
JMLR: Workshop and Conference Proceedings vol 49:1–23, 2016

Pure Exploration of Multi-armed Bandit Under Matroid Constraints
[Extended Abstract]∗
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Abstract

We study the pure exploration problem subject to a matroid constraint (BEST-BASIS) in a stochastic
multi-armed bandit game. In a BEST-BASIS instance, we are given n stochastic arms with unknown
reward distributions, as well as a matroidM over the arms. Let the weight of an arm be the mean of
its reward distribution. Our goal is to identify a basis ofMwith the maximum total weight, using as
few samples as possible. The problem is a significant generalization of the best arm identification
problem and the top-k arm identification problem, which have attracted significant attentions in
recent years. We study both the exact and PAC versions of BEST-BASIS, and provide algorithms
with nearly-optimal sample complexities for these versions. Our results generalize and/or improve
on several previous results for the top-k arm identification problem and the combinatorial pure
exploration problem when the combinatorial constraint is a matroid.
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1. Introduction

The stochastic multi-armed bandit is a classical model for characterizing the exploration-exploitation
tradeoff in many decision-making problems in stochastic environments. The popular objectives in-
clude maximizing the cumulative sum of rewards, or minimizing the cumulative regret (see e.g., Cesa-
Bianchi and Lugosi (2006); Bubeck and Cesa-Bianchi (2012)). However, in many application do-
mains, the exploration phase and the evaluation phase are separated. The decision-maker can per-
form a pure-exploration phase to identify an optimal (or nearly optimal) solution, and then keep
exploiting this solution. Such problems arise in application domains such as medical trials Rob-
bins (1985); Audibert and Bubeck (2010), communication network Audibert and Bubeck (2010),
crowdsourcing Zhou et al. (2014); Cao et al. (2015). In particular, the problem of identifying the
single best arm in a stochastic bandit game has been has received considerable attention in recent
years Audibert and Bubeck (2010); Even-Dar et al. (2006); Mannor and Tsitsiklis (2004); Jamieson
et al. (2014); Karnin et al. (2013); Chen and Li (2015). The generalization to identifying the top-k
arms has also been studied extensively Gabillon et al. (2012); Kalyanakrishnan et al. (2012); Kauf-
mann and Kalyanakrishnan (2013); Kaufmann et al. (2014); Zhou et al. (2014); Cao et al. (2015).
Since these problems are closely related to the problem we study in the paper, we formally define it
as follows.
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Problem 1 (BEST-k-ARM) There are n unknown distributions D1,D2, . . . ,Dn, all supported on
[0, 1]. Let the mean of Di be µi. At each step we choose a distribution and get an i.i.d. sample
from the distribution. Our goal is to find the k distributions with the largest means (exactly or
approximately), with probability at least 1− δ, using as few samples as possible.

The distributions above are also called arms in the multi-armed bandit literature. We denote the
kth largest mean by µ[k]. In addition, we assume µ[k] and µ[k+1] are different (so the optimal top-k
answer is unique).

In certain applications such as online ad allocations, there is a natural combinatorial constraint over
the set of arms, and we can only choose a subset of arms subject to the given constraint (BEST-k-
ARM simply involves a cardinality constraint). Motivated by such applications, Chen et al. (2014)
introduced the combinatrial pure exploration problem. They considered the general setting with
arbitrary combinatorial constraint, and propose several algorithms. In this paper, we consider the
same problem under a matroid constraint, one of the most popular combinatorial constraint. The
matroid constraint was also discuss in length in Chen et al. (2014).

The notion of matroid (see Section 2 for the definition) is an abstraction of many combinatorial
structures, including the sets of linearly independent vectors in a given set of vectors, the sets of
spanning forests in an undirected graph and many others. We note that BEST-k-ARM is a special
case of a matroid constraint, since all subsets of size of at most k form a uniform matroid. Now, we
formally define the matroid pure exploration bandit problem as follows.

Definition 1.1 (BEST-BASIS) In a BEST-BASIS instance S = (S,M), we are given a set S of n
arms. Each arm a ∈ S is associated with an unknown reward distribution Da, supported on [0, 1],
with mean µa (which is unknown as well). Without loss of generality, we assume all arms have
distinct means.

We are also given a matroid M = (S, I) with ground set identified with the set S of arms. The
weight function µ : S → R+ simply sets the weight of a to be the mean of Da; i.e., µ(a) = µa for
all a ∈ S. The weights are initially unknown, and are only learned by sampling arms. Our goal is
to find a basis (a.k.a. a maximal independent set) of the matroid with the maximum total weight/cost
(exactly or approximately), with probability at least 1− δ, using as few samples as possible.

Besides including BEST-k-ARM as a special case, the BEST-BASIS problem also captures the fol-
lowing natural problems, motivated by various applications.

1. Suppose we have m disjoint groups G1, . . . , Gm of arms, and we would like to pick the best
ki arms from group Gi (kis are given integers). This is exact the best-basis problem for a
Partition Matroid. Note that PAC version of the problem is not just a disjoint collection of
best-k-arm problems.

We also note that the special case where ki = 1 has been studied in Gabillon et al. (2011);
Bubeck et al. (2012) (under the fixed budget setting). They are motivated by a clinical problem
withm subpopulations, where one would like to decide the best ki treatments from the options
available for subjects from each subpopulation.

2. Beside the above constraints for the groups, we may have an additional global constraint on
the total number of arms we can choose. This is a special case of Laminar Matroids.
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3. An application mentioned in Chen et al. (2014): Consider a network where the delay of the
links are stochastic. A network routing system wants to build a minimum spanning tree to
connect all nodes, where the weight of each edges are expected delay of that link. A spanning
tree is a basis in a Graphical Matroid.

4. Consider a set of workers and a set of tasks. Each worker is able to do only a subset of
tasks (which defines a worker-task bipartite graph). Each worker must be assigned to one
task (so we need to build a matching between the workers and the tasks) and the reward
of a task is stochastic. We would like to identify the set of tasks that can be completed by
the set of workers and have maximum total reward. The combinatorial structure (over the
subsets of tasks) is a Transversal Matroid. The problem (or variants) may find applications in
crowdsourcing or online advertisement.

There are two natural formulations of the BEST-BASIS problem: in one, we need to identify the
unique optimal basis with a certain confidence, and in some others, we can settle for an approximate
optimal basis (the PAC setting). We now formally define these problems, and present our results.

1.1. Identifying the Exact Optimal basis

Definition 1.2 (EXACT-BASIS) Given a BEST-BASIS instance S = (S,M) and a confidence level
δ > 0, the goal is to output the optimal basis ofM (one that maximizes

∑
a∈I µa) with probability

at least 1− δ, using as few samples as possible.

Without loss of generality, assume that matroidM has no isolated elements (i.e., elements that are
included in every basis) and no loops (i.e., elements that belong to no basis), since we can always
include or ignore them without affecting the solution. We use OPT(M) to denote the optimal basis
(as well as the optimal total weight) for matroid M. For a subset of elements F ⊆ S, let MF

denote the restriction ofM to F , andM/F denote the contraction ofM by F (see Definition 2.3).
Note that OPT(M/{e}) + µ(e) is the optimal cost among all bases including e.

Naturally, the sample complexity of an algorithm for EXACT-BASIS depends on the parameters of
the problem instance. In particular, we need to define the following gap parameter.

Definition 1.3 (Gap) Given a matroidM = (S, I) with cost function µ : S → R+, such that all
costs are distinct, define the gap of an element e ∈ S to be

∆M,µ
e :=

{
OPT(M)− OPT(MS\{e}) e ∈ OPT(M)

OPT(M)− (OPT(M/{e}) + µ(e)) e 6∈ OPT(M)

Intuitively, for an element e ∈ OPT(M), its gap is the loss if we do not select e, whereas for an
element e /∈ OPT(M), its gap is the loss if we are forced to select e. Since we assume that elements
have distinct weights, ∆e > 0 for all arms e. We note that Definition 1.3 is the same as the gap
definition in Chen et al. (2014) and generalizes the gaps defined for the BEST-k-ARM problem used
in Kalyanakrishnan et al. (2012) (in BEST-k-ARM, the gap of an arm e to be ∆e = µe − µ[k+1] if e
is a top-k arm, and ∆e = µ[k] − µe otherwise).

Chen et al. (2014) obtained an algorithm with sample complexity(∑
e∈S

∆−2e (ln δ−1 + lnn+ ln
∑

e∈S
∆−2e )

)
,
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when specialized to EXACT-BASIS. 1 We improve upon their result by proving the following
theorem.

Theorem 1.4 (Main Result for Exact Identification) There is an algorithm for EXACT-BASIS,
that returns the optimal basis for S, with probability at least 1− δ, and uses at most

O

(∑
e∈S

∆−2e (ln δ−1 + ln k + ln ln ∆−1e )

)
samples. Here, k = rank(M) is the size of a basis ofM.

Observe that the dependence is now on the rank of the matroid k, rather than the number of elements
n which may be much larger than k. Moreover, the dependence on ∆e is doubly logarithmic.

For the special case of the k-uniform matroid, the problem becomes the BEST-k-ARM problem, for
which the current state-of-the-art isO(

∑n
i=1 ∆−2[i] (ln δ−1+ln

∑n
i=1 ∆−2[i] )), obtained by Kalyanakr-

ishnan et al. (2012). Theorem 1.4 improves upon this result for the typical case when ln
∑n

i=1 ∆−2[i]

is larger than ln k. Theorem 1.4 also matches the recent upper bound of O(
∑n

i=2 ∆−2[i] (ln ln ∆−1[i] +

ln δ−1)) for BEST-1-ARM, due to Karnin et al. (2013) and Jamieson et al. (2014).

Chen et al. (2014) proved an Ω(
∑

e∈S ∆−2e ln δ−1) lower bound for the problem. Moreover, Kalyanakr-
ishnan et al. (2012) showed an Ω(nε−2(ln δ−1 + ln k)) lower bound for a PAC version (the EX-
PLORE-k metric, see Section 1.2) of BEST-k-ARM. Indeed, in their lower bound instances, all arms
have gap ∆e = ε. If we apply our exact algorithm on those instances, the sample complexity is
O(nε−2(ln δ−1 + ln k + ln ln ε−1)). Hence, the first two terms of our upper bound are probably
necessary in light of the above lower bounds.

1.2. The PAC setting

Next we discuss our results for the PAC setting. Several notions of approximation were used for
the special case of BEST-k-ARM, when we return a set I of k arms. Kalyanakrishnan et al. (2012)
required that the mean of every arm in I be at least µ[k] − ε (The EXPLORE-k metric). Zhou et al.
(2014) required that the average mean 1

k

∑
e∈I µe of I be at least 1

k

∑k
i=1 µ[i] − ε; we call such a

solution an average-ε-optimal solution. Finally, Cao et al. (2015) proposed a stronger metric that
required the mean of the ith arm in I be at least µ[i] − ε, for all i ∈ [k]. This notion, which we call
elementwise-ε-optimality extends to general matroids: we need that ith largest arm in our solution
is at least the ith largest mean in the optimal solution minus ε.

In this paper we introduce the stronger notion of an ε-optimal solution.

Definition 1.5 (PAC-BASIS and ε-optimality) We are given a matroid M = (S, I) with cost
function µ : S → R+. We say a basis I is ε-optimal (with respect to µ), if I is an optimal solution
for the modified cost function µI,ε, defined as follows:

µI,ε(e) =

{
µ(e) + ε for e ∈ I
µ(e) for e 6∈ I.

In other words, if we add ε to each element in I , I would become an optimal solution.

1. Their algorithm works for arbitrary combinatorial constraint. The sample complexity depends on a width parameter
of the constraint, which is roughly the number of elements needed to be exchanged from one feasible solution to
another. The width can be as large as n. For a matroid, the width is 2.
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The proof of the following proposition can be found in the appendix.

Proposition 1.6 For a BEST-BASIS instance, an ε-optimal solution is also elementwise-ε-optimal.
The converse is not necessarily true.

Theorem 1.7 (Main Result for PAC Setting) There is an algorithm for PAC-BASIS which re-
turns an ε-optimal solution for S = (S,M), with probability at least 1− δ, and uses at most

O(nε−2 · (ln k + ln δ−1))

samples, where k = rank(M).

This theorem generalizes and strengthens the results in Kalyanakrishnan et al. (2012); Cao et al.
(2015), in which the same sample complexity was obtained for BEST-k-ARM under EXPLORE-
k and elementwise-ε-optimality metrics, respectively. In fact, this sample complexity is optimal,
since an Ω(nε−2(ln k + ln δ−1)) lower bound is known for EXPLORE-k for the special case of
BEST-k-ARM, due to Kalyanakrishnan et al. (2012).

1.2.1. AVERAGE-ε-OPTIMALITY

We also consider the weaker notion of average-ε-optimality, which may suffice for certain applica-
tions. For this definition, we give another algorithm with a lower sample complexity.

Definition 1.8 (PAC-BASIS-AVG) Given a matroid M = (S, I) with cost function µ : S →
R+. Suppose k = rank(M). We say a basis I is an average-ε-optimal solution (w.r.t. µ), if:
1
k

∑
e∈I µ(e) ≥ 1

kOPT(M)− ε.

Theorem 1.9 There is an algorithm for PAC-BASIS-AVG, which can return an average-ε-optimal
solution for S, with probability at least 1− δ, and its sample complexity is at most

O
((
n · (1 + ln δ−1/k) + (ln δ−1 + k)(ln k ln ln k + ln δ−1 ln ln δ−1)

)
ε−2
)
.

In particular, when k ln δ−1 ≤ O(n0.99) and δ ≥ Ω(exp(−n0.49)), the sample complexity is

O(nε−2(1 + ln δ−1/k)).

Zhou et al. (2014) obtained matching upper and lower bounds of Ω(nε−2(1 + ln δ−1/k)) for BEST-
k-ARM under the average metric. Our result matches their result when δ is not extremely small and
k is not very close to n. Obtaining tight upper and lower bounds for all range of parameters is left
as an interesting open question. We omit the proof of Theorem 1.9 in this extended abstract. The
details can be found in the full version of the paper.

1.2.2. PRIOR AND OUR TECHNIQUES

Several prior algorithms for the PAC versions of BEST-1-ARM and BEST-k-ARM (e.g., Karnin
et al. (2013); Zhou et al. (2014); Even-Dar et al. (2002)) were elimination-based, roughly using the
following framework: In the rth round, we sample each remaining arm Qr times, 2 and eliminate
all arms whose empirical means fall below a certain threshold. This threshold can be either a

2. Typically, Qr increases exponentially with r.
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percentile, as in Even-Dar et al. (2002); Zhou et al. (2014) or an ε-optimal arm obtained by some
PAC algorithm, such as in Karnin et al. (2013). After eliminating some arms, we proceed to the next
round. Small variations to this procedure are possible, e.g., if the number of remaining arms is not
much larger than k, we can directly use the naı̈ve uniform sampling algorithm. A main difference
in prior works is in their analysis, due to the different PAC-optimality metrics. However, we cannot
easily extend this framework to either PAC-BASIS or PAC-BASIS-AVG, since it is not clear how
to eliminate even a small constant fraction of arms while ensuring that the optimal value for the
remaining set does not drop. Indeed, due to the combinatorial structure of the matroid, we cannot
perform elimination based solely on fixed thresholds.

We resolve the issue by applying a sampling-and-pruning technique developed by Karger, and used
by Karger, Klein, and Tarjan in their expected linear-time randomized algorithm for minimum s-
panning tree. Here is the high-level idea, in the context of the PAC-BASIS problem. We pick a
random subset F by including each arm independently with some small constant probability p, and
recursively find an ε/3-optimal basis I for the subset F . The key idea is that this basis I can be used
to eliminate a significant proportion of arms, while ensuring that the remaining set still contains a
desirable solution. Hence, after eliminating those arms, we can recurse on the remaining arms.
Unlike the previous algorithms which eliminate arms based on a single threshold, we perform the
elimination based on the solution I of a random subset. We feel this extension of the sampling and
pruning technique to bandit problems will find other applications.

Another popular approach for pure exploration problems is based on upper or lower confidence
bounds (UCB or LUCB) (see e.g., Kalyanakrishnan et al. (2012); Chen et al. (2014)). While being
very flexible and easy to apply, the analysis of all such bounds inevitably requires a union bound of
all rounds (which is at least n), thus incurring a log n factor, which is worse than the optimal log k
factor that we obtain.

1.3. Other Related Work

The problem of identifying the single best arm, a very special case of our problem, has been studied
extensively. For the PAC version of the problem, 3 Even-Dar et al. (2002) provided an algorithm
with sample complexity O(nε−2 · ln δ−1), which is also optimal. For the exact version, Mannor
and Tsitsiklis (2004) proved a lower bound of Ω(

∑n
i=2 ∆−2[i] ln δ−1). Farrell (1964) showed a lower

bound of Ω(∆−2[2] ln ln ∆−1[2] ) even if there are only two arms. Karnin et al. (2013) obtained an

upper bound of O(
∑n

i=2 ∆−2[i] (ln ln ∆−1[i] + ln δ−1)), matching Farrell’s lower bound for two arms.
Jamieson et al. (2014) obtained the same result using a UCB-like algorithm. Very Recently, Chen
and Li (2015) provided a new lower bound of Ω(

∑n
i=2 ∆−2[i] ln lnn) and an improved upper bound

of O
(

∆−2[2] ln ln ∆−1[2] +
∑n

i=2 ∆−2[i] ln δ−1 +
∑n

i=2 ∆−2[i] ln ln min(n,∆−1[i] )
)
.

In all aforementioned results, we require that the (PAC or exact) algorithm returns a correct answer
with probability at least 1 − δ. This is called the fixed confidence setting in the literature. Another
popular setting is the fixed budget setting, in which the total number of samples is subject to a given
budget constraint, and we would like to minimize the failure probability (see e.g., Bubeck et al.
(2013); Gabillon et al. (2012); Karnin et al. (2013); Chen et al. (2014)). Some prior work (Audibert
and Bubeck (2010); Bubeck et al. (2013); Audibert et al. (2013)) also considered the objective of

3. Since the solution only contains one arm, all different notions of PAC optimality mentioned in Section 1.2 are
equivalent.
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making the expected simple regret at most ε (i.e., 1
k (
∑k

i=1 µ[i] − E[
∑

a∈T µa]) ≤ ε), which is a
somewhat weaker objective.

There is a large body of work on minimizing the cumulative regret in online multi-armed bandit
games with various combinatorial constraints in different feedback settings (see e.g., Cesa-Bianchi
and Lugosi (2006); Bubeck and Cesa-Bianchi (2012); Cesa-Bianchi and Lugosi (2012); Audibert
et al. (2013); Chen et al. (2013) and the references therein). In an online bandit game, there are T
rounds. In the tth round, we can play a combinatorial subset Si of arms. The goal is to minimize
T
∑

a∈OPT µa −
∑T

t=1

∑
a∈St

µa. We note that it is possible to obtain an expected simple regret
of ε for BEST-BASIS, with at most O(nε−2) samples, using the semi-bandit regret bound in Au-
dibert et al. (2013). In particular, they provided an online mirror descent algorithm and showed a
cumulative regret of

√
knT in the semi-bandit feedback setting (i.e., we can only observe the re-

wards from the arms we played ), where k is the maximum cardinality of a feasible set. By setting
T = nk−1ε−2, we get a cumulative regret of n/ε. If we uniformly randomly pick a solution from
{St}t∈[T ], we can see that Et∈[T ] 1k (

∑
a∈OPT µa−

∑
a∈St

µa) ≤ ε. One drawback of their algorithm
is that it needs to solve a convex program over the matroid polytope, which can be computationally
expensive, while our algorithm is purely combinatorial and very easy to implement.

In recent and concurrent work, Gabillon et al. Gabillon et al. (2016) proposed a new complexity
notion for the general combinatorial pure exploration problem, and developed new algorithms in
both fixed budget and the fixed confidence setting. They showed that in some cases, the sample
complexity of their algorithms is better than that of Chen et al. (2014). While the current implemen-
tations of their algorithm have an exponential running time, even for general matroid constraints, it
is an interesting problem to get more efficient algorithms, and to combine their notion of complexity
with our techniques.

2. Preliminaries

2.1. Useful Facts about Matroids

While there are many equivalent definitions for matroids, we find this one most convenient.

Definition 2.1 (Matroid) A matroidM(S, I) consists of a finite set S (called the ground set), and
a non-empty family I of subsets of S (with sets in I being called independent sets), satisfying the
following:

i. Any subset of an independent set is an independent set.
ii. Given two sets I, J ∈ I, if |I| > |J |, there exists element e ∈ I \ J such that J ∪ {e} ∈ I.

For convenience, we often write I ∈ M instead of I ∈ I to denote that I is an independent set of
M. An independent set is maximal if it is not a proper subset of another independent set; a maximal
independent set is called a basis.

Definition 2.2 (Rank) Given matroidM(S, I) and setA ⊆ S, the rank ofA, denoted by rankM(A),
is the cardinality of a maximal independent subset contained in A.

When M is clear from context, we merely write rank(A). All bases of a matroid have the same
cardinality. We use rank(M), instead of rank(S), to denote the cardinality of every basis ofM.

We often need to work with the set of independent sets restricted to a subset of elements. Sometimes
we can determine to include some elements as a partial solution, we need to work the the rest of the
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matroid, conditioning on the partial solution. We need the definitions of matroid restrictions and
matroid contractions to formalize the above situations.

Definition 2.3 (Matroid restrictions and contractions) LetM(S, I) be a matroid. For A ⊆ S,
we define the restriction of M to A as follows: MA is also a matroid with ground set A; an
independent set ofM which is a subset of A is an independent ofMA.

The contraction of A is defined as follows: M/A is the matroid with ground set S′ = {e ∈
S | rank({e} ∪ A) > rank(A)}, and the independent set family I ′ = {I ⊆ S′ | rank(I ∪ A) =
|I|+ rank(A)}.

BothMA andM/A are indeed matroids. Sometimes, we may also writeM|A andM/A to avoid
successive subscripts. In our paper, we only need to contract an independent set A ∈ I. In this
case, rank(A) = |A|, and the definition simplifies to the following: a set I (disjoint from A) is
independent inM/A, if I ∪A is independent inM.

Definition 2.4 (Isolated Elements and Loops) For a matroid M = (S, I) and element e ∈ S,
we say e is an isolated element, if it is contained in all bases of M (or equivalently, rank(S) >
rank(S \ {e})). We say e is a loop if it belongs to no basis ofM.

Clearly, since the mean of each arm is nonnegative, we can directly select all isolated elements and
contract out these elements. Also, we can simply ignore those loops. From now on, we can assume
without loss of generality that there is no isolated element or loop inM.

Definition 2.5 (Block) LetM(S, I) be a matroid. Given a subset A ⊂ S and an element e such
that e 6∈ A, we say A blocks e, if rankM(A ∪ {e}) = rankM(A).

Intuitively, e is blocked by A if adding e is not useful in increasing the cardinality of the maximal
independent set in A. Note that, if A ⊆ B, e 6∈ B and A blocks e, then clearly B also blocks e, due
to the submodularity of rank: rank(B ∩ {e})− rank(B) ≤ rank(A ∩ {e})− rank(A).

We have the following lemma characterizing when a subset A blocks an element e.

Lemma 2.6 If A blocks e, every basis I ofMA blocks e.

Proof Since A blocks e, rankM(A ∪ {e}) = rankM(A). Consider a basis I ofMA. rankM(I ∪
{e}) ≤ rankM(A ∪ {e}) = rankM(A) = rankM(I). Hence, I blocks e as well.

Then we define what is an optimal solution for a matroid with respect to a cost function µ.

Definition 2.7 Given a matroidM(S, I), and an injective cost/weight function µ : S → R+, let
µ(I) :=

∑
e∈I µ(e) denote the total weight of elements in the independent set I ∈ M . We say I is

an optimal basis (with respect to µ) if µ(I) has the maximum value among all independent sets in I.
We define OPTµ(M) = maxI∈I µ(I). With slight abuse of notation, we may also use OPTµ(M)
to denote the optimal basis. When µ is clear from the context, we simply write OPT(M).

From now on, we assume the cost of each element is distinct. It is well known that the optimal basis
OPT(M) is unique (under the distinctness assumption) and can be obtained by a simple greedy
algorithm: We first sort the elements in the decreasing order of their cost. Then, we attempt to add
the elements greedily one by one in this order, to the current solution, which is initially empty.
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We are given matroidM = (S, I) with cost function µ : S → R+. For a subset A ⊆ S, we define

A≥aµ := {e ∈ A | µ(e) ≥ a}.

We define A>aµ , A≤aµ , A<aµ similarly. Sometimes we omit the subscript µ if it is clear from the
context. Finally, the following characterizations of optimal solutions for M all follow from the
greedy procedure.

Lemma 2.8 For a matroidM(S, I), cost function µ : S → R+ and basis I ∈ I, the following
statements are equivalent:

i. I is an optimal basis forM with respect to µ.
ii. For any e ∈ I , S>µ(e) does not block e.
iii. For any e ∈ S \ I , I≥µ(e) blocks e.
iv. For any r ∈ R, I≥r is a basis inMS≥r .

2.2. Uniform Sampling

The following naı̈ve uniform sampling procedure will be used frequently.

Algorithm 1: UniformSample (S, ε, δ)
Data: Arm set S, error bound ε, confidence level δ.
Result: For each arm a, output the empirical mean µ̂a.

1 For each arm a ∈ S, sample it ε−2 ln(2 · δ−1)/2 times. Let µ̂a be the empirical mean.

The following lemma for Algorithm 1, is an immediate consequence of Proposition A.1.1.

Lemma 2.9 For each arm a ∈ S, we have that Pr [|µa − µ̂a| ≥ ε] ≤ δ.

3. An Optimal PAC Algorithm for the PAC-BASIS Problem

In this section, we prove Theorem 1.7 by presenting an algorithm for PAC-BASIS with optimal
sample complexity. The algorithm is also a useful subprocedure for both EXACT-BASIS and PAC-
BASIS-AVG.

3.1. Notation

We first introduce an analogue of Lemma 2.8 for ε-optimal solutions.

Lemma 3.1 For a matroid M = (S, I) with cost function µ : S → R+, and a basis I , the
following statements are equivalent:

1. I is ε-optimal forM with respect to µ.
2. For any e ∈ S \ I , I≥µ(e)−ε blocks e.
3. For any r ∈ R, let Dr = (S \ I)≥r+ε ∪ I≥r. I≥r is a basis inMDr .

Proof Apply Lemma 2.8 with the cost function µI,ε, as defined in Definition 1.5.
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Definition 3.2 (ε-Approximation Subset) Given a matroid M = (S, I) and cost function µ :
S → R+, let A ⊆ B be two subsets of S. We say A is an ε-approximate subset of B if there exists
an independent set I ∈MA such that I is ε-optimal forMB with respect to the cost function µ.

Lemma 3.3 Suppose A is an ε-approximate subset of B, and I ∈ MA is ε-optimal forMB . For
any e ∈ B \A, I≥µ(e)−ε blocks e and A≥µ(e)−ε blocks e.

Proof I≥µ(e)−ε blocks e because Lemma 3.1(2). I≥µ(e)−ε is an independent set of A≥µ(e)−ε, so
A≥µ(e)−ε blocks e as well.

Then we show that “is an ε-approximate subset of” is a transitive relation.

Lemma 3.4 Let A ⊆ B ⊆ C. Suppose A is an ε1-approximate subset of B, and B is an ε2-
approximate subset of C. Then A is an (ε1 + ε2)-approximate subset of C.

Proof Let I ∈ MA be ε1-optimal for MB . We prove it is (ε1 + ε2)-optimal for MC . For any
element e ∈ B \ A, I≥µ(e)−ε1 blocks e. So I≥µ(e)−(ε1+ε2) blocks e as well. For e ∈ C \ B, we
have B≥µ(e)−ε2 blocks e, by Lemma 3.3. Set r = µ(e) − (ε1 + ε2). Using Lemma 3.1(3) with
Dr = (B \ I)≥µ(e)−ε2 ∪ I≥µ(e)−(ε1+ε2), we can see that I≥µ(e)−(ε1+ε2) is a basis inMDr . Clearly
B≥µ(e)−ε2 ⊆ Dr. So Dr blocks e, which implies I≥µ(e)−(ε1+ε2) blocks e. Hence, by Lemma 3.1,
I is (ε1 + ε2)-optimal forMC .

3.2. Naı̈ve Uniform Sampling Algorithm

We start with a naı̈ve uniform sampling algorithm, which samples each arm enough times to ensure
that with high probability the empirical means are all within ε/2 from the true means, and then
outputs the optimal solution with respect to the empirical means. The algorithm is a useful procedure
in our final algorithm.

Algorithm 2: Naı̈ve-I (S, ε, δ)

Data: A PAC-BASIS instance S = (S,M), with rank(M) = k, approximation error ε, confidence
level δ.

Result: A basis I inM.

1 µ̂ ← UniformSample(S, ε/2, δ/|S|)
2 Return The optimal solution I with respect to the empirical means.

Lemma 3.5 The Naı̈ve-I (S, ε, δ) algorithm outputs an ε-optimal solution for S with probability
at least 1− δ. The number of samples is O(|S|ε−2 · (ln δ−1 + ln |S|)).

Proof By Lemma 2.9 and a simple union bound, we have |µe − µ̂e| ≤ ε/2 simultaneously for all
arms e ∈ S with probability 1−δ. Conditioning on that event, let I be the returned basis. For an arm
e 6∈ I , we have I≥µ̂eµ̂ blocks e. Note that for all arm a ∈ I , if µ̂a ≥ µ̂e, we must have µa ≥ µe − ε.
Hence, I≥µ̂eµ̂ ⊆ I≥µe−εµ . So I≥µe−εµ blocks e. Then we have I is ε-optimal by Lemma 3.1. The
sample complexity follows from the algorithm statement.
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3.3. Sampling and Pruning

Our optimal PAC algorithm applies the sampling and pruning technique, initially developed in the
celebrated work of Karger, Klein and Tarjan. They used the technique to obtain an expected linear-
time algorithm for computing the minimum spanning tree.

We first describe the high level idea from Karger et al. (1995), which will be instructive for our later
development. Suppose we want to find the maximum spanning tree (MST). We first construct a
subgraph F by sampling each edge with probability p; this subgraph may not be connected, so we
solve the maximum-weight spanning forest I of F . The key idea is this: we can use I to prune a lot
“useless” edges in the original graph. Formally, an edge e = (u, v) is useless if edges with larger
cost in I can connect u and v: this is because the cheapest edge in a cycle does not belong to the
MST). (In other words, e is useless if it is blocked by I>µ(e).) Having removed these useless edges,
we again recurse on the remaining graph, which now has much fewer edges, to find the MST. A
crucial ingredient of the analysis in Karger et al. (1995) is to show that I can indeed prune a lot of
edges.

A proof from Karger et al. (1995); Karger (1998) or (Motwani and Raghavan, 2010, pp. 299-300)
shows that an optimal solution from a random subset can help us prune a substantial amount of
elements.

Lemma 3.6 ((Karger et al., 1995, Lemma 2.1 and Remark 2.3)) Given a matroid M = (S, I)
with an injective cost function µ : S → R+, sample a subset F of S by selecting each element
independently with probability p. An element e ∈ S is called F -good if F>µ(e) does not block e,
else it is F -bad. If the r.v. X denotes the number of F -good elements in S, then X is stochastically
dominated by NegBin(rank(M); p).

We also introduce a lemma which shows an ε-optimal solution I in F can be used to eliminate some
sub-optimal arms.

Lemma 3.7 For a matroidM = (S, I) with cost function µ : S → R+, Let F ⊆ S be a subset,
and I be an α-optimal basis forMF for some α > 0. If an element e ∈ S \ I is F -bad, I≥µ(e)−α

blocks e.

Proof As e is F -bad, F≥µ(e) blocks e. Let r = µ(e)− α, and

D = (F \ I)≥r+α ∪ I≥r = (F \ I)≥µ(e) ∪ I≥µ(e)−α.

(In other words, we first add α to the cost of every element in I , then consider all element with cost
at least µ(e) in F ). Then by Lemma 2.8(4) and the fact I is α-optimal forMF , I≥µ(e)−α is maximal
forMD (in fact, it is optimal forMD w.r.t. the modified cost function). Clearly F≥µ(e) ⊆ D, so
D blocks e as well. Hence I≥µ(e)−α also blocks e, by Lemma 2.6.

3.4. Our Optimal PAC Algorithm

Now, we present our algorithm for the PAC case, which is based on the sampling-and-pruning
technique discussed above. Let p = 0.01. The algorithm runs as follows: If the number of arms |S|
is sufficiently small, we simply run the naı̈ve uniform sampling algorithm. Otherwise, we sample
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Algorithm 3: PAC-SamplePrune (S, ε, δ)

Data: A PAC-BASIS instance S = (S,M), with rank(M) = k, approximation error ε, confidence
level δ.

Result: A basis I inM.

1 if |S| ≤ 2p−2 ·max(4 · ln 8δ−1, k) then
2 Return Naı̈ve-I (S, ε, δ)
3

4 Sample a subset F ⊆ S by choosing each element with probability p independently.
5 α← ε/3, λ← ε/12
6 I ← PAC-SamplePrune(SF = (F,MF ), α, δ/8)
7 µ̂ ← UniformSample (S, λ, δ · p/8k)
8 S′ ← I ∪ {e ∈ S \ I | I≥µ̂e−α−2λµ̂ does not block e}
9 Return PAC-SamplePrune (SS′ = (S′,MS′), α, δ/4)

a subset F of S by selecting each arm with probability p independently, and recurse on the sub-
instance SF = (F,MF ) to find an α-optimal solution I , where α = ε/3. Next, we uniformly
sample each arm in S by calling UniformSample (S, λ, δ · p/8k), where λ = ε/12. Then, we use
I to eliminate those sub-optimal arms in S \ I . More precisely, a sub-optimal arm e is blocked
by the arms of I with empirical values larger than µ̂e − α − 2λ. Finally, we invoke the algorithm
recursively on the remaining arms to find an α-optimal solution, which we output as the final result.
The pseudo-code can be found in Algorithm 3.

Note that UniformSample (step 6) is the only step in which we take samples from the arms. Also
note that in both recursive calls we set the approximation error to be α = ε/3. Effectively, this
makes sure that an arms surviving in deeper recursive call are sampled more times. This feature
is shared by other elimination-based method, such as Even-Dar et al. (2002); Zhou et al. (2014).
However, the way we choose which arms should be eliminated is quite different.

3.5. Analysis of the sample complexity

In this subsection, we analyze PAC-SamplePrune and prove Theorem 1.7.

Theorem 1.7 (rephrased) Given a PAC-BASIS instance S = (S,M), Algorithm PAC-SamplePrune
(S, ε, δ) returns an ε-optimal solution, with probability at least 1− δ, and uses at most

O(nε−2 · (ln k + ln δ−1))

samples. Here k = rank(M), and n = |S|.
Let c1, c2 be two constants to be specified later. We will prove by induction on |S| that with proba-
bility at least 1− δ, PAC-SamplePrune (S = (S,M), ε, δ) returns an ε-optimal solution, using at
most c1 · (|S|ε−2 · (ln k + ln δ−1 + c2)) samples. Remember that p = 0.01.

We first consider the simple case where |S| is not much larger than k. When |S| ≤ 2p−2 ·max(4 ·
ln 8δ−1, k), we have that ln |S| = O(ln δ−1 + ln k). So the number of samples of Naı̈ve-I is
O(|S|ε−2 · (ln |S| + ln δ−1)) = O(|S|ε−2 · (ln k + ln δ−1)); by Lemma 3.5, the returned basis is
ε-optimal with probability at least 1− δ. Hence the theorem holds in this case.
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Now consider the case where |S| > 2p−2 · max(4 · ln 8δ−1, k), and inductively assume that the
theorem is true for all instances of size smaller than |S|. We first need the following lemma, which
describes the good events that happen with high probability.

Lemma 3.8 Let O be the unique optimal solution for S = (S,M). With probability at least
1− δ/2, the following statements hold simultaneously.

1. |F | ≤ 2p · |S| (F is obtained in Line 3).
2. There are at most p · |S| F -good elements in S.
3. |µe − µ̂e| ≤ λ, for all elements e ∈ O ∪ I (I is obtained in Line 5).
4. I is an α-optimal solution for F .

Proof Let n = |S|. By Corollary A.2, we have that

Pr[|F | > 2pn] = Pr[Bin(n, p) > 2pn] ≤ e−pn/3 ≤ δ/8,

for n ≥ 8p−2(ln 8δ−1). Moreover, let X be the r.v. denoting the number of F -good elements in S.
By Lemma 3.6, X is dominated by NegBin(k; p), and hence

Pr[X > pn] ≤ Pr[NegBin(k; p) > pn] = Pr[Bin(pn, p) < k] ≤ Pr[Bin(pn, p) <
1

2
p2n] ≤ e−

1
8
p2n ≤ δ/8.

The second inequality holds since p2n ≥ 2k, while the last inequality is due to 1
8p

2n ≥ ln δ−1+ln 8.
In addition, by Lemma 2.9 and a trivial union bound over all arms inO∪I , the third statement holds
with probability at least 1− (p · δ/8k) · (2k) ≥ 1− δ/8.

Finally, conditioning on the first statement, we have |F | < |S|, and hence by the induction hypoth-
esis, with probability at least 1 − δ/8, I is an α-optimal solution for F . Putting them together, all
four statements hold with probability at least 1− δ/8 · 4 = 1− δ/2.

Now let E denote the event that all statements in Lemma 3.8 hold. We show each F -bad element in
S \ I has a constant probability to be eliminated.

Lemma 3.9 Conditioning on E , for an F -bad element e ∈ S \ I , Pr[e ∈ S′] ≤ δ · p/8k.

Proof Conditioning on E , I is α-optimal for F . Hence, by Lemma 3.7, for an F -bad element
e ∈ S \ I , I≥µe−αµ blocks e. By Lemma 3.5, |µ̂e−µe| ≤ λ with probability 1− p · δ/8k. Moreover,
conditioning on E , we have |µ̂a−µa| ≤ λ for every element a ∈ I (by Lemma 3.8.3). Consequently,
I≥µe−αµ ⊆ I≥µ̂e−α−2λµ̂ , which implies that I≥µ̂e−α−2λµ̂ blocks e. By the definition of S′, this means
e /∈ S′. Hence, we have Pr[e ∈ S′ | E ] ≤ δ · p/8k.

Now, we show that with high probability, S′ is a 2ε/3-approximate subset of S, and the size of S′

is much smaller than |S|.

Lemma 3.10 Conditioning on E , |S′| ≤ 2p|S|, and S′ is an (α + 4λ)-approximate subset of S,
with probability 1− δ/4.
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Proof Conditioned on event E , there are at most p · |S| F -good elements in S (by Lemma 3.8.2).
If X denotes the number of F -bad elements in S \ I which remain in S′, Lemma 3.9 implies
E[X] ≤ δ · (p/8k) · |S \ I| ≤ δ · p/8 · |S|. By Markov’s inequality, we have Pr[X ≥ 0.5p|S|] ≤
Pr[X ≥ 4 · δ−1E[X]] ≤ δ/4. So there are at most |I|+ 1.5p · |S| ≤ k+ 1.5p|S| ≤ 2p|S| elements
in S′ with probability at least 1− δ/4.

For the second part, observe that O ∪ S′ ⊆ S is a 0-approximate subset of S, so by Lemma 3.4, it
suffices to show S′ is an (α+ 4λ)-approximate subset for O ∪ S′. Still conditioned on event E , for
all arms e ∈ I ∪O, we have |µe− µ̂e| ≤ λ. So for an arm e ∈ O \S′, we have I≥µ̂e−α−2λµ̂ blocks e

(otherwise, e should be included in S′), which implies I≥µe−α−4λµ blocks e. Since I ⊆ S′, we can
see S′ is an (α+ 4λ)-approximate subset of S′ ∪O by Definition 3.2.

Finally, we are ready to prove Theorem 1.7.

Proof [Proof of Theorem 1.7] Let EG be the intersection of the event E , the event that Lemma 3.10
holds and the event that PAC-SamplePrune (line 8) outputs correctly. Conditioning on event E ,
|S′| < |S|, so by the induction hypothesis, the last event happens with probability at least 1− δ/4.
Hence, Pr[EG] ≥ 1− δ/2− δ/4− δ/4 = 1− δ. We condition our following argument on EG.

First we show the algorithm is correct. By Lemma 3.10, S′ is an (α+ 4λ)-approximate subset of S,
and the returned basis J is an α-optimal solution of S′, hence also an α-approximate subset of S′.
By the “transitivity” property of Lemma 3.4, J is an (α + α + 4λ)-approximate subset of S. This
is an ε-optimal solution of S since α+ α+ 4λ = ε.

By Lemma 3.8 and Lemma 4.1, we have |F | ≤ 2p · |S| and |S′| ≤ 2p · |S|. By the induction
hypothesis, the total number of samples in both recursive calls (line 6 and line 8) can be bounded
by

c1 · 4p|S|ε−2(ln δ−1 + ln k + c2) · 9 ≤ 36c1p · |S|ε−2(ln δ−1 + ln k + c2).

The number of samples incurred by UniformSample (line 7) can be bounded by

|S|λ−2 · (ln δ−1 + ln 16 + ln p−1 + ln k)/2 ≤ 72|S|ε−2 · (ln δ−1 + ln 16 + ln p−1 + ln k).

Now, let c2 = ln 16 + ln p−1, which is a constant. Then the total number of samples is bounded by

(36p · c1 + 72)|S|ε−2 · (ln δ−1 + ln k + c2).

Setting c1 = max(120, c0), and plugging in p = 0.01, we can see the above quantity is bounded by
c1 · |S|ε−2 · (ln δ−1 + ln k + c2), which completes the proof.

4. An Algorithm for the EXACT-BASIS Problem

We now turn to the EXACT-BASIS problem, and prove Theorem 1.4. If we denote the unique optimal
basis by OPT, and let BAD be the set of all other arms in S \OPT, our goal for the EXACT-BASIS

problem is to find this set OPT with confidence 1− δ using as few samples as possible.

Our algorithm Exact-ExpGap is based on our previous PAC result for PAC-BASIS, and also borrow
some idea from the Exponential-Gap-Eliminating algorithm by Karnin et al. (2013). It will run in
rounds. In each round, it either tries to eliminate some arms in BAD (we call such a round an
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elimination-round), or adds some arms from OPT into our solution and removes them from further
consideration (we call such a round a selection-round). Let us give some details about these two
kinds of rounds. Let Mcur be the current matroid defined over the remaining arms, nopt be the
number of remaining arms in OPT, and nbad be the number of remaining arms in BAD.

1. (elimination-round) When nopt ≤ nbad, we are in an elimination-round. In the rth elimination-
round, first we find an εr-optimal solution I for the current matroidMcur by calling PAC-
SamplePrune (Mcur, εr, δr) (i.e., the PAC algorithm from Section 3) with εr = 2−r/4 and
δr = δ/100r3. We sample each arm in I by calling UniformSample(I, εr/2, δr/nopt) to
estimate their means. We do the same for arms Scur \ I by calling UniformSample(Scur \
I, εr, δr/nopt). Note the confidence parameter is not low enough to give accurate estimations
for all arms in Scur \ I with high probability: that would require us reducing the parameter
to δr/|Scur \ I|. However, we will be satisfied with being accurate only for arms in OPT \ I
with probability δr.

Finally, we use I to eliminate some sub-optimal arms. In particular, an arm e should be
eliminated if I≥µ̂e+1.5εr

µ̂ blocks e, where µ̂ is the cost function defined by the empirical means
obtained from the above UniformSample procedures.

2. (selection-round) When nbad < nopt, we are in a selection-round. In the rth selection-round,
we sample all the arms in Mcur by calling UniformSample(Scur, εr, δr/|Scur|). We then
select into our solution Ans those elements e which are not blocked by all other elements in
Mcur with larger empirical means, even if we slightly decrease e’s empirical mean by 2εr.
Having contracted these selected arms, we proceed to the next round.

Finally, the algorithm terminates when either nopt = 0 or nbad = 0. The pseudo-code is given as
Algorithm 4.

4.1. Analysis of the algorithm

Now, we prove the main theorem of this section by analyzing the correctness and sample complexity
of Exact-ExpGap.

Theorem 1.4 (rephrased) Given an EXACT-BASIS instance S(S,M), Exact-ExpGap(S, ε, δ) re-
turns the optimal basis ofM, with probability at least 1− δ, and uses at most

O

(∑
e∈S

∆−2e (ln δ−1 + ln k + ln ln ∆−1e )

)

samples. Here, k = rank(M) is the size of a basis ofM.

We first recall that the gap of an element e (throughout this section, we only consider the cost
function µ for gap) is defined to be

∆Me :=


OPT(M)− OPT(MS\{e}), e ∈ OPT and e is not isolated;

+∞, e is isolated;
OPT(M)− OPT(M/{e})− µe, e 6∈ OPT.
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Algorithm 4: Exact-ExpGap (S, ε, δ)

Data: An EXACT-BASIS instance S = (S,M), with rank(M) = k, approx. error ε, confidence
level δ.

Result: A basis I inM.

1 relim ← 1, rsele ← 1
2 while True do
3 Scur ← the arm set ofMcur

4 nopt ← rank(Mcur), nbad ← |Scur| − nopt
5 if nopt ≤ nbad then
6 if nopt = 0 then break
7 r ← relim
8 εr ← 2−r/4, δr ← δ/100r3, relim ← relim + 1
9 I ← PAC-SamplePrune(Scur = (Scur,Mcur), εr, δr)

10 µ̂ ← UniformSample(I, εr/2, δr/nopt)
11 µ̂ ← UniformSample(Scur \ I, εr, δr/nopt)
12 Snew ← I ∪ {e ∈ Scur \ I | I≥µ̂e+1.5εr

µ̂ does not block e inMcur}
13 Mcur ←Mcur|Snew
14 else
15 if nbad = 0 then
16 Ans← Ans ∪ Scur
17 break
18 r ← rsele
19 εr ← 2−r/4, δr ← δ/100r3, rsele ← rsele + 1
20 µ̂ ← UniformSample(Scur, εr, δr/|Scur|)
21 U ← {e ∈ Scur | (Scur \ {e})≥µ̂e−2εrµ̂ does not block e inMcur}
22 Ans← Ans ∪ U
23 Mcur ←Mcur/U

24

25 Return Ans

Note that we extend the definition to the isolated elements, since the restrictions and contractions
may result in such element (note that no loop is introduced during the process). We also need the fol-
lowing equivalent definition (the equivalence follows from Lemma 2.8), which may be convenient
in some case:

∆Me :=

{
max{w ∈ R | (S \ {e})>µe−w does not block e} for e ∈ OPT;

max{w ∈ R | S≥µe+w blocks e} for e 6∈ OPT
(1)

First, we prove that our algorithm returns the optimal basis with high probability. In the following
lemma, We specify a few events on which we condition our later discussion.

Lemma 4.1 With probability at least 1− δ/5, all of the following statements hold:

1. In all elimination-rounds, PAC-SamplePrune (line 9) returns correctly.
2. In all elimination-rounds, for all element u ∈ I , |µu − µ̂u| < εr/2.
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3. In all elimination-rounds, for all element u ∈ OPT(Mcur), |µu − µ̂u| < εr.
4. In all selection-rounds, for all element u ∈ Scur, |µu − µ̂u| < εr.

We use E to denote the event that all above statements are true.

Proof In the rth elimination-round, the specification of the failure probabilities of PAC-SamplePrune
and UniformSample imply the first three statements hold with probability 1 − 3δr. In the rth

selection-round, the last statement holds with probability 1 − δr. A trivial union bound over all
rounds gives

Pr[¬E ] ≤
+∞∑
r=1

(3δr + δr) =

+∞∑
r=1

4δ/100r3 ≤ δ/5,

and the lemma follows immediately.

Lemma 4.2 Conditioning on E , the subset Ans returned by the algorithm is the optimal basis OPT.

Proof We condition on E in the following discussion. We show that the algorithm only deletes arms
from BAD in every elimination-round, and it only selects arms from OPT in every selection-round.
We say a round is correct if it satisfies the above requirements. We prove all rounds are correct by
induction. Consider a round, and suppose all previous rounds are correct. Hence, at the beginning
of the current round, Ans clearly is a subset of OPT, and OPT(Mcur) = OPT \ Ans. There are
two cases:

If the current round is an elimination-round, consider an arm u ∈ OPT(Mcur) = OPT \ Ans. We
can see that I>µuµ does not block u inMcur, by the characterization of the matroid optimal solutions
in Lemma 2.8.2. Since |µ̂u−µu| < εr for all u ∈ OPT(Mcur), and |µ̂e−µe| < εr/2 for all e ∈ I ,
we also have I≥µ̂u+1.5εr

µ̂ does not block u inMcur. Hence u ∈ Snew, and it is not eliminated.

Next, consider a selection-round and an arm u ∈ BAD ∩ Scur. By the induction hypothesis, in
the beginning of the round, u 6∈ OPT(Mcur). Then, we can see u is blocked by (Scur \ {u})≥µuµ

inMcur by Lemma 2.8.3. Again, for all arms e in Scur, |µe − µ̂e| < εr, so u is also blocked by
(Scur \ {u})≥µ̂u−2εrµ̂ inMcur. Hence u 6∈ U , and is not selected into Ans.

Finally, if the algorithms returns, we have |Ans| = |OPT| = rank(M). Since Ans ⊆ OPT, it must
be the case that Ans = OPT.

4.1.1. ANALYSIS OF SAMPLE COMPLEXITY

To analyze the sample complexity, we need some additional notation. Let nropt (resp. nrbad) denote
nopt (resp. nbad) at the beginning of rth elimination-round (resp. selection-round). Also, let Srelim
denote the arm set ofMcur at the end of the rth elimination-round, and Srsele denote the arm set of
Mcur at the end of the rth selection-round. We partition the arms in OPT and BAD based on their
gaps, as follows:

OPTs = {u ∈ OPT | 2−s ≤ ∆u < 2−s+1},

BADs = {u ∈ BAD | 2−s ≤ ∆u < 2−s+1}.

Moreover, we define OPTr,s := Srsele ∩OPTs, i.e., the set of arms in OPTs not selected in the rth

selection-round—recall that in a selection-round we aim to select those arms into OPT. Similarly,
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define BADr,s := Srelim ∩ BADs as the set of arms in BADs not eliminated the rth elimination-
round—again, in an elimination-round we aim to delete those arms in BAD.

Very roughly speaking, the sth round is dedicated to deal with those arms with gap roughly O(2−s)
(namely, an arm in OPTs is likely to be selected in the sth selection-round and an arm in BADs is
likely to be eliminated in the sth elimination-round). Now, we prove a crucial lemma, which states
that all elements in OPTs should be selected in or before the sth selection-round, and the number
of remaining elements in BADs should drop exponentially after the sth elimination-round.

Lemma 4.3 Conditioning on event E , with probability at least 1− 4δ/5, we have

|OPTr,s| = 0 and |BADr,s| ≤
1

8
|BADr−1,s| for all 1 ≤ s ≤ r.

Proving Lemma 4.3 requires some preparations. All the following arguments are conditioned on
event E . We first prove a useful lemma which roughly states that if we select some elements in OPT
and remove some elements in BAD, the gap of the remaining instance does not decrease.

Lemma 4.4 For two subsets A,B of S such that A ⊆ OPT ⊆ B, consider the matroid M′ =
(M|B)/A. Let S′ be its ground set. For all element u ∈ S′, we have that ∆M

′
u ≥ ∆Mu .

Proof By the definition of matroid contraction and the fact that A is independent, we can see
for any subset U ⊆ S′, U is independent in M′ iff U ∪ A is independent in M. We also have
rankM′(S

′) = rankM(S)− |A| and OPT \A is the unique optimal solution forM′.
Now, let u ∈ S′. Suppose u ∈ OPT(M′) = OPT\A. Suppose for contradiction that ∆M

′
u < ∆Mu .

Then we have a basis I contained in S′ \ {u} inM′ such that

µ(I) = µ(OPT \A)−∆M
′

u > µ(OPT \A)−∆Mu .

But this means I ∪A is a basis contained in S \ {u} inM such that µ(I ∪A) > OPT(M)−∆Mu ,
contradicting to the definition of ∆Mu . Note that a non-isolated element inM may become isolated
inM′ (for which ∆M

′
u = +∞).

Then, we consider the case u 6∈ OPT(M′) = OPT \A. The argument is quite similar. Suppose for
contradiction that ∆M

′
u < ∆Mu . This means that there exists a basis I inM′ such that u ∈ I and

µ(I) > OPT(M′)−∆Mu = µ(OPT \ A)−∆Mu . But this means A ∪ I is a basis inM such that
µ(A ∪ I) > OPT−∆Mu . Since u ∈ (A ∪ I), this contradicts the definition of ∆Mu .

Proof [Proof of Lemma 4.3] We first prove |OPTr,s| = 0 for r ≥ s. Suppose we are at the beginning
of the rth selection-round. Let A = Ans and B = Scur ∪ Ans. We can see A ⊆ OPT ⊆ B and
Mcur = (M|B)/A.

For any arm u ∈ OPTr−1,s such that s ≤ r, we have ∆u ≥ 2−s ≥ 2−r ≥ 4εr. By Lemma 4.4,
we have ∆Mcur

u ≥ ∆Mu ≥ 4εr, which means (Scur \ {u})>µu−4εrµ does not block u. Note that
conditioning on E , |µe − µ̂e| < εr for all e ∈ Scur. This implies that (Scur \ {u})≥µ̂u−2εrµ̂ does not
block u as well. So u ∈ U (U is defined in line 21) and consequently |OPTr,s| = 0.

Now, we prove the second part of the lemma. We claim that for 1 ≤ s ≤ r, we have that

Pr[|BADr,s| ≤
1

8
|BADr−1,s|] ≥ 1− 8δr (2)
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The lemma follows directly from the claim by taking a union bound over all s, r such that 1 ≤ s ≤ r:

+∞∑
r=1

r∑
s=1

8δr =
+∞∑
r=1

8δ/100r2 ≤ 4δ/5.

What remains to prove is the claim (Inequality (2)). Suppose we are at the beginning of the rth

elimination-round. Let A = Ans and B = Scur ∪ Ans. Conditioning on event E , we can see that
A ⊆ OPT ⊆ B andMcur = (M|B)/A.

For any arm u ∈ BADr−1,s such that s ≤ r, we have ∆u ≥ 2−s ≥ 2−r ≥ 4εr. By Lemma 4.4, we
have ∆Mcur

u ≥ ∆Mu ≥ 4εr. So (Scur)
≥µu+4εr
µ blocks u inMcur by the definition of ∆Mcur

u . As I
is εr-optimal forMcur, we also have u is blocked by I≥µu+3εr

µ inMcur. This implies that u /∈ I .

Since we have |µu− µ̂u| < εr with probability 1−δr, combining with the fact that |µe− µ̂e| < εr/2

for all e ∈ I (guaranteed by E), u is blocked by I>µ̂u+1.5εr
µ̂ with probability 1 − δr. This implies

that u 6∈ BADr,s (u should be eliminated in line 12). From the above, we can see that

E[|BADr,s|] ≤ δr|BADr−1,s|.

By Markov inequality, we have Pr[|BADr,s| ≥ 1
8 |BADr−1,s|] ≤ 8δr, which concludes the proof.

Finally, everything is in place to prove Theorem 1.4.

Proof [Proof of Theorem 1.4] Let EG be the intersection of event E and the event that Lemma 4.3
holds. By Lemma 4.1 and Lemma 4.3, Pr[EG] ≥ 1− δ. Now we condition on this event.

The correctness has been proved in Lemma 4.2. We only need to bound the sample complexity of
Exact-ExpGap.

We first consider the number samples taken by the UniformSample procedure. We handle the
samples taken by PAC-SamplePrune later. Now, we bound the total number of samples taken
from arms in OPTs in all selection-round s. Notice that we can safely ignore all samples on arms
in BAD since nopt ≥ nbad. By Lemma 4.3, |OPTr,s| = 0 for r ≥ s. So it can be bounded as:

O

(
s∑
r=1

|OPTr−1,s| · (lnnopt + ln δ−1r )ε−2r

)
≤ O

(
s∑
r=1

|OPTs| · (ln k + ln δ−1 + ln r)ε−2r

)
≤ O

(
|OPTs| · (ln k + ln δ−1 + ln s) · 4s

)
.

Next, we consider the number of samples from elimination-round s. In an elimination-round, since
nopt ≤ nbad, we only need to bound the number of samples from BAD. The total number of
samples taken from arms in BADs in the first s elimination-rounds can be bounded as:

O

(
s∑
r=1

|BADr−1,s| · (ln |Scur|+ ln δ−1r )ε−2r

)
≤ O

(
|BADs| · (ln k + ln δ−1 + ln s) · 4s

)
The inequality holds since |Scur| ≤ nopt + nbad ≤ 2nopt ≤ 2k in a selection-round. Now, we
bound the number of samples from the remaining rounds. Since |BADr,s| ≤ 1

8 |BADr−1,s| when
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r ≥ s, we have:

O

(
+∞∑
r=s+1

|BADr−1,s| · (ln |Scur|+ ln δ−1r )ε−2r

)
= O

(
+∞∑
r=s+1

1

8r−s
· |BADs| · (ln k + ln δ−1 + ln r)ε−2r

)
= O

(
|BADs| · (ln k + ln δ−1 + ln s) · 4s

)
Putting them together, we can see the number of samples incurred by UniformSample is bounded
by:

O

(
+∞∑
s=1

(|BADs|+ |OPTs|) · (ln k + ln δ−1 + ln s) · 4s
)
,

which simplifies to O
(∑

e∈S ∆−2e (ln k + ln δ−1 + ln ln ∆−1e )
)
. Finally, we consider the number

of samples taken by PAC-SamplePrune. Noticing nopt = rank(Mcur), the number of samples
is O(|Scur|(lnnopt + ln δ−1r )ε−2r ). So PAC-SamplePrune does not affect the sample complexity,
and we finish our proof.

5. Future Work

In this paper, we present nearly-optimal algorithms for both the exact and PAC versions of the pure-
exploration problem subject to a matroid constraint in a stochastic multi-armed bandit game: given
a set of arms with a matroid constraint on them, pick a basis of the matroid whose weight (the sum
of expectations over arms in this basis) is as large as possible, with high probability.

An immediate direction for investiation is to extend our results to other polynomial-time-computable
combinatorial constraints: s-t paths, matchings (or more generally, the intersection of two matroid-
s), etc. The model also extends to NP-hard combinatorial constraints, but there we would likely
compare our solution against α-approximate solutions, instead of the optimal solution. Considering
non-linear functions of the means is another natural next step. Yet another, perhaps more challeng-
ing, direction is to consider stochastic optimization problems, where the solution may depend on
other details of the distributions than just the means.
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Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-armed bandits. In
COLT-23th Conference on Learning Theory-2010, pages 13–p, 2010.
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Appendix A. Preliminaries in Probability

We first introduce the following versions of the standard Chernoff-Hoeffding bounds.

Proposition A.1 Let Xi(1 ≤ i ≤ n) be n independent random variables with values in [0, 1]. Let
X = 1

n

∑n
i=1Xi. The following statements hold:

1. For every t > 0, we have that

Pr[X − E[X] ≥ t] ≤ exp(−2t2n), and

Pr[X − E[X] ≤ −t] ≤ exp(−2t2n).

2. For any ε > 0, we have that

Pr[X < (1− ε)E[X]] ≤ exp(−ε2nE[X]/2), and

Pr[X > (1 + ε)E[X]] ≤ exp(−ε2nE[X]/3).

Applying the above Proposition, we can get useful upper bound for the binomial distribution.

Corollary A.2 Suppose the random variable X follows the binomial distribution Bin(n, p), i.e.,
Pr[X = k] =

(
n
k

)
pk(1− p)n−k for k ∈ {0, 1, . . . , n}. It holds that for any ε > 0,

Pr[X < (1− ε)pn] ≤ exp(−ε2pn/2), and

Pr[X > (1 + ε)pn] ≤ exp(−ε2pn/3).
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We also need the following Chernoff-type concentration inequality (see Proposition A.4. in Zhou
et al. (2014)).

Proposition A.3 Let Xi(1 ≤ i ≤ k) be independent random variables. Each Xi takes value ai
(ai ≥ 0) with probability at most exp(−a2i t) for some t ≥ 0, and 0 otherwise. LetX = 1

k

∑k
i=1Xi.

For every ε > 0, when t ≥ 2
ε2

, we have that

Pr[X > ε] < exp(−ε2tk/2).

We need to introduce the definition of the negative binomial distributions (see e.g., (Motwani and
Raghavan, 2010, pp.446)).

Definition A.4 Let X1, X2, . . . , Xn be i.i.d. random variables with the common distribution being
the geometric distribution with parameter p. The random variableX = X1+X2+. . .+Xn denotes
the number of coin flips (each one has probability p to be HEAD) needed to obtain n HEADS. The
random variable X has the negative binomial distribution with parameters n and p, denote as
X ∼ NegBin(n; p).

Lemma A.5 Pr[NegBin(n; p) > r] = Pr[Bin(r; p) < n].

Proof Consider the event NegBin(n; p) > r. By the definition of NegBin(n; p), it is equivalent to
the event that during the first r coin flips, there are less than n HEADS. The lemma follows imme-
diately.

Definition A.6 (stochastic dominance) We say a random variable X stochastically dominates an-
other random variable Y if for all r ∈ R, we have Pr[X > r] ≥ Pr[Y > r].

Appendix B. Missing Proofs

Proof [Proof of Proposition 1.6] Let I be an ε-optimal solution. We show it is also elementwise-ε-
optimal. Let oi be the arm with the ith largest mean in OPT and ai be the arm with the ith largest
mean in I . Suppose for contradiction that µ(ai) < µ(oi)− ε for some i ∈ [k] where k = rank(S).
Now, consider the sorted list of the arms according to the modified cost function µI,ε. The arm ai
is ranked after oi and all oj with j < i. Let P be the set of all arms with mean no less than oi with
respect to µI,ε. Clearly, rank(P ) ≥ i. So the greedy algorithm should select at least i elements in
P , while I only has at most i − 1 elements in P , contradicting the optimality of I with respect to
µI,ε.

For the second part, take a BEST-k-ARM (k = 2) instance with four arms: µ(a1) = 0.91, µ(a2) =
0.9, µ(a3) = 0.89, µ(a4) = 0.875. The set {a3, a4} is elementwise-0.3-optimal, but not 0.3-
optimal.
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