JMLR: Workshop and Conference Proceedings vol 49:1-16, 2016

Complexity Theoretic Limitations on Learning DNF’s

Amit Daniely AMITDANIELY @ GOOGLE.COM
Google Inc, Mountain-View, California*

Shai Shalev-Shwartz SHAIS @ CS.HUJI.AC.IL
School of Computer Science and Engineering, The Hebrew University, Jerusalem, Israel

Abstract

Using the recently developed framework of Daniely et al. (2014), we show that under a natural
assumption on the complexity of random K-SAT, learning DNF formulas is hard. Furthermore,
the same assumption implies the hardness of various learning problems, including intersections of
w(log(n)) halfspaces, agnostically learning conjunctions, as well as virtually all (distribution free)
learning problems that were previously shown hard (under various complexity assumptions).
Keywords: DNFs, Hardness of learning

1. Introduction

In the PAC learning model (Valiant, 1984), a learner is given an oracle access to randomly generated
samples (X,Y) € X x {0, 1} where X is sampled from some unknown distribution D on X and
Y = h*(X) for some unknown h* : X — {0,1}. It is assumed that h* comes from a predefined
hypothesis class H, consisting of 0, 1 valued functions on X'. The learning problem defined by ‘H
isto find h : X — {0,1} that minimizes Errp(h) := Prx.p(h(X) # h*(X)). For concreteness,
we take X = {41}", and say that the learning problem is tractable if there is an algorithm that on
input €, runs in time poly(n, 1/€) and outputs, w.h.p., a hypothesis h with Err(h) < e.

Assuming P # NP, the status of most basic computational problems is fairly well understood.
In a sharp contrast, 30 years after Valiant’s paper, the status of most basic learning problems is still
wide open — there is a huge gap between the performance of best known algorithms and hardness
results (e.g., Daniely et al. (2014)). The main obstacle is the ability of a learning algorithm to return
a hypothesis which does not belong to A (such an algorithm is called improper). This flexibility
makes it very hard to apply reductions from NP-hard problems (see Applebaum et al. (2008);
Daniely et al. (2014)). Until recently, there was only a single framework, due to Kearns and Valiant
(Kearns and Valiant, 1989), to prove lower bounds on learning problems. The framework of Kearns
and Valiant (1989) makes it possible to show that certain cryptographic assumptions imply hardness
of certain learning problems. As indicated above, the lower bounds established by this method are
far from the performance of best known algorithms.

In a recent paper Daniely et al. (2014) (see also Daniely et al. (2013)) developed a new frame-
work to prove hardness of learning based on hardness on average of CSP problems. Yet, Daniely
et al. (2014) were not able to use their technique to establish hardness results that are based on
a natural assumption on a well studied problem. Rather, they made a quite speculative hardness
assumption, that is concerned with general CSP problems, most of which were never studied ex-

* Most work was done while the author was a Ph.D. student at the Hebrew University, Jerusalem, Israel

© 2016 A. Daniely & S. Shalev-Shwartz.

DANIELY SHALEV-SHWARTZ

plicitly. This was recognized in Daniely et al. (2014) as the main weakness of their approach, and
therefore the main direction for further research. About a year after, Allen et al. (2015) refuted the
assumption of Daniely et al. (2014). On the other hand Daniely (2016) was able to overcome the use
of the speculative assumption, and proved hardness of approximately and agnostically learning of
halfspaces based on a natural assumption on the complexity of refuting random K-XOR instances,
in the spirit of Feige’s assumption (Feige, 2002). Likewise, in this paper, under a natural assumption
on the complexity of random K-SAT we show:

1. Learning DNF’s is hard.

2. Learning intersections of w(log(n)) halfspaces is hard, even over the boolean cube.
3. Learning sparse polynomial threshold functions is hard, even over the boolean cube.
4. Agnostically' learning conjunctions is hard.

5. Agnostically learning halfspaces is hard, even over the boolean cube.

6. Agnostically learning parities is hard.

7. Learning finite automata is hard.

To the best of our knowledge, results 1, 2, 3, 4 are new, in the sense that there were no previous
unrestricted hardness of learning results for these problems. We note that 5, 7 can be established
under cryptographic assumptions, using the cryptographic technique (Feldman et al., 2006; Kearns
and Valiant, 1989), and also assuming that random K-XOR is hard (Daniely, 2016). Also, 6 follows
from the hardness of learning parities with noise’ (Blum et al., 2003), which is often taken as a
hardness assumption. As for 2, the previously best lower bounds (Klivans and Sherstov, 2006)
only rule out learning intersections of polynomially many halfspaces, again under cryptographic
assumptions. To the best of our knowledge, 1-7 implies the hardness of virtually all (distribution
free) learning problems that were previously shown hard (under various complexity assumptions).

1.1. The random K-SAT assumption

Unless we face a dramatic breakthrough in complexity theory, it seems unlikely that hardness of
learning can be established on standard complexity assumptions such as P % NP (see Applebaum
et al. (2008); Daniely et al. (2014)). Indeed, all currently known lower bounds are based on cryp-
tographic assumptions. Similarly to Feige’s paper Feige (2002), we rely here on the hardness of
refuting random K -SAT formulas. As cryptographic assumptions, our assumption asserts the hard-
ness on average of a certain problem that have resisted extensive attempts of attack during the last
50 years (e.g. Davis et al. (1962); Beame and Pitassi (1996); Beame et al. (1998); Ben-Sasson and
Wigderson (1999); Feige (2002); Feige and Ofek (2004); Coja-Oghlan et al. (2004, 2010)).

Let J = {C1,...,Cy,} be arandom K-SAT formula on n variables. Precisely, each K-SAT
constraint C; is chosen independently and uniformly from the collection of n-variate K-SAT con-
straints. A simple probabilistic argument shows that for some constant C' (depending only on K), if

1. See section 2.1 for a definition of agnostic learning.
2. Note that agnostically learning parities when D is uniform is not equivalent to the problem that is usually referred as
“learning parities with noise”, since in agnostic learning, the noise might depend on the instance.

COMPLEXITY THEORETIC LIMITATIONS ON LEARNING DNF’s

m > Cn, then J is not satisfiable w.h.p. The problem of refuting random K-SAT formulas (a.k.a.
the problem of distinguishing satisfiable from random K -SAT formulas) seeks efficient algorithms
that provide, for most formulas, a refutation. That is, a proof that the formula is not satisfiable.

Concretely, we say that an algorithm is able to refute random K -SAT instances with m =
m(n) > Cn clauses if on 1 — 0,,(1) fraction of the K-SAT formulas with m constraints, it outputs
“unsatisfiable”, while for every satisfiable K-SAT formula with m constraints, it outputs “satis-
fiable?. Since such an algorithm never errs on satisfiable formulas, an output of “unsatisfiable”
provides a proof that the formula is not satisfiable.

The problem of refuting random K-SAT formulas has been extensively studied during the last
50 years. It is not hard to see that the problem gets easier as m gets larger. The currently best
known algorithms Feige and Ofek (2004); Coja-Oghlan et al. (2004, 2010) can only refute random

instances with) (n[%1) constraints for K > 4 and Q (n'*) constraints for K = 3. In light of that,

Feige (2002) made the assumption that for K = 3, refuting random instances with Cn constraints,
for every constant C, is hard (and used that to prove hardness of approximation results). Here, we
put forward the following assumption.

Assumption 1 Refuting random K -SAT formulas with n!) constraints is hard for some f(K) =
w(1).

Terminology 2 Computational problem is RSAT-hard if its tractability refutes assumption 1.

We outline below some evidence to the assumption, in addition to known algorithms’ performance.

Hardness of approximation. Define the value, VAL(.J), of a K-SAT formula J as the maximal
fraction of constraints that can be simultaneously satisfied. Hastad’s celebrated result (Hastad, 2001)
asserts that if P # NP, it is hard to distinguish satisfiable K -SAT instances from instances with
1 -2% < VAL(J) < 1 -2 4 ¢ Since the value of a random formula is approximately
1 — 27K we can interpret Hastad’s result as claiming that it is hard to distinguish satisfiable from
“semi-random” K -SAT formulas (i.e., formulas whose value is approximately the value of a random
formula). Therefore, assumption 1 can be seen as a strengthening of Hastad’s result.

Resolution lower bounds. The length of resolution refutations of random K-SAT formulas
have been extensively studied (e.g. Haken (1985); Beame and Pitassi (1996); Beame et al. (1998);
Ben-Sasson and Wigderson (1999)). It is known (theorem 2.24 in Ben-Sasson (2001)) that random
formulas with n> —¢ constraints only have exponentially long resolution refutations. This shows
that a large family of algorithms (the so-called Davis-Putnam algorithms Davis et al. (1962)) cannot
efficiently refute random formulas with n> ¢ constraints. These bounds can also be taken as an
indication that random instances do not have short refutations in general, and therefore hard to
refute.

Hierarchies and SOS lower bounds. A family of algorithms whose performance has been
analyzed are convex relaxations (Buresh-Oppenheim et al., 2003; Schoenebeck, 2008; Alekhnovich
et al., 2005) that belong to certain hierarchies of convex relaxations. Among those hierarchies,
the strongest is the Lasserre hierarchy (a.k.a. Sum Of Squares). Algorithms from this family
achieve state of the art results for the K-SAT problem and many similar problems. In Grigoriev
(2001); Schoenebeck (2008) it is shown that relaxations in the Lasserre hierarchy that work in sub-
exponential time cannot refute random formulas with n> —€ constraints.

3. See a precise definition in section 2.2

DANIELY SHALEV-SHWARTZ

Lower bounds on statistical algorithms. Another family of algorithms whose performance
has been analyzed are the so-called statistical algorithms. Similarly to hierarchies lower bounds,
the results in Feldman et al. (2015) imply that statistical algorithms cannot refute random K-SAT

. K .
formulas with n2 ~€ constraints for any € > 0.

1.2. Results

Learning DNF’s. A DNF clause is a conjunction of literals. A DNF formula is a disjunction of
DNF clauses. Each DNF formula over n variables naturally induces a function on {+1}". The
size of a DNF clause is the the number of literals, and the size of a DNF formula is the sum of the
sizes of its clauses. For ¢ : N — N, denote by DNF ;,,) the class of functions over {+1}" that are
realized by DNF's of size < g(n). Also, DNF4™ is the class of functions that are realized by DNF
formulas with < ¢(n) clauses. Since each clause is of size at most n, DNF4(™) ¢ DNF,,4(n)-

Learning hypothesis classes consisting of poly sized DNF’s formulas has been a major effort
in computational learning theory (e.g. Valiant (1984); Klivans and Servedio (2001); Linial et al.
(1989); Mansour (1995)). Already in Valiant’s paper (Valiant, 1984), it is shown that for every
constant ¢, DNF-formulas with < ¢ clauses can be learnt efficiently. As for lower bounds, properly
learning DNF’s is known to be hard (Pitt and Valiant, 1988). Yet, hardness of improperly learning
DNEF’s formulas has remained a major open question. Here we show:

Theorem 3 If ¢(n) = w(log(n)) then learning DNFI™ js RSAT-hard.

Since DNF4(™) < DNF,4(n), we immediately conclude that learning DNE’s of size, say, < n log?(n),
is RSAT-hard. By a simple scaling argument (e.g. Daniely et al. (2014)), we obtain an even stronger
result:

Corollary 4 For every € > 0, it is RSAT-hard to learn DNF .

Remark 5 By boosting results (Schapire, 1989), hardness of improper learning is automatically

very strong quantitatively. Namely, for every ¢ > 0, it is hard to find a classifier with error < 1 — L

2 nc
Put differently, making a random guess on each example, is essentially optimal.
Additional results. Theorem 3 implies the hardness of several problems, in addition to DNFs.
Corollary 6 Learning intersections of w(log(n)) halfspaces over {1}" is RSAT-hard.

Corollary 7 Learning polynomial threshold functions over {0, 1}" with support size w(log(n)) is
RSAT-hard.

Corollary 8 Agnostically learning conjunctions is RSAT-hard.
Corollary 9 Agnostically learning halfspaces over {+1}" is RSAT-hard.
Corollary 10 Agnostically learning parities* is RSAT-hard.

Corollary 11 For every € > 0, learning automata of size n® is RSAT-hard.

4. A parity is any hypothesis of the form h(z) = Il;esx; for some S C [n].

COMPLEXITY THEORETIC LIMITATIONS ON LEARNING DNF’s

Theorems 6 and 7 are direct consequences of theorem 3, as any function realized by a DNF formula
with ¢(n) can be also realized by an intersection of g(n) halfspaces, or a polynomial threshold
functions over {0, 1}" with support size ¢(n). Theorem 8 follows from theorem 3, as learning
DNFs can be reduced to agnostically learning conjunctions (Lee et al., 1996). Theorem 9 follows
from theorem 8, as conjunctions are a subclass of halfspaces. Theorem 10 follows from theorem 3
and Feldman et al. (2006), who showed that learning DNFs can be reduced to agnostically learning
parities. Theorem 11 follows from theorem 3 by Pitt and Warmuth (1988), who showed that
learning DNFs can be reduced to learning Automata.

1.3. Related work

As indicated above, hardness of learning is traditionally established based on cryptographic assump-
tions. The first such result follows from Goldreich et al. (1986), and show that if one-way functions
exist, than it is hard to learn polynomial sized circuits. To prove lower bounds on simpler hypoth-
esis classes, researchers had to rely on more concrete hardness assumptions. Kearns and Valiant
(1989) were the first to prove such results. They showed that assuming the hardness of various
cryptographic problems (breaking RSA, factoring Blum integers and detecting quadratic residues),
it is hard to learn automata, constant depth threshold circuits, log-depth circuits and boolean formu-
lae. Kharitonov (1993) showed, under a relatively strong assumption on the complexity of factoring
random Blum integers, that learning constant depth circuits (for unspecified constant) is hard. Kli-
vans and Sherstov (2006) showed that, under the hardness of the shortest vector problem, learning
intersections of polynomially many halfspaces is hard. By Feldman et al. (2006), it also follows that
agnostically learning halfspaces is hard. Hardness of agnostically learning halfspaces also follows
from the hardness of learning parities with noise (Kalai et al., 2005).

There is a large body of work on various variants of the standard (improper and distribution free)
PAC model. Hardness of proper learning, when the learner must return a hypothesis from the learnt
class, is much more understood (e.g. Khot and Saket (2008, 2011); Guruswami and Raghavendra
(2006); Feldman et al. (2006); Pitt and Valiant (1988)). Hardness of learning with restrictions on
the distribution were studied in, e.g., Klivans and Kothari (2014); Kalai et al. (2005); Kharitonov
(1993). Hardness of learning when the learner can ask the label of unseen examples were studied
in, e.g., Angluin and Kharitonov (1991); Kharitonov (1993).

Lower bounds using the technique we use in this paper initiated in Daniely et al. (2013, 2014).
In Daniely et al. (2013) it was shown, under Feige’s assumption, that if the number of examples
is limited (even though information theoretically sufficient), then learning halfspaces over sparse
vectors is hard. The full methodology we use here was presented in Daniely et al. (2014). They
made a strong and general assumption, that says, roughly, that for every random CSP problem,
if the number of random constraints is too small to provide short resolution proofs, then the SDP
relaxation of Raghavendra (2008) has optimal approximation ratio. Under this assumption they
concluded hardness results that are similar to the results presented here. Later on, Allen et al.
(2015) refuted this assumption. On the other hand, Daniely (2016) proved inapproximabilty results
for agnostically learning halfspaces assuming that random K -XOR is hard.

DANIELY SHALEV-SHWARTZ

2. Preliminaries

2.1. PAC Learning

A hypothesis class, H, is a series of collections of functions H,, C {0, 1}X", n=12,.... We
often abuse notation and identify H with #,,. The instance spaces X,, we consider are {+1}",
{0,1}" or X, i (see section 2.2). Distributions on Z,, := X), x {0, 1} are denoted D,,. The error of
h . X, — {0,1} is Errp, (k) = Pr(,)p, (h(z) # y). For a class H,, we let Errp, (H,) =
minpeyy,, Errp, (h). We say that D,, is realizable by h (resp. H,) if Errp,(h) = 0 (resp.
Errp, (Hy) = 0). A sample is a sequence S = {(z1,y1), ... (Tm,Ym)} € Z7'. The empirical
errorof b : X, — {0,1} on Sis Errg(h) = = Y™ 1(h(x;) # y:), and the empirical error of H,,
on Sis Errg(H,) = minyecy, Errg(h). We say that S is realizable by h (resp. H,,) if Errg(h) = 0
(resp. Errg(H,) = 0).

A learning algorithm, L, obtains an error, confidence and complexity parameters 0 < ¢ < 1,
0 < § < 1, and n, as well as an oracle access to examples from an unknown distribution D,, on Z,,.
It should output a (description of) hypothesis h : X,, — {0, 1}. We say that £ (PAC) learns H if, for
every realizable D,,, w.p. > 1—4, L outputs a hypothesis with error < e. We say that £ agnostically
learns H if, for every Dy, w.p. > 1 — 4, L outputs a hypothesis with error < Errp, (H) + €. We say
that L is efficient if it runs in time poly(n, 1/¢,1/4), and outputs a hypothesis that can be evaluated
in time poly(n, 1/€,1/6). Finally, £ is proper if it always outputs a hypothesis in . Otherwise,
we say that L is improper.

2.2. Random Constraints Satisfaction Problems

Let X, i be the collection of (signed) K -tuples, that is, vectors x = [(a1,41),. .., (oK, ix)] for
a1,...,ax € {£1} and distinct iy, ..., ix € [n]. For j € [K] we denote z(5) = (z!(j),2%(j)) =
(ovj,i;). Eachz € X, ¢ defines a function U, : {£1}" — {£1}X by U, (¥) = (1tbiy, - - -, iy).

Let P : {1} — {0,1} be some predicate. A P-constraint with n variables is a function
C : {£1}" — {0,1} of the form C(x) = P o U, for some € X, . An instance to the CSP
problem CSP(P) is a P-formula, i.e., a collection J = {C1,...,C),} of P-constraints (each is
specified by a K -tuple). The goal is to find an assignment ¢ € {£1}" that maximizes the fraction
of satisfied constraints (i.e., constraints with C;(¢)) = 1). We will allow CSP problems where P
varies with n (but is still fixed for every n). For example, we can look of the [log(n)|-SAT problem.

We will often consider the problem of distinguishing satisfiable from random P formulas (a.k.a.
the problem of refuting random P formulas). Concretely, for m : N — N, we say that the problem
CSPS{?S) (P) is easy, if there exists an efficient randomized algorithm, A, such that:

e If J is a satisfiable instance to CSP(P) with n variables and m(n) constraints, then

Pr (A(J) = “satisfiable”) >

coins of A

o

e If J is a random’ instance to CSP(P) with n variables and m(n) constraints then, with
probability 1 — 0,,(1) over the choice of J,

Pr (A(J) = “random”) >

coins of A

e~ w

5. To be precise, in a random formula with n variable and m constraints, the K -tuple defining each constraint is chosen
uniformly, and independently from the other constraints.

COMPLEXITY THEORETIC LIMITATIONS ON LEARNING DNF’s

2.3. The methodology of Daniely et al. (2014)

In this section we briefly survey the technique of Daniely et al. (2014, 2013) to prove hardness of
improper learning. Let D = {D,T (n) }n be a polynomial ensemble of distributions, that is, DY ()
is a distribution on Z™™ and m(n) < poly(n). Think of Dy (") as a distribution that generates
samples that are far from being realizable. We say that it is hard to distinguish realizable from

D-random samples if there is no efficient randomized algorithm 4 with the following properties:
e For every realizable sample S € Z,," (n), Printernal coins of A (A(S) = “realizable”) > %.

o If S ~ D) (n), then with probability 1 — o,,(1) over the choice of S, it holds that

A(S) = “unrelizable”) >

internal coins of A

IR

Forp: N — (0,00) and 1 > 8 > 0, we say that D is (p(n), B)-scattered if, for large enough n, it

holds that for every function f : X,, — {0, 1}, PrSNDm(n) (Errg(f) < pB) < 2-p(n)

Example 1 Let D,, be a distribution over Z,, such that if (x,y) ~ Dy, then y is a Bernoulli r.v.
with parameter %, independent from x. Let D), ") be the distribution over 2z ™) obtained by taking
m(n) independent examples from Dy. For f : X, — {0,1}, Pry mm) (Errg(f) < 1) is the

probability of getting at most —;~ heads in m(n) independent tosses of a fair coin. By Hoeffding’s
bound, this probability is < 2~ 5™™). Therefore, D = {Dzl(n)}n is (§m(n),1/4)-scattered.

Hardness of distinguishing realizable from scattered samples turns out to imply hardness of learning.

Theorem 12 Daniely et al. (2014) Every hypothesis class that satisfies the following condition is
not efficiently learnable. There exists 3 > 0 such that for every d > 0 there is an (nd, B)-scattered
ensemble D for which it is hard to distinguish between a D-random sample and a realizable sample.

The basic observation of Daniely et al. (2014, 2013) is that an efficient algorithm, running on a very
scattered sample, will return a bad hypothesis w.h.p. The reason is that the output classifier has a
short description, given by the polynomially many examples the algorithm uses. Hence, the number
of hypotheses the algorithm might return is limited. Now, since the sample is scattered, all these
hypotheses are likely to perform purely. Based on that observation, an efficient learning algorithm
can efficiently distinguish realizable from scattered samples: We can simply run the algorithm on
the given sample to obtain a classifier h. Now, if the sample is realizable, i will perform well.
Otherwise, if the sample is scattered, h will perform purely. Relying on that, we will be able to
distinguish between the two cases. For completeness, we include the proof of theorem 12 in section
A.

3. Proof of theorem 3

3.1. An overview

Intuitively, the problem of distinguishing satisfiable from random formulas is similar to the problem
of distinguishing realizable from random samples. In both problems, we try to distinguish rare and

DANIELY SHALEV-SHWARTZ

structured instances from very random and “messy” instances. The course of the proof is to reduce
the first problem to the second. Concretely, we reduce the problem CSPZ%nd(SAT k) to the problem
of distinguishing realizable (by DNF(?) samples from (n?=2, %)—scattered samples. With such a

reduction at hand, assumption 1 and theorem 12, imply theorem 3.

CSP PROBLEMS AS LEARNING PROBLEMS

The main conceptual idea is to interpret CSP problems as learning problems. Let P : {1} —
{0,1} be some predicate. Every ¢» € {£1}" naturally defines h, : X, x — {0, 1}, by mapping
each K -tuple z to the truth value of the corresponding constraint, given the assignment . Namely,
hy(x) = P o Ug(1). Finally, let Hp C {0,1}*% be the hypothesis class Hp = {hy | ¥ €
{£1)"}.

The problem CSP(P) can be now formulated as follows. Given z1,...,2, € &), g, find
hy, € Hp with minimal error on the sample (z1,1),..., (zm,1). Now, the problem CSPi:?g)(P)
is the problem of distinguishing a realizable sample from a random sample (x1,1),..., (zy,1) €
X,k x {0, 1} where the different x;’s where chosen independently and uniformly from &, .

The above idea alone, applied on the problem CSP‘;S‘(‘S) (SAT k) (or other problems of the form

CSPE?S) (P)), is still not enough to establish theorem 3, due to the two following points:

e In the case that sample (x1,1), ..., (@m,, 1) is random, it is, in a sense, “very random”. Yet,
it is not scattered at all! Since all the labels are 1, the constant function 1 realizes the sample.

e We must argue about the class DNF?(") rather than the class H p.

Next, we explain how we address these two points.

MAKING THE SAMPLE SCATTERED

To address the first point, we reduce CSPZ‘}ind(SAT k) to a problem of the following form. For
a predicate P : {+1}* — {0,1} we denote by CSP(P,=P) the problem whose instances are
collections, J, of constraints, each of which is either P or =P constraint, and the goal is to maximize
the number of satisfied constraints. Denote by CSP;??E)(P, —P) the problem of distinguishing®
satisfiable from random formulas with n variables and m(n) constraints. Here, in a random formula,
each constraint is chosen w.p. % to be a uniform P constraint and w.p. % a uniform — P constraint.

The advantage of the problem CSPE?S)(R —P) is that in the “learning formulation” from the
previous section, it is the problem of distinguishing a realizable sample from a sample (1, y1), - . ., (Tm, Ym) €
Xn.x % {0,1} where the pairs (z;, y;) where chosen at random, independently and uniformly. As
explained in example 1, this sample is (ém(n), i)—scattered.

We will consider the predicate T 5 : {0,1}5M — {0, 1} defined by
TK7M(Z) = (Z1 \/...\/ZK)/\(ZK_H \/...\/ZQK)/\.../\ (Z(Mfl)K+1 \/...\/ZMK) .

We reduce the problem CSP;Z“d(SAT K)to CSP;?’;“_CI1 (T .q(n)> 7Tk q(n))- This is done in two steps.
First, we reduce CSP;‘ZHd(SAT K) to CSP;Z‘ldI (T q(n))- This is done as follows. Given an instance
J = {Cy,...,C,a} to CSP(SATx), by a simple greedy procedure, we try to find n~"! disjoint

6. As in CSPY,S?S)(P), in order to succeed, and algorithm must return “satisfiable” w.p. > 2 on every satisfiable

formula and “random” w.p. > % on 1 — 0,,(1) fraction of the random formulas.

COMPLEXITY THEORETIC LIMITATIONS ON LEARNING DNF’s

subsets Ji,...,J ;_, C J, such that for every ¢, J; consists of g(n) constraints and each variable
appears in at most one of the constraints in J;. Now, from every J/ we construct 7 K ,q(n)-cONstraint
that is the conjunction of all constraints in J/. As we show, if .J is random, this procedure will
succeed w.h.p. and will produce a random T ,(,)-formula. If J is satisfiable, this procedure will
either fail or produce a satisfiable T ;(,,)-formula.

The second step is to reduce CSPZZIL‘{ (T q(n)) to CSPfﬁgn_d1 (Tk ,q(n)> Tk q(n))- This is done
by replacing each constraint, w.p. %, with a random —P constraint. Clearly, if the original in-

stance is a random instance to CSPfLadn_d1 (T K7q(n)), the produced instance is a random instance to

CSP;%E‘% (TKq(n), —|TK7q(n)). Furthermore, if the original instance is satisfied by the assignment
¥ € {£1}", the same 1), w.h.p., will satisfy all the new constraints. The reason is that the predicate

—Tk q(n) is positive on almost all inputs — namely, on 1 — (1 —27%)q(n) fraction of the inputs.

Therefore the probability that a random —T' ,(,,)-constraint is satisfied by 1 is 1 — (1 —2 K)q(n),

and hence, the probability that all new constraints are satisfied by 1 is > 1 — n¢~1 (1 — 27K)q(n).

Now, since ¢(n) = w(log(n)), the last probability is 1 — 0,,(1).

REDUCING H.p To DNF?(")

To address the second point, we will realize H-r, ., by the class DNF4™ More generally, we

will show that for every predicate P : {+1}% — {0,1} expressible by a DNF formula with T
clauses, H p can be realized by DNF formulas with 7" clauses (note that for ﬂTqu(n), T = q(n)).

We first note that hypotheses in H p are defined over signed K -tuples, while DNF’s are defined
over the boolean cube. To overcome that, we will construct an (efficiently computable) mapping
g: Xk — {£1}2K7_and show that each h € Hp is of the form h = h/ o g for some DNF formula
R/ with T clauses and 2 Kn variables. Besides “fixing the domain”, g will have additional role — we
will choose an expressive g, which will help us to realize hypotheses in H p. In a sense, g will be a
first layer of computation, that is the same for all A € H p (and therefore we do not “pay” for it).

We will group the coordinates of vectors in {£1}25™ into 2K groups, corresponding to P’s
literals, and index them by [K] x {£1} x [n]. For z = [(aq, 1), ..., (ak,ik)]| € X Kk, g(z) will
be the vector whose all coordinates are 1, except that for j € [K], the (j, —«;, ;) coordinate is —1.

Now, given) € {£1}", we show that hy, : X, k — {0, 1} equals to h o g for a DNF formula
h with T clauses. Indeed, suppose that P(x) = Cy(z) V...V Cp(x) is a DNF representation of P.
It is enough to show that for every C,(z) = (—=1)"1zj, A... A (=1)P 2, there is a conjunction of
literals h, : {£1}25™ — {0, 1} such that for all x = [(a1,41), . .., (@K, iK)] € Xnx, hr(g(z)) =
Cy(Uz(%)). To see that such h, exists, note that C(U,(¢0)) = 1 if and only if, forevery 1 < 7 </,
all the values in g(z) in the coordinates of the form (j, 1;(—1)%",4) are 1.

3.2. From CSP™P(SAT k) to CSP™P (T, _»)

?log(n)

Lemma 13 The problem CSP;%nd(SATK) can be reduced to CSP;?_% (Tk) for any M <
n
log(n)*

It will be convenient to use the following strengthening of Chernoff’s bound, recently proved (with
a very simple proof) by Linial and Luria (2014)

DANIELY SHALEV-SHWARTZ

Theorem 14 Linial and Luria (2014) Let X ..., X,, be indicator rv. such that for all S C [n],
Pr(Vie S, X; =1) < al®l. Then, for every,@’ > q, Pr (n S X > B) <exp(—D(B]|la)n) <
exp(—2(8 — a)’n).

Proof For simplicity, we assume that M =

)

G g(- Suppose towalrdacon‘[radlctlonthatCSP“BLnd (TK’1 -
og(n

can be efficiently solved using an algorithm A. Consider the following algorithm, A’, to CSP:;“d (SATk).
On the input J = {C1,...,C,a},

1. Partition the constraints in .J into n%~! blocks, {Cy11,...,Ciin}, t=1,2,...,n%L
2. Fort=1,...,n%1!

(a) Let J; = 0.
(b) Forr =1,.
i If |Jt] < log(y and, for all C € J|, the set variables appearing in Cy, is disjoint
from the set of variables appearing in C, add Cy, to J;.
(o) If |J]| < Toa(n» Teturn “satisfiable”.

(d) Let C} be the Ty, ol -constraint which is the conjunction of all the constraints in J.

3. Run A on the instance J' = {Cl, ..., C" 4_} and return the same answer as A.

Next, we reach a contradiction as we prove that A’ solves the problem CSPfﬁFd(SAT K). First,
suppose that the input, J, is satisfiable. Then, either A" will return “satisfiable” in step 2c or, will
run A on J’. It is not hard to see that J’ is satisfiable as well, and therefore, A (and therefore A’)
will return “satisfiable” w.p. > %.

Suppose now that .J is random. First, we claim that A’ will reach 3 w.p. > 1 — 0,,(1). Indeed,
we will show that for large enough n and any fixed ¢, the probability of exiting at step 2¢ is <
exp <— (mf n), from which it follows that the probability of exiting at step 2c for some ¢ is

on(1). To show that, let X,,, » = 1,...,n be the indicator r.v. that is 1 if and only if one of the
variables appearing in C., also appears in one of Cii1y...,Ciir_1. Denote also X, = 1 — X,

Letn' = |5]. Itis enough to show that Z L X > log(j W-p. = 1 —exp ((ﬁ)2 n)
Indeed, for every fixed r € [n’], since the number of variables appearing in Cyy1,...,Cipp_1 is
< %, the probability that X, = 1is <1 — 2K even if we condition on X7, . .. , X,_1. Hence, the
probability that any fixed u variables out of X1,..., X, are all 1is < (1 —27%)". By theorem
14,

1 il _K K41 —K+1\2 1 ?
r(WZXizl—Z + 2 §exp<—2(2)n)gexp | 2r5 g nl .
i=1

It follows that w.p. > 1 — exp (— (ﬁ)2 n) Zfl,l X, > 2}?%, and the claim follows as for

sufficiently large n, 21?% > W Finally, it is not hard to see that, conditioning on the event that

the algorithm reaches step 3, J’ is random as well, and therefore w.p. > 1 — 0, (1) over the choice
of J, A (and therefore A’) will return “random” w.p. > % over its internal randomness.
|

10

COMPLEXITY THEORETIC LIMITATIONS ON LEARNING DNF’s

3.3. From CSP™ (T 5r) to CSP™ (T s, ~ T, 01)

Lemma 15 For any fixed K and M > 25%2 . log(m(n)), the problem CSP;‘;‘?S) (Tr,mr) can be

efficiently reduced to the problem CSP;EE% (Tr,m, T M)

Proof Given aninstance J = {C1,...,Cy,} to CSP(Tk »r), the reduction will generate an instance
to CSP(Tx a, ~Tk,) as follows. For each Cj, w.p. % we substitute C; by a random —T p
constraint. Clearly, if J is a random formula, then the produced formula is a valid random formula
to CSPrand (Tr,m, —Tre). It remains to show that if J is satisfiable, then so is J'. Indeed, let

m(n)
1 € {£1}" be a satisfying assignment to J. It is enough to show that w.p. > ﬁ 1) satisfies all
the new =T p- constraints. However, since ‘(ﬁTK’M)_I (())‘ = (2K - 1)M = (1- 2*K)M :

2MK " the probability that a single random constraint is not satisfied is (1 — 27K)M. It follows

that the probability that one of the random —T')s constraints in J " is not satisfiable by 1) is <

m(n) (1 — Q*K)M. Finally, we have m(n) (1 — 2*K)M < % since,

log (m(n) (1- Q*K)M) = log(m(n)) — M log (1_12[()

log(m(n)) — M log (1 + 1:};{)

9K

< log(m(n)) - M———¢

< log(m(n)) - Mo~ (K+1)

< log(m(n)) — 2log(m(n)) = log (m%n))

3.4. From CSP™ (T s, =Tk) to DNF’s

Lemma 16 Suppose that P : {+1}¥ — {0, 1} can be realized by a DNF formula with T clauses.
Then Hp can be efficiently realized’ by the class of DNF formulas with T clauses and 2Kn vari-
ables.

Proof The realization is given by a function g : X, i — {3-1}2K™, defined as follows. We will in-

dex the coordinates of vectors in {£1}257 by [K|x{£1}x[n] and let g;;;(z) = _
1 otherwise

To see that g indeed defines a realization of H p by the class of DNF formulas with 7" clauses,
we must show that for any assignment ¢ € {£1}", hy, = h o g for some DNF formula h with T’
clauses. Indeed, write P(z1,...,2Kx) = \/tT:1 /\fil b rzj,, for by, € {£1} and 4z, € [K]. Now

7. That is, there is an efficiently computable g : X, x — {£1}>*"™ for which each h € Hp is of the form h = h/ o g
for some DNF formula g with 7" clauses and 2Kn variables.

11

=1 a(j) = (=b,9)

DANIELY SHALEV-SHWARTZ

consider the formula h : {£1}?5X™ — {0, 1} defined by h(x) = VI_; A%, NP1 T,y abiby. - FOT
r € X, Kk we have,

h(g(z)) =1 Jt € [T|Vr € [Ri],i € [n], gj,, 01,0 () =1
Jt € [T|Vr € [Re],i € [n], x(ji,r) # (—iber, 1)
Jt € [TVr € [Re], 21(jtr) # —Vun(jor) Ot

[] [Ry]

(z) =

1
dt e|T Vr S Rt) :L'l(]t T)d)xg(jt’r) - bt,r
) P(1'1()wx2(1)77x1(K)¢x2(K)) =1

IHIMII

3.5. Wrapping up - concluding theorem 3

We are now ready to conclude the proof. Let ¢ : N — N be any function such that g(n) =
w(log(n)). W.lo.g., we assume that ¢(n) = O (logQ(n)). By theorem 12 it is enough to show that
for every d, it is hard to distinguish samples that are realizable by DNF?™ and (nd, 1/ 4) -scattered
samples.

By assumption 1, there is K such that CSPri}fQ (SATk) is hard. Denote ¢'(n) = q(2Kn). By
lemma 13, the problem CSPS}ﬁd1 (T ¢/ (n)) is hard. By lemma 15, the problem CSPY%}L (Tk.q'(n)s Tk g (n))
is hard. Now, since =T ,(,,) can be realized by a DNF formula with ¢ '(n) clauses, by lemma 16,
the problem CSP;’QH (T q '(n)> "LK.q (n)) can be reduced to a problem of distinguishing samples
that are realizable by a DNF formula with 2Kn variables and ¢'(n) clauses, from ($n*!,1/4)-
scattered samples. Changing variables (i.e., replacing 2K n with n’), we conclude that it is hard to

distinguish samples that are realizable by DNF™ from (11/ 4) -scattered samples,

1 d+
B2K)aT
which are in particular (n?, 1/4)-scattered. The theorem follows.

4. Open questions

Basic learning problems that we are unable to resolve even under the random K-SAT (or K-XOR)
assumption include decision trees and intersections of a constantly many halfspaces. (It is worth
noting that no known algorithm can learn even intersections of 2 halfspaces).

Acknowledgments

Amit Daniely was a recipient of the Google Europe Fellowship in Learning Theory, and this research
was supported in part by this Google Fellowship. Shai Shalev-Shwartz is supported by the Israeli
Science Foundation grant number 590-10. We thank Uri Feige, Guy Kindler and Nati Linial for
valuable discussions.

References

Mikhail Alekhnovich, Sanjeev Arora, and lannis Tourlakis. Towards strong nonapproximability
results in the lovédsz-schrijver hierarchy. In Proceedings of the thirty-seventh annual ACM sym-
posium on Theory of computing, pages 294-303. ACM, 2005.

12

COMPLEXITY THEORETIC LIMITATIONS ON LEARNING DNF’s

Sarah Allen, Ryan O’Donnell, and David Witmer. How to refute a random csp? In FOCS, 2015.

Dana Angluin and Michael Kharitonov. When won’t membership queries help? In STOC, pages
444-454, May 1991.

B. Applebaum, B. Barak, and D. Xiao. On basing lower-bounds for learning on worst-case assump-
tions. In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium
on, pages 211-220. IEEE, 2008.

Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In Foundations
of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages 274-282. IEEE,
1996.

Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. On the complexity of unsatisfiability
proofs for random k-cnf formulas. In Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pages 561-571. ACM, 1998.

Eli Ben-Sasson. Expansion in proof complexity. In Hebrew University. Citeseer, 2001.

Eli Ben-Sasson and Avi Wigderson. Short proofs are narrowresolution made simple. In Proceedings
of the thirty-first annual ACM symposium on Theory of computing, pages 517-526. ACM, 1999.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and
the statistical query model. Journal of the ACM (JACM), 50(4):506-519, 2003.

Joshua Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann Pitassi. Rank
bounds and integrality gaps for cutting planes procedures. In Foundations of Computer Science,
2003. Proceedings. 44th Annual IEEE Symposium on, pages 318-327. IEEE, 2003.

Amin Coja-Oghlan, Andreas Goerdt, and André Lanka. Strong refutation heuristics for random
k-sat. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, pages 310-321. Springer, 2004.

Amin Coja-Oghlan, Colin Cooper, and Alan Frieze. An efficient sparse regularity concept. SIAM
Journal on Discrete Mathematics, 23(4):2000-2034, 2010.

Amit Daniely. Complexity theoretic limitations on learning halfspaces. In STOC, 2016.

Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. More data speeds up training time in learning
halfspaces over sparse vectors. In NIPS, 2013.

Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complexity to improper
learning complexity. In STOC, 2014.

Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(7):394-397, 1962.

Uriel Feige. Relations between average case complexity and approximation complexity. In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 534-543.
ACM, 2002.

13

DANIELY SHALEV-SHWARTZ

Uriel Feige and Eran Ofek. Easily refutable subformulas of large random 3cnf formulas. In Au-
tomata, languages and programming, pages 519-530. Springer, 2004.

V. Feldman, P. Gopalan, S. Khot, and A.K. Ponnuswami. New results for learning noisy parities and
halfspaces. In In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, 2006.

Vitaly Feldman, Will Perkins, and Santosh Vempala. On the complexity of random satisfiability
problems with planted solutions. In STOC, 2015.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal
of the Association for Computing Machinery, 33(4):792—-807, October 1986.

Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the parity.
Theoretical Computer Science, 259(1):613-622, 2001.

V. Guruswami and P. Raghavendra. Hardness of learning halfspaces with noise. In Proceedings of
the 47th Foundations of Computer Science (FOCS), 2006.

Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297-308, 1985.

Johan Hastad. Some optimal inapproximability results. Journal of the ACM (JACM), 48(4):798—
859, 2001.

A. Kalai, A.R. Klivans, Y. Mansour, and R. Servedio. Agnostically learning halfspaces. In Pro-
ceedings of the 46th Foundations of Computer Science (FOCS), 2005.

Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning Boolean formulae and
finite automata. In STOC, pages 433444, May 1989.

Michael Kharitonov. Cryptographic hardness of distribution-specific learning. In Proceedings of
the twenty-fifth annual ACM symposium on Theory of computing, pages 372-381. ACM, 1993.

Subhash Khot and Rishi Saket. Hardness of minimizing and learning dnf expressions. In Foun-
dations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on, pages
231-240. IEEE, 2008.

Subhash Khot and Rishi Saket. On the hardness of learning intersections of two halfspaces. Journal
of Computer and System Sciences, 77(1):129-141, 2011.

Adam Klivans and Pravesh Kothari. Embedding hard learning problems into gaussian space. In
RANDOM, 2014.

Adam R Klivans and Rocco Servedio. Learning dnf in time 20('%) In Proceedings of the thirty-
third annual ACM symposium on Theory of computing, pages 258-265. ACM, 2001.

Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning intersections of
halfspaces. In FOCS, 2006.

Wee Sun Lee, Peter L. Bartlett, and Robert C. Williamson. Efficient agnostic learning of neural
networks with bounded fan-in. IEEE Transactions on Information Theory, 42(6):2118-2132,
1996.

14

COMPLEXITY THEORETIC LIMITATIONS ON LEARNING DNF’s

N. Linial and Z. Luria. Chernoff’s Inequality - A very elementary proof. Arxiv preprint
arXiv:1403.7739 v2, 2014.

Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform, and
learnability. In FOCS, pages 574-579, October 1989.

Yishay Mansour. An o(n loglog n) learning algorithm for dnf under the uniform distribution. Jour-
nal of Computer and System Sciences, 50(3):543-550, 1995.

L. Pitt and L.G. Valiant. Computational limitations on learning from examples. Journal of the
Association for Computing Machinery, 35(4):965-984, October 1988.

Leonard Pitt and Manfred K. Warmuth. Prediction preserving reducibility. Technical Report UCSC-
CRL-88-26, University of California Santa Cruz, Computer Research Laboratory, November
1988.

Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In Pro-
ceedings of the 40th annual ACM symposium on Theory of computing, pages 245-254. ACM,
2008.

R.E. Schapire. The strength of weak learnability. In FOCS, pages 28-33, October 1989.

Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps. In Foundations of Com-
puter Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 593-602. IEEE,
2008.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, Novem-
ber 1984.

Appendix A. Proof of Theorem 12 (Daniely et al., 2014)

Let H be the hypothesis class in question and suppose toward a contradiction that algorithm £ learns
H efficiently. Let M (n,1/€,1/9) be the maximal number of random bits used by £ when it run
on the input n, €, . This includes both the bits describing the examples produced by the oracle and
“standard” random bits. Since L is efficient, M (n,1/¢,1/0) < poly(n,1/e,1/§). Define

qg(n) =M (n,1/8,4) +n .

By assumption, there is a (¢(n), 5)-scattered ensemble D for which it is hard to distinguish a D-

random sample from a realizable sample. Consider the algorithm A defined below. On input S €

1. Run £ with parameters n, 3 and 1, such that the examples’ oracle generates examples by
choosing a random example from S.

2. Let h be the hypothesis that £ returns. If Errg(h) < [, output “realizable”. Otherwise,
output “unrealizable”.

15

DANIELY SHALEV-SHWARTZ

Next, we derive a contradiction by showing that A distinguishes a realizable sample from a D-
random sample. Indeed, if the input S is realizable, then £ is guaranteed to return, with probability
>1-— %, a hypothesis h : X, — {0,1} with Errg(h) < . Therefore, w.p. > % A will output
“realizable”.

What if the input sample S is drawn from DI"™? Let G {0,1}* be the collection of
functions that £ might return when run with parameters n, €(n) and 7. We note that |G| < 2a(n)—n
since each hypothesis in G can be described by ¢(n) — n bits. Namely, the random bits that £ uses
and the description of the examples sampled by the oracle. Now, since D is (¢(n), §)-scattered,
the probability that Errg(h) < B for some h € G is at most |G|279™) < 27" It follows that
the probability that A responds “realizable” is < 27". This leads to the desired contradiction and
concludes our proof.

16

	Introduction
	The random K-SAT assumption
	Results
	Related work

	Preliminaries
	PAC Learning
	Random Constraints Satisfaction Problems
	The methodology of daniely2013average

	Proof of theorem 3
	An overview
	From CSPndrand(SATK) to CSPnd-1rand(TK,nlog(n))
	From CSPndrand(TK,M) to CSPndrand(TK,M,TK,M)
	From CSPndrand(TK,M,TK,M) to DNF's
	Wrapping up – concluding theorem 3

	Open questions
	Proof of Theorem 12 daniely2013average

