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Abstract

The study of property elicitation is gaining ground in statistics and machine learning as a way to
view and reason about the expressive power of emiprical risk minimization (ERM). Yet beyond a
widening frontier of special cases, the two most fundamental questions in this area remain open:
which statistics are elicitable (computable via ERM), and which loss functions elicit them? More-
over, recent work suggests a complementary line of questioning: given a statistic, how many ERM
parameters are needed to compute it? We give concrete instantiations of these important questions,
which have numerous applications to machine learning and related fields.
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1. Introduction

Over the last several decades, several formalisms for studying empirical risk minimization (ERM)
have appeared, using notions such as Fisher consistency, PAC learnability, generalization, etc. A
relatively recent but powerful framework is that of property elicitation, wherein one asks what
ERM computes as a function of the empirical distribution or data set. Thus, instead of thinking
about minimizing classification error (the number of incorrect label predictions for a classification
task), we would ask ERM to compute the mode of the conditional label distribution (‘“what is the
most likely label?”). This framework is in many ways equivalent to previous notions, but develops
a more explicit framework for studying ERM; instead of simply saying that two losses behave the
same way, we can say that they elicit the same statistic,! giving us another concrete object with
which to work. Moreover, the statistic itself is the central object of study in many cases, such as for
financial risk measures (Gneiting, 2011; Fissler and Ziegel, 2015; Frongillo and Kash, 2015c).

Beyond the application to ERM, viewing the statistic and loss separately can enable the study
of many problems under one roof. The notion of elicitation arises in several other fields, including
statistics, forecasting, economics, and finance, though it goes by other names depending on the con-
text: consistency, calibration, incentive-compatability, and propriety. These different names reflect
the many ways in which losses are used: to estimate or predict, to evaluate existing predictions,
to detect outliers, and to derive payments or contracts for information. As put by Fissler et al.
(2015), “it is generally accepted that elicitability is useful for model selection, estimation, general-
ized regression, forecast comparison, and forecast ranking.” Thus, elicitation gives a very powerful
vantage point which extends beyond machine learning.

1. We use the terms “property” and “statistic” interchangeably.
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2. Elicitation

We now give some of the basic definitions needed to state our open problems. We first need three
sets: the data or outcomes, the distributions over those outcomes, and a range of values for the
property/statistic we are interested in.

e Outcomes/data Y, an arbitrary set, usually Y C R
¢ Distributions P, a (typically convex) set of probability measures over ¥’
e Reports R, the “regression parameters” with which ERM works, usually R C R¥

We can now define a property and loss, and what it means for the loss to elicit the property.
It is important to note that while we define everything here in terms of probability measures, the
framework still applies to ERM, where of course one’s data comprises a finite set (cf. Steinwart
et al. (2014)).

e Property I'(p), a function I" : P — R specifying the correct report » = I'(p) for each dist. p.
Loss L(r,y), a function L : R x Y — R scoring the inaccuracy of report r given data point y.
e Elicit: a loss L elicits property I if:

VpeP, I'(p) =argmin E,,[L(r,y)] . (1)
rerR
That is, for all p, the report » = I'(p) minimizes the expected loss assuming y is drawn from p.
Elicitable: property I is elicitable if some loss elicts it (formerly “ERM-computable”).
Surrogate: losses L and L' are (calibrated) surrogates if they elicit the same statistic.

To make these definitions concrete, let us instantiate them for linear regression. Here Y =R =
R, and P is some convex set of distributions over R. Then the squared loss L(r, y) = (r—y)? elicits
the property I'(p) = E,,[y], the mean of p. Thus, the mean is elicitable. Squared loss has many
surrogates, taking the form of Bregman divergences (Gneiting, 2011; Abernethy and Frongillo,
2012; Frongillo and Kash, 2015a), including for example L'(r,y) = e "(1 + 1 — y).

3. Elicitation Complexity

Consider the task of computing the variance of a distribution (data set) via ERM. The natural ap-
proach would be to look for a loss function L(r,y), where r is real-valued, such that the variance
of p is the minimizer » = Var(p) of the expected loss E,,[L(r,y)]. One quickly encounters a
problem however: no such loss exists. This is a corollary of a result that the level sets of elicitable
properties must be convex (Osband, 1985; Lambert et al., 2008): since mixtures of distributions
with the same variance in general have higher variance, the level sets of the variance function are
not convex, and thus it cannot be elicitable.

Fortunately, one can easily circumvent this problem by conceeding an extra regression parame-
ter: L(r1,79,y) = e "2((r1 — y)? — ro — 1) elicits both the mean and the variance together. This
simple example illustrates the need for a more nuanced notion of elicitability; just because a statistic
is not “directly” elicitable does not mean it cannot be computed via ERM. Instead, the right question
to ask is how many variables it takes to gather enough information to compute the statistic after the
fact. This is the notion of elicitation complexity, which we now formalize.



OPEN: PROPERTY ELICITATION

While originally introduced in Lambert et al. (2008), we use the formulation of Frongillo and
Kash (2015b,c), who define the elicitation complexity elic(I") of a property/statistic I" as the small-
est dimension of an elicitable property I'” from which we may compute I" via composition with a
link function . (Formally, to avoid trivial pathological constructions, we also require I to be iden-
tifiable; see the references above for details.) In other words, if we allow the indirect computation
of T" by first computing I'' via ERM and then transforming the result with ¢, i.e. I' = ¢ o I/, how
large (number of ERM parameters) does I'" have to be? One should think of elicitation complexity
as both a refinement and enhancement of the notion of elicitation: not only does it relax the question
“is I" elicitable” to “how elicitable is I, but there are many more properties of interest with low
elicitation complexity than there are elicitable properties.

The notion of elicitation complexity has close ties to previous work in machine learning and
statistics. The concept of a link function which transforms the prediction space dates back to the
introduction of generalized linear models (Nelder and Wedderburn, 1972; Nelder and Baker, 2004).
Such invertible links are widespread in statistics and machine learning, but importantly do not
change the elicitation qualities: if ¢ is invertible, then I" = ¢)oI" is elicitable if I is. The concept of
elicitation complexity only becomes interesting for non-invertible links, wherein the ERM calcula-
tions are in a richer space than the final prediction. This exactly captures the practice of using ERM
over continuous spaces for classification tasks, as in support vector machines (SVM), logistic regres-
sion, and boosting: rather than solve for the discrete-valued function which minimizes the classifica-
tion error directly, a continuous-valued function is sought which minimizes a nice convex objective,
and only later is this function truncated to answer the original classification problem (Bartlett et al.,
2006). In terms of elicitation, the statistic here is the mode, I : p — mode(p), and the link simlply
takes the sign of the prediction ¢ (y) = sgn(y), assuming the labels are {+1,—1}, and IV is the
continuous ERM minimizer.

4. The Questions

We now formulate our three open questions. Note that these questions are still interesting when
regularity conditions are imposed, such as differentiability of the loss function (with respect to r),
continuity or differentiability of the property, discrete or finite distributions (e.g. P = A,), etc.

Question 1 Which properties T' : P — RF are elicitable? We ideally would have a geometric
characterization in terms of the level sets L, = {p € P : I'(p) = r} of I, as in (Lambert et al.,
2008, Theorem 1).

Question 2 Given an elicitable property I' : P — 'R, characterize all loss functions L : R XY —
R eliciting T.

Question 3 Characterize the elicitation complexity classes Cj, = {I" : elic(T") = k}.

Currently, Questions 1 and 2 are only well-understood in the case R C R (Lambert, 2011; Stein-
wart et al., 2014), and the expectation and ratio-of-expectation cases (Frongillo and Kash, 2015a),
where I'(p) = E,[X] or I'(p) = E,[X]/E,[Z] where X is a finite-dimensional random variable,
and Z is a real-valued random variable. General ties to convex analysis are given in Frongillo and
Kash (2014). Very little is known about Question 3, though Frongillo and Kash (2015c) give tight
bounds for some properties (the Bayes risks), which establish that C, # ) for all k. For other
related conjectures, examples, and counter-examples, see Frongillo and Kash (2015a,c).
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