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Abstract
The best arm identification problem (BEST-1-ARM) is the most basic pure exploration problem
in stochastic multi-armed bandits. The problem has a long history and attracted significant atten-
tion for the last decade. However, we do not yet have a complete understanding of the optimal
sample complexity of the problem: The state-of-the-art algorithms achieve a sample complexi-
ty of O(

∑n
i=2 ∆−2

i (ln δ−1 + ln ln ∆−1
i )) (∆i is the difference between the largest mean and the

ith mean), while the best known lower bound is Ω(
∑n

i=2 ∆−2
i ln δ−1) for general instances and

Ω(∆−2 ln ln ∆−1) for the two-arm instances. We propose to study the instance-wise optimality
for the BEST-1-ARM problem. Previous work has proved that it is impossible to have an instance
optimal algorithm for the 2-arm problem. However, we conjecture that modulo the additive term
Ω(∆−2

2 ln ln ∆−1
2 ) (which is an upper bound and worst case lower bound for the 2-arm problem),

there is an instance optimal algorithm for BEST-1-ARM. Moreover, we introduce a new quantity,
called the gap entropy for a best-arm problem instance, and conjecture that it is the instance-wise
lower bound. Hence, resolving this conjecture would provide a final answer to the old and basic
problem.

1. Introduction

In the BEST-1-ARM problem, we are given n stochastic arms A1, . . . , An. The ith arm Ai has a
reward distribution Di with an unknown mean µi ∈ [0, 1]. We assume that all reward distributions
are Gaussian distributions with variance 1. Upon each play ofAi, we can get a reward value sampled
i.i.d. from Di. Our goal is to identify the arm with largest mean using as few samples as possible.
We assume here that the largest mean is strictly larger than the second largest (i.e., µ[1] > µ[2]) to
ensure the uniqueness of the solution, where µ[i] denotes the ith largest mean. The problem is also
called the pure exploration problem in the stochastic multi-armed bandit literature.

We say an algorithm A is δ-correct for BEST-1-ARM, if it outputs the correct answer on any
instance with probability at 1− δ, and we use TA(I) to denote the expected number of total samples
taken by algorithm A on instance I . We also define the gap of ith arm, ∆[i] := µ[1] − µ[i].

2. Background

During the last decade, the BEST-1-ARM problem and its optimal sample complexity have attracted
significant attention. We only mention a small subset that are most relevant to us. The current best
lower bound is due to Mannor and Tsitsiklis (2004), who showed that for any δ-correct algorithm
for BEST-1-ARM, it requires Ω

(∑n
i=2 ∆−2[i] ln δ−1

)
(referred to as the MT lower bound from now
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on) samples in expectation for any instance. We note that the MT lower bound is an instance-wise
lower bound, i.e., any BEST-1-ARM instance requires the stated number of samples. On the other
hand, the current published best known upper bound is O

(∑n
i=2 ∆−2[i]

(
ln ln ∆−1[i] + ln δ−1

))
, due

to Karnin et al. (2013). Jamieson et al. (2014) obtained a UCB-type algorithm (called lil’UCB),
which achieves the same sample complexity. We refer the above bound as the KKS-JMNS bound.
Back in 1964, Farrell (1964) provided an Ω(∆−2 ln ln ∆−12 ) lower bound for the two-arm cases
(which matches the KKS-JMNS bound for two arms).

Very recently, in an unpublished manuscript (Chen and Li (2015)), the authors obtained im-
proved lower and upper bounds for BEST-1-ARM. The work lead the authors to make an intriguing
conjecture which we detail in the next section. We will also state the improved bounds and their
connection to the conjecture in more details.

3. Open Problem: Almost Instance Optimality and the Gap Entropy Conjecture

We propose to study BEST-1-ARM from the perspective of instance optimality, the ultimate notion
of optimality (see e.g., Fagin et al. (2003); Afshani et al. (2009)).

For the 2-arm cases, the KKS-JMNS bound O(∆−2 ln ln ∆−12 ) is an upper bound for every in-
stance, and the Farrell lower bound Ω(∆−2 ln ln ∆−12 ) is a lower bound for the worst case instances.
As we observed in (Chen and Li (2015)), it is impossible to obtain an instance optimal algorithm
even for the 2-arm cases. While the observation has ruled out any hope of an instance optimal
algorithm for BEST-1-ARM, however, as we will see, it is still possible to obtain very satisfiable
answer in terms of instance optimality.

Now, we formally define what is an instance-wise lower bound. Clearly, two arm instances differ
only by a permutation of arms should be considered as the same instance. Inspired by Afshani et al.
(2009), we give the following natural definition.

Definition 3.1 (Order-Oblivious Instance-wise Lower Bound)
Given a BEST-1-ARM instance I and a confidence level δ, we define

L(I, δ) := inf
A:A is δ-correct for BEST-1-ARM

1

n!
·
∑

π∈Sym(n)
TA(π ◦ I),

where the summation is over all n! permutations of {1, . . . , n}.
The MT lower bound immediately implies that L(I, δ) = Ω(

∑n
i=2 ∆−2[i] ln δ−1).

We conjecture that the two-arm instance is the only obstruction toward an instance-wise optimal
algorithm. More precisely, we have the following conjecture.

Conjecture 3.2 There is an algorithm for BEST-1-ARM with sample complexity
O(L(I, δ) + ∆−22 ln ln ∆−12 ),

for any instance I and δ < 0.1. And we say such an algorithm is almost instance-wise optimal for
BEST-1-ARM.

In the light of the discussion for the 2-arm cases, there must be a gap between the sample complexity
of a δ-correct algorithm and L(I, δ), and Conjecture 3.2 states that the gap can be as small as an
additive factor ∆−22 ln ln ∆−12 , which is all we need to find out the best arm from the top-2 arms,
and is an inevitable gap even for the 2-arm instances.

Moreover, we provide an explicit formula for L(I, δ). Interestingly, the formula involves an
entropy term (similar entropy terms also appear in Afshani et al. (2009) for completely different
problems). We define the entropy term first.
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Definition 3.3 Given a BEST-1-ARM instance I , let

Gk = {i ∈ [2, n] | 2−k ≤ ∆[u] < 2−k+1}, Hk =
∑

i∈Gk

∆−2[i] , and pk = Hk/
∑

j
Hj .

We can view {pk} as a discrete probability distribution. We define the following quantity as the gap
entropy for the instance I

Ent(I) =
∑

Gk 6=∅
pk log p−1k .1

Remark 3.4 We choose to partition the arms based on the powers of 2. There is nothing special
about 2 and replacing it by any other constant only changes Ent(I) by a constant factor.

Then we formally state our conjecture.

Conjecture 3.5 For any BEST-1-ARM instance I and δ < 0.1, we have

L(I, δ) = Θ
(∑n

i=2
∆−2[i] ·

(
ln δ−1 + Ent(I)

))
.

In the next section, we will try to motivate the term Ent(I) and explain the reasons that lead us to
make the above conjecture.

4. Motivation and Current Progress

In our recent work (Chen and Li (2015)), we provide an algorithm with the following sample com-
plexity:

O
(

∆−2[2] ln ln ∆−1[2] +
∑n

i=2
∆−2[i] ln δ−1 +

∑n

i=2
∆−2[i] ln ln min(n,∆−1[i] )

)
. (1)

Furthermore, the algorithm achieves a sample complexity of

O
(

∆−2[2] ln ln ∆−1[2] +
∑n

i=2
∆−2[i] ln δ−1

)
, (2)

for clustered instances (We say an instance is clustered if the number of nonempty Gks is bounded
by a constant).

Our new upper bounds (1) and (2) match our conjectured gap entropy lower bound in two
extreme cases. On one extreme, the maximum value Ent(I) can get is O(ln lnn). This can be
achieved by instances in which there are log n nonempty groups Gi and they have almost the same
weight Hi. Hence, (1) is optimal for such instances. On the other extreme where there is only
a constant number of nonempty groups (i.e., the instance is clustered), Ent(I) = O(1), and our
algorithm can achieve almost instance optimality (without relying on the Conjecture 3.5, due to the
MT lower bound) in this case.

Besides the fact that our algorithm can achieve optimal results for both extreme cases, we have
more reasons to believe why Ent(I) should enter the picture.

Upper Bounds:
First, we motivate the gap entropy Ent from the algorithmic side. Consider an elimination-based

algorithm (such as Karnin et al. (2013) or our algorithm). We must ensure that the best arm is not
eliminated in any round. Recall that in the rth round, we want to eliminate arms with gap ∆r =
Θ(2−r), which is done by obtaining an approximation of the best arm, then take O(∆−2r ln δ−1r )
samples from each arm and eliminate the arms with smaller empirical means. Roughly speaking, we

1. Note that it is exactly the Shannon entropy for the distribution defined by {pk}.
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need to assign the failure probability δr carefully to each round (by union bound, we need
∑

r δr ≤
δ). The algorithm in Karnin et al. (2013) used δr = O(δ · r−2), and we used a better way to assign
δr. Indeed, if one can assign δr’s optimally (i.e., minimize

∑
rHr ln δ−1r subject to

∑
r δr ≤ δ),

one could achieve the entropy bound
∑

rHr · (ln δ−1 + Ent(I)) (by letting δr = δHr/
∑

iHi). Of
course, this does not lead to an algorithm directly, as we do not know His in advance.

Using our techniques, we can estimate the values Hr’s when we enter the rth elimination stage.
The only obstacle for implementing the above idea of assigning δr’s optimally is that we do not
know

∑
rHr initially. We believe the difficulty can be overcome by additional new algorithmic

ideas.

Lower Bounds:
In Chen and Li (2015), we prove the following lower bound, improving the MT lower bound.

Theorem 4.1 (Theorem 1.6 in Chen and Li (2015)) There exist constants c, c1 > 0 and N ∈ N
such that, for any δ < 0.005 and any δ-correct algorithm A, and any n ≥ N , there exists an n
arms instance I such that TA[I] ≥ c ·

∑n
i=2 ∆−1[i] ln lnn. Furthermore, ∆−2[2] ln ln ∆−1[2] <

c1
lnn ·∑n

i=2 ∆−1[i] ln lnn.

In fact, in the lower bound instances, there are log n nonempty groups Gi and they have almost
the same weight Hi (hence, Ent(I) = Θ(ln lnn)). Combining with the MT lower bound, we have
covered the two extreme ends of Conjecture 3.5.

Moreover, it is possible to extend our current technique to construct many instances IS such that
any algorithm A requires at least Ω(H(IS) · Ent(IS)) samples. This strongly suggests Ω(H(I) ·
Ent(I)) is the right lower bound. However, a complete resolution of Conjecture 3.5 seems to require
new techniques.
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exploration algorithm for multi-armed bandits. COLT, 2014.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages
1238–1246, 2013.

Shie Mannor and John N Tsitsiklis. The sample complexity of exploration in the multi-armed bandit
problem. The Journal of Machine Learning Research, 5:623–648, 2004.

4


	Introduction
	Background
	Open Problem: Almost Instance Optimality and the Gap Entropy Conjecture
	Motivation and Current Progress

