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Abstract
In this paper we provide improved guarantees for streaming principal component analysis (PCA).
Given A1, . . . ,An ∈ Rd×d sampled independently from distributions satisfying E [Ai] = Σ for
Σ � 0, we present an O(d)-space linear-time single-pass streaming algorithm for estimating the
top eigenvector of Σ. The algorithm nearly matches (and in certain cases improves upon) the
accuracy obtained by the standard batch method that computes top eigenvector of the empirical
covariance 1

n

∑
i∈[n] Ai as analyzed by the matrix Bernstein inequality. Moreover, to achieve

constant accuracy, our algorithm improves upon the best previous known sample complexities of
streaming algorithms by either a multiplicative factor of O(d) or 1/gap where gap is the relative
distance between the top two eigenvalues of Σ.

We achieve these results through a novel analysis of the classic Oja’s algorithm, one of the
oldest and perhaps, most popular algorithms for streaming PCA. We show that simply picking a
random initial point w0 and applying the natural update rule wi+1 = wi + ηiAiwi suffices for
suitable choice of ηi. We believe our result sheds light on how to efficiently perform streaming PCA
both in theory and in practice and we hope that our analysis may serve as the basis for analyzing
many variants and extensions of streaming PCA.

1. Introduction

Principal component analysis (PCA) is one of the most fundamental problems in machine learning,
numerical linear algebra, and data analysis. It is commonly used for data compression, image
processing, and visualization (Jolliffe, 2002) etc.

However, when run on large data sets it may be the case that we cannot afford more than single
pass over the data (or worse to even store the data in the first place) (Hall et al., 1998; Weng et al.,
2003; Ross et al., 2008). To alleviate this issue, a popular line of research over the past several
decades has been to consider streaming algorithms for PCA under the assumption that the data has
reasonable statistical properties (Krasulina, 1970; Oja, 1982; Balsubramani et al., 2013; Mitliagkas
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et al., 2013; Sa et al., 2015). There have been significant breakthroughs in getting near-optimal
streaming PCA algorithms under fairly specialized models, e.g. spiked covariance (Sa et al., 2015).

In this paper we consider one of the most fundamental and natural variants of PCA, estimating
the top eigenvector of a symmetric matrix, under one of the mildest set of assumptions for which
we can prove concentration using the matrix Bernstein inequality (Vershynin, 2010; Tropp, 2012):

Definition 1 (Streaming PCA) Let A1,A2, ...,An ∈ Rd×d be a sequence of (not necessarily
symmetric) matrices sampled independently from distributions that satisfy the following:

1. E [Ai] = Σ for symmetric positive semidefinite (PSD) matrix Σ ∈ Rd×d,

2. ‖Ai −Σ‖2 ≤M with probability 1, and

3. max
{∥∥∥E [(Ai −Σ)(Ai −Σ)>

]∥∥∥
2
,
∥∥∥E [(Ai −Σ)>(Ai −Σ)

]∥∥∥
2

}
≤ V .

Let v1, ...,vd denote the eigenvectors of Σ and λ1 ≥ ... ≥ λd denote the corresponding eigenvalues.
Our goal is to compute an ε-approximation to v1, that is a unit vector w such that sin2(w,v1) =
1− (w>v1)

2 ≤ ε, in a single pass while minimizing space, time, and error (i.e. ε).

A special case of Streaming PCA is to estimate the top eigenvector of the covariance matrix of a
distribution D over Rd, i.e. given independent samples a1, ...,an ∈ Rd estimate the top eigenvector
of Ea∼D[aa>]. This encompasses the popular ”spiked covariance model” (Johnstone, 2001).

It is well known that to solve the Streaming PCA problem we could simply compute the em-
pirical covariance matrix 1

n

∑
i∈[n] Ai and compute the right singular vector of this matrix. Using

matrix Bernstein inequality (Vershynin, 2010; Tropp, 2012) and Wedin’s theorem (Wedin, 1972) we
get the following standard sample complexity bound for the Streaming PCA problem:

Theorem 2 (Eigenvector Concentration using matrix Bernstein and Wedin’s theorem) Under
the assumptions of Definition 1, the top right singular vector v̂ of Σ̂ = 1

n

∑
i∈[n] Ai is an ε-

approximation to the top eigenvector v1 of Σ with probability 1− δ, where

sin2(v̂,v1) ≤ ε ≤
16V log d

δ

(λ1 − λ2)2
· 1

n
+

(
4M log d

δ

λ1 − λ2

)2

· 1

n2
.

Theorem 2 is essentially the previous best sample complexity we know for solving the Streaming
PCA problem1. Unfortunately, there are severe issues with applying the result algorithmically.
First, computing the empirical covariance matrix Σ̂ = 1

n

∑
i∈[n] Ai naively requires O(d2) time

and space, and second, computing the top eigenvector of the empirical covariance matrix in general
may require super linear time (Golub and Van Loan, 2012). While there have been many attempts
to produce streaming algorithms that use only O(d) space to solve the streaming PCA problem, as
far as we are aware all previous methods either lose a multiplicative factor of either λ1

λ1−λ2 or d in
the analysis in order to achieve constant accuracy when applied in our setting (Balsubramani et al.,
2013; Mitliagkas et al., 2013; Hardt and Price, 2014; Sa et al., 2015; Jin et al., 2015).

In an attempt to overcome this limitation and improve the guarantees for solving the streaming
PCA problem we address the fundamental question:

1. In recent work in (Jin et al., 2015) it was shown that the log(d/δ) factor in the first term could be removed asymptot-
ically for small enough ε if only constant success probability is required.
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Can we match the sample complexity of matrix Bernstein + Wedin’s theorem with an
algorithm that usesO(d) space only and takes a single linear-time pass over the input?

We answer the question in the affirmative, showing that we can succeed with constant prob-
ability matching the sample complexity of Theorem 2 up to logarithmic terms and small additive
factors. Interestingly, we achieve this result by providing a novel analysis of the classical Oja’s
algorithm, which is perhaps, the most popular algorithm for Streaming PCA (Oja, 1982).

Algorithm 1 Oja’s algorithm for computing top eigenvector
Input: A1, · · · ,An.

Choose w0 uniformly at random from the unit sphere
for t = 1, · · · , n do

wi ← wi−1 + ηiAiwi−1
wi ← wi/ ‖wi‖2

end for
Output: wn

Oja’s algorithm is one of the simplest algorithms one would imagine for the streaming PCA
problem (See Algorithm 1). In the case that each Ai come from the same distribution D it cor-
responds to simply performing projected stochastic gradient descent on the objective function of
maximizing the Rayleigh Quotient over the distribution max‖w‖2=1 EA∼Dw>Aw. It is well known
that under very mild conditions on the stepsize sequence, Oja’s algorithm asymptotically converges
to the top eigenvector of the covariance matrix Σ (Oja, 1982). However, obtaining optimal rates
of convergence, let alone finite sample guarantees, for Streaming PCA has been quite challenging.
The best known results are off from Theorem 2 by a factor of O (d) (Sa et al., 2015).

In this paper we show that for proper choice of learning rates ηi Oja’s algorithm in fact can
improve the best known results for streaming PCA and answer our question in the affirmative. In
particular we show the following:

Theorem 3 Let the assumptions of Definition 1 hold. Suppose the step size sequence for Algo-
rithm 1 is chosen to be ηi = log d

(λ1−λ2)(β+i) , where

β
4
= 40 max

(
M log d

(λ1 − λ2)
,
V log2 d

(λ1 − λ2)2
,
(λ1)

2 log2 d

(λ1 − λ2)2

)
.

Then the output wn of Algorithm 1 is an ε-approximation to the top eigenvector v1 of Σ satisfying

sin2(wn,v1) ≤ ε ≤ C

(
V log d

(λ1 − λ2)2
· 1

n
+

(
2β

n

)2 log d
)
,

with probability greater than 3/4. Here C is an absolute numerical constant.

The error above should be interpreted as being the sum of a higher order Θ( 1
n) term and another

O
(

(2β/n)2 log d
)

term that decays atleast as o
(

1
nlog d

)
( as soon as n > 2β2). In particular, this

result says that up to an additive lower order term, we can match Theorem 2 with an asymptotic
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error of O
(
V log d

(λ1−λ2)2n

)
with constant probability. The lower order term has β which is the max of

three parts: M log d
(λ1−λ2) , V log2 d

(λ1−λ2)2 and λ21 log
2 d

(λ1−λ2)2 . The first part, depending on M, is exactly the same
as what appears in Theorem 2. The second one, depending on V has an additional log d factor over
the first order term and is irrelevant once, say n > 10β. The third part, depending on λ21, does
not appear in Theorem 2, but arises here completely due to computational reasons: we are allowed
only a single linear-time pass over the matrices, while Theorem 2 makes no such assumption. For
instance, consider the case V = 0 which means A1 = Σ. Matrix Bernstein tells us that one sample
is sufficient to compute v1. However, we still do not know how to compute it using a single pass
over A1. Note however, that the rate at which we decrease the lower order terms i.e., o

(
1

nlog d

)
, is

much better than O
(
1/n2

)
guaranteed by Theorem 2.

In fact we also improve the asymptotic error rate obtained by Theorem 2. In particular, we prove
the following result that Oja’s algorithm gets an asymptotic rate of O

(
V

(λ1−λ2)2n

)
which is better

than that of matrix Bernstein by a factor of O (log d).2

Theorem 4 Let the assumptions of Definition 1 hold. Suppose the step size sequence for Algo-
rithm 1 is chosen to be ηi = 6

(λ1−λ2)(β+i) , where

β
4
= 720 max

(
M

(λ1 − λ2)
,
V + λ21

(λ1 − λ2)2

)
.

Suppose n > β1.2d0.1. Then the output wn of Algorithm 1 is an ε-approximation to the top eigen-
vector v1 of Σ satisfying

sin2(wn,v1) ≤ ε ≤ C

(
V

(λ1 − λ2)2
· 1

n
+

1

n2

)
,

with probability greater than 3/4. Here C is an absolute numerical constant.

Note that Theorems 3 and 4 guarantee success probability of 3/4. One way to boost the proba-
bility to 1− δ, for some δ > 0, is to run O (log 1/δ) copies of the algorithm, each with 3/4 success
probability and then output the geometric median of the solutions, which can be done in nearly
linear time (Cohen et al., 2010). We omit the details here.

Beyond the improved sample complexities we believe our analysis sheds light on the type of
step sizes for which Oja’s algorithm converges quickly and therefore illuminates how to efficiently
perform streaming PCA. Moreover, we believe that our analysis is fairly general and we hope that it
may be extended to make progress on analyzing the many variants of PCA that occur in both theory
and in practice.

1.1. Comparison with Existing Results

Here we compare our sample complexity bounds with existing analyses of various methods. Recall
that we measure the error of estimate w by sin2(w,v1) = 1− (w>v1)

2.
We consider three popular methods used for computing v1. The first one is the batch method

which computes largest eigenvector of empirical covariance and uses Wedin’s theorem with matrix

2. A similar asymptotic result was recently obtained by (Jin et al., 2015). However, their result requires an initial vector
that is constant close to v1, which itself is a difficult problem.
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Algorithm Error O (d) space?

Oja’s (our result, Theorem 8) O
(

V
(λ1−λ2)2 ·

1
n

)
Yes

Matrix Bernstein + Wedin’s
theorem (Theorem 2)

O
(
V log d

(λ1−λ2)2 ·
1
n

)
No

Alecton (Sa et al., 2015) O
(

Vd
(λ1−λ2)2 ·

logn
n

)
Yes

Block Power Method (Hardt
and Price, 2014)

O
(
Vλ1 log d
(λ1−λ2)3 ·

logn
n

)
Yes

Table 1: Asymptotic error guaranteed by various methods under assumptions of Definition 1 with
at least constant probability, and ignoring constant factors. Recall that we define the error to be
sin2(w,v1) = 1 − (w>v1)

2. Our analysis provides the optimal 1/n error decay rate as compared
to Alecton and Block power method which obtain logn

n . Moreover, our bound is O(d) tighter than
that of Alecton (Sa et al., 2015) and O( λ1

λ1−λ2 ) tighter bound than that of Block Power Method
(Hardt and Price, 2014). The assumptions made in (Sa et al., 2015) for Alecton are different from
ours (which are much more standard) so we optimized their bounds for our setting. See Section 1.1
for a concrete example where our analysis provides these improvements over (Sa et al., 2015; Hardt
and Price, 2014).

Bernstein inequality (cf. Theorem 2). The second method is Alecton, which is very similar to Oja’s
algorithm (Sa et al., 2015). Finally, we also consider a block-power method (BPM) (Hardt and
Price, 2014; Mitliagkas et al., 2013) which divides samples into different blocks and applies power
iteration to the empirical estimate from each block. See Table 1 for the comparison.

We would like to stress that some of the results we compare to make different assumptions than
Definition 1. The bounds we give for them are our best attempt to adapt their bounds in the setting
of Definition 1 (which is quite standard). In the next paragraph, we give a simple example, which
demonstrates the improvement in our result as compared to existing work.

Let Ai = xix
>
i , where xi ∈ Rd and xi = e1 with probability 1/d and xi = σej , 1 < j ≤ d

with probability 1/d where ej denotes the jth standard basis vector and σ < 1. Note that Σ =

E [Ai] = (1−σ2)
d e1e

T
1 + 1

dσ
2I, ‖Ai‖2 ≤ 1 for all i, and ‖E

[
AiA

>
i

]
‖2 ≤ 1

d . Even for constant

accuracy ε = Ω(1), Theorem 3 tells us that n = O
(
d log2 d
(1−σ2)2

)
is sufficient. On the other hand,

Theorem 1 of (Sa et al., 2015) requires n = O
(
d2 log2 d
(1−σ2)2

)
, while Theorem 2.4 of (Hardt and

Price, 2014) requires n = O
(
d log2 d
(1−σ2)3

)
. Asymptotically, as n becomes larger, our error scales as

O
(

d
(1−σ2)2

· 1n
)

while that of (Sa et al., 2015) scales as O
(

d2

(1−σ2)2
· lognn

)
and that of (Hardt

and Price, 2014) scales as O
(

d
(1−σ2)3

· lognn
)

. Combining matrix Bernstein and Wedin’s theorems

gives an asymptotic error of O
(

d log d
(1−σ2)2

· 1n
)

.

1.2. Additional Related Work

Existing results for computing largest eigenvector of a data covariance matrix using streaming sam-
ples can be divided into three broad settings: a) stochastic data, b) arbitrary sequence of data, c)
regret bounds for arbitrary sequence of data.
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Stochastic data: Here, the data is assumed to be sampled i.i.d. from a fixed distribution. Our
analysis of Oja’s algorithm as well as those of block power method and Alecton mentioned earlier
are in this setting. (Mitliagkas et al., 2013) also obtained a result in the restricted spiked covariance
model. (Balsubramani et al., 2013) provides an analysis of a modification of Oja’s algorithm but
with an extra O(d5) multiplicative factor compared to ours. (Jin et al., 2015) provides an algorithm
based on shift and invert framework that obtains the same asymptotic error as ours. However, their
algorithm requires warm start with a vector that is already constant close to the top eigenvector,
which itself is a hard problem. For gap free results, the recent paper (Shamir, 2015b) achieves the
optimal asymptotic rate although it loses poly (d) factors with random initialization.

Arbitrary data: In this setting, each row of the data matrix is provided in an arbitrary order.
Most of the existing methods here first compute a sketch of the matrix and use that to compute an
estimate of the top eigenvector (Clarkson and Woodruff, 2009; Liberty, 2013; Nelson and Nguyên,
2013; Cohen et al., 2015; Ghashami et al., 2015; Boutsidis et al., 2015). However, a direct appli-
cation of such techniques to the stochastic setting leads to sample complexity bounds which are
larger by a multiplicative factor of O(d) (ignoring other factors like variance etc). Finally, (Shamir,
2015a; Garber and Hazan, 2015; Jin et al., 2015) also provide methods for eigenvector computation,
but they require multiple passes over the data and hence do not apply to the streaming setting.

Regret bounds: Here, at each step the algorithm has to output an estimate w of v1 for which
we get reward of wTAiw and the goal is to minimize the regret w.r.t. v1. The algorithms in this
regime are mostly based on online convex optimization and applying them in our setting would
again result in a loss of multiplicative O(d). Moreover, typical algorithms in this setting are not
memory efficient (Warmuth and Kuzmin, 2006; Garber et al., 2015).

1.3. Notation

We use bold lowercase letters such as u,v,w to denote vectors and bold uppercase letters such
as A,B,C to denote matrices. For symmetric matrices A and B we use A � B to denote the
condition that x>Ax ≤ x>Bx for all x and define B � A analogously. We call a symmetric
matrix A positive semidefinite if A � 0. For symmetric matrices A,B we define the inner product

〈A,B〉 4= Tr
(
A>B

)
.

1.4. Paper Organization

The rest of this paper is organized as follows. Section 2 introduces basic mathematical facts we
use throughout the paper and also provides a proof of the error bound of the standard batch method
(Theorem 2). Section 3 provides an overview of our approach to analyzing Oja’s algorithm and
provides the main technical result of the paper. We use this technical result in Section 4 to prove our
running time for Oja’s algorithm and justify our choice of step size. Section 5 presents the proof
of our main technical result and we conclude in Section 6 and mention a few interesting future
directions.

2. Preliminaries

Throughout this paper we make frequent use of several basic inequalities regarding power series,
the exponential, and PSD matrices. We summarize the facts here
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Lemma 5 (Basic Inequalities) The following are true:

• 1 + x ≤ exp(x) for all x

• 1 + x ≥ exp
(
x− x2

)
for all x ≥ 0

• 1
1+x ≤

∑∞
i=1

1
(x+i)2

≤ 1
x

• 〈A,B〉 ≤ 〈A,C〉 for PSD matrices A,B,C with B � C

• Tr
(
A>B

)
≤ 1

2Tr
(
A>A + B>B

)
for all matrices A,B ∈ Rm×n.

Proof The first inequality follows from the Taylor expansion of exp(x). The second comes from
1 + 0 = exp(0− 02) and d

dx(1 + x) ≥ d
dx exp(x− x2) for x ≥ 0. The third follows by considering

upper and lower Riemann sums of
∫∞
y=1 1/(x + y). The fourth from the fact that since A is PSD

there is a matrix D with D>D = A and therefore

〈A,B〉 = Tr
(
A>B

)
= Tr

(
DBD>

)
≤ Tr

(
DCD>

)
= 〈A,C〉 .

The final follows from Cauchy Schwarz and Young’s inequality, i.e. x · y ≤ 1
2(x2 + y2) as

Tr
(
B>A

)
=
∑
i∈[n]

1iB
>A1i ≤

∑
i∈[n]

‖A1i‖2 · ‖B1i‖2 ≤
1

2

∑
i∈[n]

(
‖A1i‖22 + ‖B1i‖22

)

We next present a matrix Bernstein based proof of the error bound of the batch method.
Proof [Proof of Theorem 2] Using Theorem 1.4 of (Tropp, 2012), we have (w.p. ≥ 1− δ):∥∥∥∥∥ 1

n

n∑
i=1

Ai −Σ

∥∥∥∥∥
2

≤ 2 ·max

{√
V
n

log
d

δ
,
M
n

log
d

δ

}
. (1)

Let v̂ be the top eigenvector of Σ̂ = 1
n

∑n
i=1 Ai. Then, using Wedin’s theorem (Wedin, 1972), we

have:

sin2〈v1, v̂〉 ≤
∥∥ 1
n

∑n
i=1 Ai −Σ

∥∥2
2

|λ1 − λ2|2
. (2)

Theorem now follows by combining (1) and (2).

3. Approach

Let us now describe the approach to analyze Oja’s algorithm. We provide our main theorem regard-
ing the convergence rate of Oja’s algorithm and discuss how it is proved. The details of the proof
are deferred to Section 5 and the use of the theorem to choose step sizes is in Section 4.

One of the primary difficulties in analyzing Oja’s algorithm, or more broadly any algorithm
for streaming PCA, is choosing a suitable potential function to analyze the method. If we try to
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analyze the progress of Oja’s algorithm in every iteration i, by measuring the quality of wi, we
run the risk that during the first few iterations of Oja’s algorithm a step may actually yield a wi+1

that is orthogonal to vi. If this happens, even in the typical best case, where all future samples are
Σ itself, we would still fail to converge. In short, if we do not account for the randomness of w0

in our potential function then it is difficult to show that a rapidly convergent algorithm does not
catastrophically fail.

Rather than analyzing the convergence of wi directly we instead analyze the convergence of
Oja’s algorithm as an operator on w0. Oja’s algorithm simply considers the matrix

Bn
4
= (I + ηnAn)(I + ηn−1An−1) · · · (I + η1A1) (3)

and outputs the normalized result of applying this matrix, Bn, to the random initial vector, i.e.

wn =
Bnw0

‖Bnw0‖2
. (4)

Rather than analyze the improvement of wn+1 over wn we analyze Bn+1’s improvement over Bn.
Another interpretation of (3) and (4) is that Oja’s algorithm simply approximates vn by per-

forming 1 step of the power method on the matrix Bn. Fortunately, analyzing when 1 step of the
power method succeeds is fairly straightforward as we show below:

Lemma 6 (One Step Power Method) Let B ∈ Rd×d, let ṽ ∈ Rd be a unit vector, and let Ṽ⊥ be
a matrix whose columns form an orthonormal basis of the subspace orthogonal to ṽ. If w ∈ Rd is
chosen uniformly at random from the surface of the unit sphere then with probability at least 1− δ

sin2

(
ṽ,

Bw

‖Bw‖2

)
= 1−

(
ṽ>Bw

‖Bw‖2

)2

≤ C log (1/δ)

δ2

Tr
(
Ṽ>⊥BB>Ṽ⊥

)
ṽ>BB>ṽ

where C is an absolute constant.

Proof As w is distributed uniformly over the sphere, we have: w = g/‖g‖2 where g ∼ N(0, I).
Consequently, with probability at least 1− δ

1−
(

ṽ>Bw

‖Bw‖2

)2

=
g>B>(I− ṽṽ>)Bg

g>B>Bg

ζ1
≤ C1

δ2
g>B>(I− ṽṽ>)Bg

ṽ>BB>ṽ

ζ2
≤ C log(1/δ)

δ2
Tr
(
B>(I− ṽṽ>)B

)
ṽ>BB>ṽ

,

where C1 and C are absolute constants. ζ1 follows as g>B>Bg ≥ (ṽ>Bg)2 ≥ δ2

C1
ṽ>BB>ṽ

where the second inequality follows from the fact that ṽ>Bg is a Gaussian random variable with
variance

∥∥B>ṽ
∥∥2
2

and Pr(|g| ≤ δ) ≤ Cδ for a normal random variable g ∼ N(0, 1). Similarly, ζ2
follows from the fact thatg>B>(I− ṽṽ>)Bg is a χ2 random variable with Tr

(
B>(I− ṽṽ>)B

)
-

degrees of freedom.

This lemma makes our goal clear. To show that Oja’s algorithm succeeds we simply need to
show that with constant probability v>1 BnB

>
nv1 is relatively large and Tr

(
V⊥BnB

>
nV⊥

)
is rel-

atively small, where V⊥ is a matrix whose columns form an orthonormal basis of the subspace

8
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orthogonal to v1. This immediately alleviates the issues of catastrophic failure that plagued analyz-
ing wn. So long as we pick ηi sufficiently small, i.e. ηi = O(1/max{M, λ1}) then I + ηiAi is
invertible. In this case BnB

>
n is invertible and v>1 BnB

>
nv1 > 0. In short, so long as we pick ηi

sufficiently small the quantity we wish to bound Tr
(
V⊥BnB

>
nV⊥

)
/v>1 BnB

>
nv1 is always finite.

To actually bound v>1 BnB
>
nv1 and Tr

(
V>⊥BnB

>
nV⊥

)
we split the analysis into several parts

in Section 5. First, we show that E
[
Tr
(
V>⊥BnB

>
nV⊥

)]
is small, which implies by Markov’s in-

equality that Tr
(
V>⊥BnB

>
nV⊥

)
is small with constant probability. Then, we show that Ev>1 BnB

>
nv1

is large and that Var
[
v>1 BnB

>
nv1

]
is small. By Chebyshev’s inequality this implies that v>1 BnB

>
nv1

is large with constant probability. Putting these together we achieve the main technical result regard-
ing the analysis of Oja’s method. Once we devise this roadmap, the proof is fairly straightforward.

Theorem 7 (Oja’s Algorithm Convergence Rate) Let δ > 0 and step sizes ηi ≤ 1
4·max{M,λ1} .

The output wn of Algorithm 1 is an ε-approximation to v1 with probability at least 1− δ where

ε ≤ 1

Q
exp

5V
∑
i∈[n]

η2i

d · exp

−2(λ1 − λ2)
∑
i∈[n]

ηi

+ V
n∑
i=1

η2i exp

− n∑
j=i+1

2ηj(λ1 − λ2)


where Q

4
= δ3

C log(1/δ)

(
1− 1√

δ

√
exp

(
18V

∑n
i=1 η

2
i

)
− 1

)
, V 4= V + λ21, and C is an absolute

constant.

Theorem 7 is proved in Section 5. Theorem 7 serves as the basis for our results regarding Oja’s
algorithm. In the next section we show how to use this theorem to choose step sizes and achieve the
main results of this paper.

4. Our Results

Here we show how to use Theorem 7 presented in the previous section to prove the main result of our
paper. The theorem and proof are below and essentially consist of choosing appropriate parameters
to efficiently apply Theorem 7. Once we have this theorem, Theorems 3 and 4 follow by choosing
α = log d and α = 6 respectively.

Theorem 8 Fix any δ > 0 and suppose the stepsizes are set to ηt = α
(λ1−λ2)(β+t) for α > 1

2 and

β
4
= 20 max

 Mα

(λ1 − λ2)
,

(
V + (λ1)

2
)
α2

(λ1 − λ2)2 log
(
1 + δ

100

)
 .

Suppose the number of samples n > β. Then the output wn of Algorithm 1 satisfies:

1− (wn
>v1)

2 ≤ C log(1/δ)

δ3

(
d

(
β

n

)2α

+
α2V

(2α− 1)(λ1 − λ2)2
· 1

n

)
,

with probability at least 1− δ. Here C is an absolute numerical constant.

9
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Proof Recall that Theorem 7 gives a bound of

1

Q
exp

5V
∑
i∈[n]

η2i

d · exp

−2(λ1 − λ2)
∑
i∈[n]

ηi

+ V
n∑
i=1

η2i exp

− n∑
j=i+1

2ηj(λ1 − λ2)


(5)

where Q
4
= δ2

C log(1/δ)

(
1− 1√

δ

√
exp

(
18V

∑n
i=1 η

2
i

)
− 1

)
. Since ηi = α

(λ1−λ2)(β+i) , we have∑
i∈[n] η

2
i ≤ α2

(λ1−λ2)2β and by our assumption that Vα2

(λ1−λ2)2β ≤
1
18 log

(
1 + δ

100

)
, we have:

exp

18V
∑
i∈[n]

η2i

 ≤ √2 ⇒ Q ≥ δ2

C log(1/δ)
. (6)

Moreover, since
∑

i∈[n] ηi ≥
α

λ1−λ2 log (1 + n/β), we have

exp

−2(λ1 − λ2)
∑
i∈[n]

ηi

 ≤ ( β

β + n

)2α

. (7)

Note that
∑n

j=i+1 ηj ≤
α

λ1−λ2 log n+β+1
i+β+1 . Moreover, as α > 1/2, we have:

n∑
i=1

η2i exp

−2(λ1 − λ2)
n∑

j=i+1

ηj


≤ α2

(λ1 − λ2)2
n∑
i=1

1

(β + i)2
exp

(
2α log

i+ β + 1

n+ β + 1

)
,

≤ (β + 1)2

β2
· α2

(λ1 − λ2)2(n+ β + 1)2α
·
n∑
i=1

(i+ β + 1)2α−2,

≤ 2α2

(2α− 1)(λ1 − λ2)2(n+ β + 1)
(since α > 1/2 and

n∑
i=1

iγ ≤ nγ+1/(γ + 1) ∀ γ > −1).

(8)

Substituting (6), (7) and (8) into (5) proves the theorem.

5. Bounding the Convergence of Oja’s Algorithm

In this section, we present a detailed proof of Theorem 7. The proof follows the approach outlined
in Section 3 and uses the notation of that section, i.e.

• We let Bn
4
= (I + ηnAn) · · · (I + η1A1) with B0

4
= I

• We let V 4= V + λ21

10
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• We let V⊥ ∈ Rd×d−1 denote a matrix whose columns form an orthonormal basis for the
subspace orthogonal to v1 .

We first provide several technical lemmas bounding the expected behavior of Bn and ultimately use
these lemmas to prove Theorem 7. We begin with a straightforward lemma bounding the rate of
increase of E

[
BtB

>
t

]
in spectral norm.

Lemma 9 For all t ≥ 0 and ηi ≥ 0 we have

∥∥∥E [BtB
>
t

]∥∥∥
2
≤ exp

∑
i∈[t]

2ηiλ1 + η2i V

 .

Proof Let αt
4
= ‖E

[
BtB

>
t

]
‖2, i.e., E

[
BtB

>
t

]
� αtI. For all t > 0,

E
[
BtB

>
t

]
= E

[
(I + ηtAt)Bt−1B

>
t−1(I + ηtAt)

>
]
� αt−1E

[
(I + ηtAt)(I + ηtA

>
t )
]
,

= αt−1E
[
I + ηtAt + ηtA

>
t + η2tAtA

>
t

]
� αt−1

[
I + 2ηtΣ + η2t (Σ

2 + V I)
]
, (9)

where the last inequality follows from E [At] = Σ and,

E
[
AtA

>
t

]
= Σ2 + E

[
(At −Σ)(At −Σ)>

]
� Σ2 + V I .

Using (9) along with ‖E
[
BtB

>
t

]
‖2 = αt, Σ � λ1I, and Σ2 � λ21I, we have for ∀t > 0:

αt ≤ (1 + 2ηtλ1 + η2t (λ
2
1 + V ))αt−1.

The result follows by using induction along with α0 = 1 and 1 + x ≤ ex.

Using Lemma 9 we next bound the expected value of Tr
(
V>⊥BnB

>
nV⊥

)
. Ultimately this will

allow us to bound the value Tr
(
V>⊥BnB

>
nV⊥

)
with by Markov’s inequality.

Lemma 10 For all t ≥ 0 and ηi ≤ 1
λ1

the following holds

E
[
Tr
(
V>⊥BtB

>
t V⊥

)]
≤ exp

∑
j∈[t]

2ηjλ2 + η2jV

·
d+ V

t∑
i=1

η2i exp

∑
j∈[i]

2ηj(λ1 − λ2)

 .

Proof Let αt
4
= E

[
Tr
(
V>⊥BtB

>
t V⊥

)]
. We first simplify αt as follows:

αt =
〈
E
[
BtB

>
t

]
,V⊥V>⊥

〉
=
〈
E
[
Bt−1B

>
t−1

]
,E
[
(I + ηtAt) V⊥V>⊥

(
I + ηtA

>
t

)]〉
. (10)

11
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Recall that E [At] = Σ. Now, the second term on the right hand side can be bounded as follows:

E
[
(I + ηtAt) V⊥V>⊥

(
I + ηtA

>
t

)]
,

= V⊥V>⊥ + ηtΣV⊥V>⊥ + ηtV⊥V>⊥Σ + η2tE
[
AtV⊥V>⊥A>t

]
,

= V⊥V>⊥ + ηtΣV⊥V>⊥ + ηtV⊥V>⊥Σ + η2tΣV⊥V>⊥Σ + η2tE
[
(At −Σ) V⊥V>⊥(At −Σ)>

]
,

ζ1
� V⊥V>⊥ + 2ηtλ2V⊥V>⊥ + η2t λ

2
2V⊥V>⊥ + η2tE

[
(At −Σ) (At −Σ)>

]
,

ζ2
�
(
1 + 2ηtλ2 + η2t λ

2
2

)
V⊥V>⊥ + η2t VI =

(
1 + 2ηtλ2 + η2t λ

2
2 + η2t V

)
V⊥V>⊥ + η2t V · v1v

>
1 ,

where ζ1 follows from the fact that V⊥ is orthogonal to v1 and ζ2 follows from defintion of V .
Plugging the above into (10), we get for all t ≥ 1,

αt ≤
(
1 + 2ηtλ2 + η2t (λ

2
2 + V)

) 〈
E
[
Bt−1B

>
t−1

]
,V⊥V>⊥

〉
+ η2t V

〈
E
[
Bt−1B

>
t−1

]
,v1v

>
1

〉
,

≤
(
1 + 2ηtλ2 + η2t V

)
αt−1 + η2t V

∥∥∥E [Bt−1B
>
t−1

]∥∥∥
2
,

≤ exp
(
2ηtλ2 + η2t V

)
αt−1 + η2t V exp

 ∑
i∈[t−1]

ηiλ1 + η2i V

 ,

where the last inequality follows from 1 + x ≤ ex and using Lemma 9.
Recursing the above inequality, we obtain

αt ≤
∑
i∈[t]

η2i V exp

 t∑
j=i+1

2ηjλ2 + η2jV

 exp

∑
j∈[i]

2ηjλ1 + η2jV

+ exp

∑
j∈[t]

2ηjλ2 + η2jV

α0,

≤ exp

∑
j∈[t]

2ηjλ2 + η2jV

α0 + V
t∑
i=1

η2i exp

∑
j∈[i]

2ηj(λ1 − λ2) + η2jV


Since B0 = I we see that α0 = d− 1 ≤ d. Using that ηi ≤ 1

λ1
≤ 1

λ2
completes the proof.

Next we provide the lemmas that will allow us to lower bound v>1 BtB
>
t v1. In Lemma 11 we

lower bound E
[
v>1 BtB

>
t v1

]
and in Lemma 12 we upper bound Var

[
v>1 BtB

>
t v1

]
. Ultimately,

the lower bound follows using Chebyshev’s inequality.

Lemma 11 For all t ≥ 0 and ηi ≥ 0 we have

E
[
v>1 BtB

>
t v1

]
≥ exp

∑
i∈[t]

2ηiλ1 − 4η2i λ
2
1


If we further assume that ηi ≤ 1

4·max{λ1,M} then E
[
v>1 BtB

>
t v1

]
≥ exp(λ1

∑
i∈[t] ηi).

12
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Proof Let βt
4
= E

[
v>1 BtB

>
t v1

]
. Since Bt = (I + ηtAt) Bt−1, we can bound βt as

βt =
〈
E
[
Bt−1B

>
t−1

]
,E
[
(I + ηtAt) v1v

>
1

(
I + ηtA

>
t

)]〉
=
〈
E
[
Bt−1B

>
t−1

]
,v1v

>
1 + ηtΣv1v

>
1 + ηtv1v

>
1 Σ + η2tE

[
Atv1v

>
1 u∗>A>t

]〉
≥
〈
E
[
Bt−1B

>
t−1

]
,v1v

>
1 + λ1ηtv1v

>
1 + λ1ηtv1v

>
1

〉
.

Consequently βt ≥ (1+2ηtλ1)βt−1. Furthermore, B0 = I and hence β0 = ‖v1‖22 = 1. Proceeding
by induction and using that 1 + x ≥ exp(x− x2) for all x ≥ 0 finishes the proof.

Lemma 12 For t ≥ 0 suppose that ηi ≤ 1
4·max{λ1,M} for all i ∈ [t] then.

E
[(

v>1 BtB
>
t v1

)2]
≤ exp

∑
i∈[t]

4ηiλ1 + 10η2i V


Proof Let Wt,s

4
= (I + ηtAt) · · · (I + ηt−s+1At−s+1) and γs

4
= E

[(
v>1 Wt,sW

>
t,sv1

)2]. Note

that Wt,t = Bt and γt = E
[
v>1 BtB

>
t v1

]
. Now,

γt = Tr
(
E
[
W>

t,tv1v
>
1 Wt,tW

>
t,tv1v

>
1 Wt,t

])
= Tr

(
E
[
(I + η1A

>
1 )W>

t,t−1v1v
>
1 Wt,t−1(I + η1A1)(I + η1A

>
1 )W>

t,t−1v1v
>
1 Wt,t−1(I + η1A1)

])
= Tr

(
E
[
(I + η1A

>
1 )Gt−1(I + η1A1)(I + η1A

>
1 )Gt−1(I + η1A1)

])
, (11)

where Gt−1
4
= W>

t,t−1v1v
>
1 Wt,t−1. In order to bound the above quantity, we first bound the above

expression for an arbitrary Gt−1 ≡ G. We then take an expectation over only A1 and then finally
take an expectation over Gt−1. That is, for an arbitrary fixed symmetric matrix G, we have:

Tr
(
E
[(

I + η1A
>
1

)
G (I + η1A1)

(
I + η1A

>
1

)
G (I + η1A1)

])
= Tr

(
E
[(

G + η1A
>
1 G + η1GA1 + η21A

>
1 GA1

)2])
= Tr

(
G2 + η1E

[
A>1

]
G2 + η1G

2E [A1] + η1G
(
E [A1] + E

[
A>1

])
G

+ η21E
[
A>1 GA1G

]
+ η21E

[
A>1 GA>1 G

]
+ η21E [GA1GA1] + η21E

[
GA>1 GA1

]
+ η21GE

[
A1A

>
1

]
G + η21E

[
A>1 G2A1

]
+ η31E

[
A>1 G

(
A1 + A>1

)
GA1

]
+η31E

[
A>1 GA1A

>
1 G
]

+ η31E
[
GA1A

>
1 GA1

]
+ η41E

[
A>1 GA1A

>
1 GA1

])
= Tr

(
G2
)

+ 4η1Tr
(
ΣG2

)
+ 2η21Tr

(
E
[
A1A

>
1

]
G2
)

+ η21Tr
(
E
[
A>1 GA1G

])
+ η21Tr

(
E
[
A>1 GA>1 G

])
+ η21Tr (E [GA1GA1]) + η21Tr

(
E
[
GA>1 GA1

])
+ 2η31Tr

(
E
[
A>1 G

(
A1 + A>1

)
GA1

])
+ η41Tr

(
E
[
A>1 GA1A

>
1 GA1

])
(12)

13
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We now bound the various terms above as follows. Each of the second order terms can be bounded
using Lemma 5 as follows:

E
[
Tr
(
A>1 GA1G

)]
≤ 1

2
E
[∥∥∥A>1 G

∥∥∥2
F

+ ‖A1G‖2F
]

=
1

2

(
Tr
(
GE

[
A1A

>
1

]
G + GE

[
A>1 A1

]
G
))
≤ (V + λ21)Tr

(
G2
)
.

(13)

The third order terms can be bounded as follows:

E
[
Tr
(
A>1 GA1GA1

)]
≤ E

[
‖A1‖2 Tr

(
A>1 GGA1

)]
≤ (M+ λ1) Tr

(
GE

[
A1A

>
1

]
G
)
≤ (M+ λ1)V · Tr

(
G2
)
. (14)

where we used the assumption that ‖A1‖2 ≤ ‖A1 −Σ‖2 + ‖Σ‖2 ≤ M + λ1 with probability 1.
Finally the fourth order term can be bounded as

Tr
(
E
[
A>1 GA1A

>
1 GA1

])
≤ (M+ λ1)

2 Tr
(
G2E

[
A1A

>
1

])
≤ (M+ λ1)

2 V · Tr
(
G2
)
.

(15)

Plugging (13), (14) and (15) into (12) tells us that

Tr
(
E
[(

I + η1A
>
1

)
G (I + η1A1)

(
I + η1A

>
1

)
G (I + ηtA1)

])
≤ Tr

(
G2
)

+ 4η1λ1Tr
(
G2
)

+ 5η21V · Tr
(
G2
)

+ 4η31 (M+ λ1)V · Tr
(
G2
)

+ η41 (M+ λ1)
2 V · Tr

(
G2
)

=
(

1 + 4η1λ1 + 5η21V + 4η31 (M+ λ1)V + η41 (M+ λ1)
2 V
)

Tr
(
G2
)

≤ exp
(
4η1λ1 + 10η21V

)
Tr
(
G2
)

where in the last line we used that ηi ≤ 1
4max{M,λ1} and that 1 + x ≤ exp(x)

Using the value G = Gt−1 = W>
t,t−1v1v

>
1 Wt,t−1 and plugging the above into (11), we have

γt = Tr
(
E
[(

I + η1A
>
1

)
Gt−1 (I + η1A1)

(
I + η1A

>
1

)
Gt−1 (I + η1A1)

])
≤ exp

(
4η1λ1 + 10η21V

)
E
[
Tr
(
Gt−1

2
)]

= exp
(
4η1λ1 + 10η21V

)
γt−1,

where we used the fact that γt−1 = E
[
Tr
(
Gt−1

2
)]

. Since γ0 = 1, induction proves the lemma.

We now have everything to prove Theorem 7.
Proof [Proof of Theorem 7] As discussed in Section 3 the main idea of this proof to use that Algo-
rithm 1 is essentially one step of power method for the matrix Bn and use Lemma 6 to bound the
error. To this end, we lower and upper bound v>1 BnB

>
nv1 and Tr

(
V>⊥BnB

>
nV⊥

)
, respectively.

First, using Chebyshev’s inequality, we have:

P
[∣∣∣v>1 BnB

>
nv1 − E

[
v>1 BnB

>
nv1

]∣∣∣ > 1√
δ

√
Var

[
v>1 BnB>nv1

]]
< δ.

14
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So with probability greater than 1− δ, the following holds:

v>1 BnB
>
nv1 > E

[
v>1 BnB

>
nv1

]
− 1√

δ

√
Var

[
v>1 BnB>nv1

]
= E

[
v>1 BnB

>
nv1

]
− 1√

δ

√
E
[(

v>1 BnB>nv1

)2]− E
[
v>1 BnB>nv1

]2
ζ1
≥ exp

(
2λ1

n∑
i=1

ηi − 4λ21

n∑
i=1

η2i

)
×

1− 1√
δ

√√√√exp

(
18

n∑
i=1

η2i V

)
− 1


(16)

where ζ1 follows from Lemma 11 and 12.
Furthermore, using Lemma 10 and Markov’s inequality, we have with probability at least 1− δ,

Tr
(
V>⊥BtB

>
t V⊥

)
≤

exp
(∑

i∈[n] 2ηiλ2 + η2i V
)

δ
·

d+ V
n∑
i=1

η2i exp

∑
j∈[i]

2ηj(λ1 − λ2)

 .

(17)

Consequently with probability at least 1−2δ both (16) and (17) hold and therefore the result follows
by Lemma 6 and choosing a δ that is smaller by a constant.

6. Conclusion and Future Work

In this paper we presented finite sample complexity and asymptotic convergence rates for the classic
Oja’s algorithm for top-1 component streaming PCA that match well known matrix concentration
and perturbation results for computing the top eigenvector. In fact, asymptotically our bound im-
proves upon standard matrix Bernstein bounds by a factor of O (log d). Our results are tighter than
existing streaming PCA results by a factor of either O (d) or O (1/gap).

Our analysis relied on a novel view of the algorithm and is technically fairly simple. We hope
that our analysis opens a way to make progress on the many variants of PCA that occur in both
theory and practice. In particular, we believe the following directions should be of wide interest:

• Multiple components: Currently, our result holds only for estimating the top eigenvector of
Σ. Extension of our technique to compute top-k eigenvectors is an important future direction.

• Rayleigh quotient: Another standard metric to measure optimality of wn is Rayleigh quo-
tient: wn

>Σwn. Converting our bounds on sin2(wn,v1) to Rayleigh quotient loses a mul-
tiplicative factor of O (1/gap) compared to the optimal rate. A direct analysis that does not
lose this factor is an interesting open problem. Results on Rayleigh quotient may also help in
obtaining sample complexity guarantees that are independent of eigenvalue gap.

• High Probability: In this work, we focused on obtaining tight bounds on the error. However,
the dependence of our results on success probability is quite suboptimal. One way to fix this
is to run many copies of the algorithm, each with say 3/4 success probability and then output

15
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the geometric median of the solutions, which can be done in nearly linear time (Cohen et al.,
2010). However, we conjecture that a tighter analysis using our techniques might directly
lead to improved dependency on success probability and possibly help solve some of the
other problems we mention above.
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