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Abstract
Existing vanilla algorithms for online linear optimization have O((ηR(u) + 1/η)

√
T ) regret with

respect to any competitor u, whereR(u) is a 1-strongly convex regularizer and η > 0 is a tuning pa-
rameter of the algorithm. For certain decision sets and regularizers, the so-called parameter-free al-
gorithms have Õ(

√
R(u)T ) regret with respect to any competitor u. Vanilla algorithm can achieve

the same bound only for a fixed competitor u known ahead of time by setting η = 1/
√
R(u).

A drawback of both vanilla and parameter-free algorithms is that they assume that the norm of the
loss vectors is bounded by a constant known to the algorithm. There exist scale-free algorithms that
haveO((ηR(u)+1/η)

√
T max1≤t≤T ‖`t‖) regret with respect to any competitor u and for any se-

quence of loss vector `1, . . . , `T . Parameter-free analogue of scale-free algorithms have never been
designed. Is is possible to design algorithms that are simultaneously parameter-free and scale-free?

1. Introduction

We consider the standard Online Linear Optimization (OLO) (Cesa-Bianchi and Lugosi, 2006;
Shalev-Shwartz, 2011) setting. In each round t, an algorithm chooses a point xt from a con-
vex decision set K and then receives a loss vector `t. Regret of the algorithm w.r.t. u ∈ K is
RegretT (u) =

∑T
t=1〈`t, xt〉 −

∑T
t=1〈`t, u〉. The goal of the algorithm is to keep the regret small.

We focus on two particular sets, theN -dimensional probability simplex ∆N = {x ∈ RN : x ≥
0, ‖x‖1 = 1} and the Hilbert space. OLO over ∆N is referred to as the problem of Learning with
Expert Advice (LEA).

Notation and preliminaries: We denote by 1 the vector (1, 1, . . . , 1) ∈ RN . Shannon entropy
H(u) = −

∑N
i=1 ui lnui is defined for any u ∈ ∆N . The Kullback-Leibler divergence D (u‖v) =∑N

i=1 ui ln(ui/vi) is defined for any u, v ∈ ∆N . For any p ∈ [1,∞], ‖·‖p denotes p-norm in RN .
We denote by ‖·‖∗ the dual norm of a norm ‖·‖. If H is a real Hilbert space, we denote by 〈·, ·〉
its inner product, and by ‖·‖ the induced norm. The negative Shannon entropy, −H(u), defined
on ∆N is 1-strongly convex with respect to ‖·‖1. The dual norm of ‖·‖1 is ‖·‖∞. The function
R(u) = 1

2 ‖u‖
2 defined on a Hilbert space with norm ‖·‖ is 1-strongly convex with respect to ‖·‖.

Follow The Regularized Leader (FTRL) algorithm with regularizer R : K → R and learning
rate η > 0 in round t chooses xt = arg minx∈K

(
1
ηR(x) +

∑t−1
s=1〈`s, x〉

)
. The following theorem

is a slight modification of Shalev-Shwartz (2011, Theorem 2.11).

Theorem 1 (Regret of FTRL) If R : K → R is 1-strongly convex function with respect a norm
‖·‖ then for any sequence {`t}∞t=1 such that ‖`t‖∗ ≤ 1, FTRL with learning rate η satisfies for all
T ≥ 0 and all u ∈ K, RegretT (u) ≤ R(u)−infv∈K R(v)

η + ηT
2 .
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2. Learning with Expert Advice

Hedge algorithm (Freund and Schapire, 1997) for LEA satisfies

∀u ∈ ∆N RegretT (u) ≤
√

2T lnN (1)

This bound is known to be optimal in the worst-case sense (Cesa-Bianchi and Lugosi, 2006, Section
3.7). However, (1) has two drawbacks. First, the right-hand side of (1) is independent of u, that is,
the algorithm does not adapt to u. Second, Hedge satisfies (1) only if `1, `2, . . . , `T ∈ [−1, 1]N . We
would like to allow loss vectors that are arbitrary vectors in RN .

Hedge is identical to FTRL with regularizer R(u) = −H(u). Theorem 1 implies that Hedge
with learning rate η, satisfies

RegretT (u) ≤ lnN −H(u)

η
+
ηT

2
=
D
(
u
∥∥ 1
N 1
)

η
+
ηT

2
. (2)

Let p ∈ [0, lnN). If we choose η =

√
ln(N)−p

T , we get that

∀u ∈ ∆N , H(u) ≥ p =⇒ RegretT (u) ≤
√

2T (ln(N)− p) . (3)

The bound (1) corresponds to choice p = 0 and η =
√

lnN
T .

Instead of the family of algorithms parametrized by p ∈ [0, lnN) that satisfy bound (3), one
would like to have a single algorithm (without any tuning parameters) satisfying

∀u ∈ ∆N RegretT (u) ≤
√

2T (lnN −H(u)) =
√

2T ·D
(
u
∥∥ 1
N 1
)
. (4)

Note that (4) is stronger than (3) in following the sense: A single algorithm satisfying (4) implies
(3) for all p simultaneously. However, a family of algorithms {Ap : p ∈ [0, lnN)} parametrized
by p where Ap satisfies (3), does not yield a single algorithm satisfying (4).

Bounds of the form (4) were not considered until 2009. Since then, however, there have been
a lot of work (Chaudhuri et al., 2009; Chernov and Vovk, 2010; Koolen and van Erven, 2015; Luo
and Schapire, 2014, 2015; Foster et al., 2015; Orabona and Pál, 2016a) on algorithms that satisfy
slightly looser1 versions of (4)

∀u ∈ ∆N RegretT (u) ≤ Õ(
√
T (1 + lnN −H(u))) = Õ

(√
T
(
1 +D

(
u
∥∥ 1
N 1
)))

. (5)

Algorithms of this type are called parameter-free since, in contrast to Hedge, they do not need to
know p. The regret in (4) is called a quantile bound because one can bound the regret with respect
to (εN)-th best expert for any ε ∈ (0, 1). Indeed, regret with respect to (εN)-th best expert is upper
bounded by the regret with respect to the average of the top εN experts, which can be expressed
as the regret with respect to a competitor u that, up to permutation of coordinates, has the form
u = (1/(εN), . . . , 1/(εN), 0, . . . , 0). Such competitor satisfies H(u) = ln(εN) and the regret
with respect to any such u is Õ(

√
T (1 + ln(1/ε)). Namely, the last bound does not depend on the

number of experts N , only on the quantile ε. These algorithms remove the first drawback of Hedge.

1. Earlier papers have extra logarithmic factors. Foster et al. (2015); Orabona and Pál (2016a) have a fixed multiplicative
constant hidden in Õ(·)
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The second drawback of Hedge is removed by the AdaHedge algorithm due to de Rooij et al.
(2014); see also Orabona and Pál (2016a). AdaHedge lifts the assumption `t ∈ [−1, 1]N . Namely,
for any sequence of loss vectors {`t}∞t=1, `t ∈ RN , any T ≥ 0 and any u ∈ ∆N , AdaHedge satisfies

RegretT (u) ≤ 5.3
√

lnN
∑T

t=1 ‖`t‖
2
∞. AdaHedge is scale-free which means that its predictions

xt are the same for {`t}∞t=1 and {c`t}∞t=1, where c is any positive constant.
Our first open problem is to design an algorithm that combines the advantages of parameter-free

and scale-free algorithms. More formally: Does there exist a universal constant C > 0 and for each
N ≥ 2 and each π ∈ ∆N , is there an algorithm (without any tuning parameters) that runs in O(N)
time per round and satisfies, for any sequence of loss vectors {`t}∞t=1, `t ∈ RN ,

∀T ≥ 0 ∀u ∈ ∆N RegretT (u) ≤ C

√√√√(1 +D (u‖π))
T∑
t=1

‖`t‖2∞ ? (6)

Attempts to solve the open problem include all sorts of doubling tricks. For example, the algo-
rithm could keep an upper bound Bt on max1≤i≤t ‖`i‖∞, for example, of the form Bt = ‖`1‖ 2k

doubling whenever larger ‖`t‖∞ is observed. However, resulting regret bounds might depend on

log2

(
max1≤t≤T ‖`t‖∞

‖`1‖∞

)
which can be Ω(T ) in the worst-case.

A more promising approach is to use infinitely many copies of AdaHedge with learning rates
2−i, i = 1, 2, . . . , and combine their predictions using a master AdaHedge with a certain non-
uniform prior distribution. However, the resulting algorithm runs in Θ(N maxu∈∆N

logD (u‖π))
time per round.

3. OLO over Hilbert Spaces

The situation with algorithms for OLO over a Hilbert spaceH is very similar to that of LEA. FTRL
with regularizer 1

2 ‖u‖
2 and learning rate η satisfies (cf. Theorem 1)

∀u ∈ H RegretT (u) ≤ ‖u‖
2

2η
+
ηT

2
, (7)

assuming that ‖`1‖ , ‖`2‖ , . . . , ‖`T ‖ ≤ 1. Bound (7) is a direct analogue of (2) for LEA. A simple
choice η = 1/

√
T leads to an algorithm that satisfies

RegretT (u) ≤ 1

2

(
1 + ‖u‖2

)√
T . (8)

However, this algorithm and the bound (8) have two drawbacks. First, the dependency on ‖u‖
is suboptimal. As we will see shortly, the quadratic dependency can be replaced by an (almost)
linear dependency. Second, the bound holds only for sequences of loss vectors with ‖`t‖ ≤ 1,
t = 1, 2, . . . , T . A robust algorithm should be able to handle any sequence of loss vectors inH.

Starting from (7), if we choose learning rate η = D/
√
T , we get a family of algorithms

parametrized by D ∈ [0,∞) that satisfy an analogue of the bound (3):

∀u ∈ H ‖u‖ ≤ D =⇒ RegretT (u) ≤ D
√
T . (9)
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Instead of family of algorithms parametrized by D ∈ [0,∞) satisfying bound (9), one would
like to have a single algorithm (without any tuning parameters) satisfying

∀u ∈ H RegretT (u) ≤ ‖u‖
√
T . (10)

Bound (10) is an analogue of (4) for LEA. Similar to LEA, (10) is stronger than (9) in the following
sense: A single algorithm satisfying (10) implies (9) for all values of D ∈ [0,∞). However, a
family of algorithms {AD : D ∈ [0,∞)} parametrized by D where AD satisfies (9), does not yield
a single algorithm that satisfies (10). Finally, note that (10) has better dependency on ‖u‖ than (8).

Similar to LEA, there have been a lot of work on algorithms (Streeter and McMahan, 2012;
Orabona, 2013; McMahan and Abernethy, 2013; McMahan and Orabona, 2014; Orabona, 2014)
that satisfy a slightly weaker version of (10)

∀u ∈ H RegretT (u) ≤
(
O(1) + polylog(1 + ‖u‖) ‖u‖

)√
T , (11)

where polylog(1 + ‖u‖) represents a function that is upper bounded by a polynomial in log(1 +
‖u‖).2 Algorithms satisfying (11) are called parameter-free, since they do not need to know D.
Moreover, the bound (11) has much better dependency on ‖u‖ than (8).

Analogue of AdaHedge for OLO over Hilbert space is FTRL with adaptive learning rate ηt =

1/
√∑t−1

i=1 ‖`i‖
2. Orabona and Pál (2015) (see also Orabona and Pál (2016b)) showed that the

resulting algorithm is scale-free and, for any sequence of loss vectors {`t}∞t=1, `t ∈ H, it satisfies

∀T ≥ 0 ∀u ∈ H RegretT (u) ≤
(

6.25 +
1

2
‖u‖2

)√
T max

1≤t≤T
‖`t‖ .

We stress that the algorithm does not need to know max1≤t≤T ‖`t‖.
Our second open problem is to design an algorithm that combines the advantages of parameter-

free and scale-free algorithms for OLO over a Hilbert space H. Formally: Construct an algorithm
(without any tuning parameters) that makesO(1) vector operations inH andO(1) other operations
per round, and satisfies for any sequence of loss vectors {`t}∞t=1, `t ∈ H,

∀T ≥ 0 ∀u ∈ H RegretT (u) ≤
(
O(1) + polylog(1 + ‖u‖) ‖u‖

)√√√√ T∑
t=1

‖`t‖2.

We offer $100 USD for a positive solution of this problem. Here polylog(1 + ‖u‖) represents a
function that is upper bounded by a polynomial in log(1 + ‖u‖) and O(1) represents a universal
constant.

The problem is interesting even for one-dimensional Hilbert spaceH = R. Also, the reductions
in Orabona and Pál (2016a) implies that solving the one-dimensional problem might solve both the
general Hilbert space and the LEA cases.

Similar to LEA, attempts to solve the open problem included a doubling trick on the maximum
norm ‖`t‖ seen so far. This approach fails the same way as for LEA. Differently from the LEA case,
running infinitely many copies of FTRL and combining their predictions using AdaHedge with a
non-uniform prior is problematic because the predictions of the copies are not bounded. The open
problem for Hilbert space seems to be harder than the open problem than LEA, and constructing
even a computationally inefficient algorithm is an interesting open problem.

2. It can be shown that for OLO over Hilbert space the extra poly-logarithmic factor is necessary (McMahan and
Abernethy, 2013; Orabona, 2013).
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