note also that σm
σm−σk+1

log
(
τd
ε

)
. 1

ε log
(
τd
ε

)
. L.

Using the same argument as in the proof of Lemma A.5, we have∥∥∥A−XL+1X
>
L+1A

∥∥∥2

2
≤ ‖Σd−m‖22 + ‖H1Σm‖22 ,

where

H1 =
(
Σd−kU

>
k XL + U>d−mGL

)(
ΣkU

>
k XL + U>k GL

)†(Im×m
0

)
.

Again by the same argument in the proof of 2.1, ‖H1Σm‖2 ≤ εσk+1. Lastly, by the definition of m
we obtain the desired result.

Lemma B.1 Fix ε = O (1/log (τd)). If at each iteration the noise matrix G` satisfies

‖G`‖2 = O
(
ε2σk

)
and

∥∥∥U>q G`

∥∥∥ = O

(√
p−
√
q − 1

τ
√
d

· ε2σk
)
,

then for all ` = O
(
1/ε2

)
the following holds with all but τ−Ω(p+1−q) + e−Ω(d) probability:

tan θq (Uq,X`) = O

(
τ
√
d

√
p−
√
q − 1

)
, cos θq (Uq,X`) = Ω

(√
p−
√
q − 1

τ
√
d

)
.

Proof Apply Lemma A.7 with p = k and γ = ε2.

Appendix C. Proof of results for distributed private PCA

Theorem C.1 (Distributed private PCA, Theorem 3.1) Let s be the number of computing nodes
and A(1), · · · ,A(s) ∈ Rd×d be data matrices stored separately on the s nodes. Fix target rank k,
intermediate rank q ≥ k and iteration rank p with 2q ≤ p ≤ d. Suppose the number of iterations L
is set as L = Θ( σk

σk−σq+1
log(d)). Let ε, δ ∈ (0, 1) be privacy parameters. Then Algorithm 2 solves

the (ε, δ, ε,M)-distributed PCA problem with

ε = O

(
ν
√
µ(A)s log d logL

σk − σq+1

)
and M = O(spdL) = O

(
σk

σk − σq+1
spd log d

)
.

Here assuming conditions in Theorem 2.2 are satisfied, ν = ε−1
√

4pL log(1/δ) and µ(A) is the in-
coherence (Hardt and Roth, 2013) of the aggregate data matrix A =

∑s
i=1 A(i); more specifically,

µ(A) = d‖U‖∞ where A = UΛU> is the eigen-decomposition of A.

Proof We prove privacy, utility and communication guarantees of Algorithm 2 separately.
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Privacy guarantee By Claim 4.2 in (Hardt and Price, 2014), Algorithm 2 satisfies (ε, δ)-differential
privacy with respect to data matrix A(i) on each computing node i. Because information of each
data matrix A(i) is only released by the corresponding computing node i via the public communi-
cation channel, we immediately have that Algorithm 2 is (ε, δ)-differentially private in terms of the
definition in Eq. (6).

Utility guarantee Let G` = G
(1)
` +· · ·+G

(s)
` . Because G

(1)
` , · · · ,G(s)

`
i.i.d.∼ N (0, ‖X`−1‖2∞ν2)d×p,

we have that G` ∼ N (0, ‖X`−1‖2∞ν̃2)d×p for ν̃ = ν
√
s. Properties of Gaussian matrices (e.g.,

Lemma A.2 in (Hardt and Price, 2014)) show that with high probability G` satisfies the noise con-
ditions in Theorem 2.2 with ε = νmax` ‖X`‖∞

√
ds logL

σk−σq+1
. In addition, Theorem 4.9 in (Hardt and

Price, 2014) shows that max` ‖X`‖2∞ = O(µ(A) log d/d) with high probability. The utility guar-
antee then holds by applying Theorem 2.2 with bounds on ε and max` ‖X`‖2∞.

Communication guarantee For each iteration `, the central node broadcasts X`−1 to each com-
puting node and receives A

(i)
` X`−1 + G

(i)
` from computing node i, for each i = 1, · · · , s. Both

matrices communicated on the public channel between the central node and each computing node
is d × p, which yields a per-iteration communication complexity of O(spd). As a result, the to-
tal amount of communication is O(spdL), where L is the number of iterations carried out in
Algorithm 2. Because L is set as L = Θ( σk

σk−σq+1
log d), we have that M = O(spdL) =

O
(

σk
σk−σq+1

spd log d
)
.

Corollary C.1 (Corollary 3.1) For the case of s = 1 and 2p ≤ q ≤ d, Algorithm 2 is (ε, δ)-
differentially private and XL satisfies

‖(I−XLX>L )Uk‖2 ≤ ε = O

(
ν
√
µ(A) log d logL

σk − σq+1

)

with probability at least 0.9. Here Uk is the top-k eigen-space of input data matrix A ∈ Rd×d.

Proof Setting s = 1 in Theorem 3.1 we immediately get this corollary.

Corollary C.2 (Corollary 3.2) Fix error tolerance parameter ε ∈ (0, 1) and set ν = 0, L =
Θ( σk

σk−σq+1
log(d/ε)) in Algorithm 2. We then have that with probability 1

‖(I−XLX>L )Uk‖2 ≤ ε.

Here Uk is the top-k eigen-space of the aggregated matrix A =
∑s

i=1 A(i).

Proof Because ν = 0, we are not adding any amount of noise in Algorithm 2; that is, G` = 0. Ap-
plying Theorem 2.2 with G` = 0 and L = Θ( σk

σk−σq+1
log(d/ε)) we have ‖(I−XLX>L )Uk‖2 ≤ ε

with high probability.
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