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Abstract
We consider the problem of approximating partition functions for Ising models. We make

use of recent tools in combinatorial optimization: the Sherali-Adams and Lasserre convex pro-
gramming hierarchies, in combination with variational methods to get algorithms for calculating
partition functions in these families. These techniques give new, non-trivial approximation guar-
antees for the partition function beyond the regime of correlation decay. They also generalize
some classical results from statistical physics about the Curie-Weiss ferromagnetic Ising model, as
well as provide a partition function counterpart of classical results about max-cut on dense graphs
(Arora et al., 1995). With this, we connect techniques from two apparently disparate research areas
– optimization and counting/partition function approximations. (i.e. #-P type of problems).

Furthermore, we design to the best of our knowledge the first provable, convex variational
methods. Though in the literature there are a host of convex versions of variational methods (Wain-
wright et al.; 2005; Heskes, 2006; Meshi et al., 2009), they come with no guarantees (apart from
some extremely special cases, like e.g. the graph has a single cycle (Weiss, 2000)). We con-
sider dense and low threshold rank graphs, and interestingly, the reason our approach works on
these types of graphs is because local correlations propagate to global correlations – completely
the opposite of algorithms based on correlation decay. In the process we design novel entropy
approximations based on the low-order moments of a distribution.

Our proof techniques are very simple and generic, and likely to be applicable to many other
settings other than Ising models.
Keywords: Ising models; threshold rank; partition function; Lasserre hierarchy; Sherali-Adams
hierarchy; correlation decay; variational methods; variational inference;

1. Introduction

Calculating partition functions is a common task in machine learning: for a distribution p over a
domain D, specified up to normalization i.e. p(x) ∝ f(x),x ∈ D for some explicit function f(x),
we want to calculate the partition function (i.e. the normalization constant)

∑
x∈D f(x).1 This task

arises naturally in almost any problem involving learning, performing inference (i.e. calculating
marginals) over graphical models, or estimating posterior distributions in latent variable models.

Broadly, two approaches are used for calculating partition functions: one is based on using
Markov Chains to sample from the distribution p; the other is variational methods, which involve

∗ This work was supported in part by NSF grants CCF-0832797, CCF-1117309, CCF-1302518, DMS-1317308, San-
jeev Arora’s Simons Investigator Award, and a Simons Collaboration Grant.

1. D can also be continuous of course, in which case the sum becomes an integral, though in this paper we only will be
concerned with discrete domains.
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characterizing the partition function as the solution of a certain (intractable) optimization problem
over the polytope of valid distributions over D. In theory, the former are much better studied, the
crowning achievements of which are probably (Jerrum et al., 2004) and (Jerrum and Sinclair, 1993),
who proved certain Markov Chains mix rapidly in the case of permanent with non-negative entries
and the ferromagnetic Ising model.

In practice however, variational methods are quite popular (Wainwright and Jordan, 2008; Blei
et al., 2003; 2016). There are various reasons for this, the main being that they can be quite a bit
faster than Markov Chain methods 2 and they tend to be easier to parallelize. With the exception of
belief propagation (which can be viewed as a particular way to solve a certain non-convex relaxation
of the optimization problem for calculating the partition function (Yedidia et al., 2003)) there is
essentially no theoretical understanding. Additionally, the guarantees for belief propagation usually
apply only in the regime of decay of correlations and locally tree-like graphs.

The contributions of our paper are two-fold.
First, we bring to bear recent tools in combinatorial optimization: the Sherali-Adams and

Lasserre convex programming hierarchies, in combination with variational methods to get algo-
rithms for calculating partition functions of Ising models. These techniques give new, non-trivial
approximation guarantees for the partition function beyond the regime of correlation decay. They
also generalize some classical results from statistical physics about the Curie-Weiss ferromagnetic
Ising model, as well as provide a partition function counterpart of classical results about max-cut
on dense graphs (Arora et al., 1995). With this, we connect techniques from two apparently dis-
parate research areas – optimization and counting/partition function approximations. (i.e. #-P type
of problems).

Second, we design to the best of our knowledge the first provable, convex variational methods.
Though in the literature there are a myriad of convex versions of variational methods (Wainwright
et al.; 2005; Heskes, 2006; Meshi et al., 2009), they come with no guarantees at all (except in some
extremely special cases, like e.g. the graph has a single cycle (Weiss, 2000)). Our methods tackle
dense and low threshold rank graphs, and interestingly, the reason our approach works on these
types of graphs is because local correlations propagate to global correlations – which is completely
the opposite of algorithms based on correlation decay. In the process we design novel entropy
approximations based on the low-order moments of a distribution.

Our proof methods are extremely simple and generic and we believe they can be applied to
many other families of partition functions.

Finally, one more important reason to study variational methods (albeit more theoretical in na-
ture) is derandomization, since variational methods are usually deterministic. The gap between the
state of the art in partition function calculation with and without randomization is huge. For in-
stance, for the case of calculating permanents of non-negative matrices the algorithm due to (Jerrum
et al., 2004) gets a factor 1 + ϵ approximation in time poly(n, 1/ϵ) with high probability (i.e. it’s
an FPRAS). In contrast, the best deterministic algorithm due to (Gurvits and Samorodnitsky, 2014)
achieves only a factor 2n approximation in time poly(n). (To make the situation even more drastic,
the approach in (Gurvits and Samorodnitsky, 2014) can at best lead to a factor

√
2
n

approximation
(Wigderson).)

2. Markov Chain methods always produce the right answer in the end, but might take longer to converge; variational
methods are based on solving an optimization problem, for which it is potentially possible to get stuck in a local
optimum, but generally convergence is faster
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2. Overview of results

We focus on dense Ising models first: an Ising model p(x) ∝ exp
(∑

i,j Ji,jxixj

)
,x ∈ {−1, 1}n

is ∆-dense if it satisfies ∆|Ji,j | ≤ JT
n2 , ∀i, j ∈ [n], where JT =

∑
i,j |Ji,j |.

This is a natural generalization of the typical way to define density for combinatorial optimiza-
tion problems (see e.g. (Yoshida and Zhou, 2014)). To see this consider a graph G = (V,E)
with |E| = cn2. For optimization problems like max-cut or more generally CSPs, we care about
objectives that look like

Ee∈Ef(e) =
∑
e∈E

1

|E|
f(e)

for some function f . Hence, the “weight” in front of each pair (i, j) in the objective is 0 if there
is no edge or 1

|E| . This corresponds to ∆ = 1
c in our definition. For partition function problems,

however, scale matters (i.e. we cannot assume
∑

i,j Ji,j = 1), so the above generalization appears
very organic.

Theorem 1 For ∆-dense Ising models, there is an algorithm based on Sherali-Adams
hierarchies which achieves an additive approximation of ϵJT to logZ , where Z =∑

x∈{−1,1}n exp
(∑

i,j Ji,jxixj

)
and runs in time n

O
(

1
∆ϵ2

)
.

Our second contribution are analogous claims for Ising models whose potentials look like low
rank matrices. (More precisely, adjacency matrices of low threshold rank graphs, a concept intro-
duced by (Arora et al., 2010) in the context of their algorithm for Unique Games.)

Concretely, an Ising model p(x) ∝ exp
(∑

i,j Ji,jxixj

)
,x ∈ {−1, 1}n is regular if∑

j |Ji,j | = J ′, ∀i. The adjacency matrix of a regular Ising model is the matrix Ai,j = |Ji,j |/J ′.
Then, we show:

Theorem 2 There is an algorithm based on Lasserre hierarchies which achieves an additive
aproximation of ϵnJ ′ to logZ , where Z =

∑
x∈{−1,1}n exp

(∑
i,j Ji,jxixj

)
, and runs in time

nrank(Ω(ϵ2))/Ω(ϵ2), where rank(τ) is the number of eigenvalues of the adjacency matrix A greater
than or equal to τ .

It’s interesting that this property of the graph, previously introduced for purposes of combina-
torial optimization problems like small-set expansion, Unique Games (Steurer, 2010; Arora et al.,
2010), also helps with counting type problems.

Note that since we prove additive factor guarantees to logZ, using the fact the eϵ ≤ 1 + 2ϵ
for small enough ϵ, we can easily turn them to multiplicative factor guarantees on Z. While these
guarantees are not as strong as one usually gets in the correlation decay regime (i.e. 1 + ϵ multi-
plicative factor approximations to Z in time poly(n, 1ϵ )), to the best of our knowledge, these are the
first approximations guarantees for Z when correlation decay does not hold. We discuss interesting
regimes of the potentials Ji,j in Section 5.

2.1. Outline of the techniques

Our approach can be summarized as follows. We first express the value of the log-partition function
as the solution of a certain (intractable) optimization problem, by using a variational characterization
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of the log-partition function dating all the way back to Gibbs. (See Lemma 3.) To be more precise,
we express it as logZ = maxµ∈M{E(µ) +H(µ)}, where M is the polytope of distributions over
{−1, 1}n, E(µ) is an average energy term, which dependes on pairwise marginals of µ only, and
H(µ) is the Shannon entropy of µ.

The source of intractability comes from the fact that we cannot optimize over the polytope
M: we will instead optimize over a larger polytope M′, which will come by considering pseudo-
distributions, derived from either Sherali-Adams or Lasserre hierarchies. Additionally, we need to
design a relaxation of H(µ), since in general we cannot hope to express the entropy of a distribution
as a function its low-order marginals only.

The entropy relaxation H̃(µ) needs to satisfy H̃(µ) ≥ H(µ) for µ ∈ M and needs to be
concave in the variables used in the Sherali-Adams and Lasserre relaxations. The relaxation we use
(See Section 4) will be based upon the chain rule for entropy, so it will be easy to prove that it upper
bounds H(µ) (Proposition 7).

The analysis of the quality of the relaxation proceeds by rounding the pseudo-distributions to an
actual distribution. This is slightly different from the roundings in combinatorial optimization, as
there we only care about producing a single good {−1, 1}n solution. Here, because of the entropy
term, we must crucially produce a distribution over {−1, 1}n. The observation then is that we
can view correlation rounding, a rounding previously used in works on combinatorial optimization
(Barak et al., 2011; Yoshida and Zhou, 2014) as producing a distribution over {−1, 1}n which has
the same entropy as the H̃(µ) we defined. (Theorems 11, 13).

3. Preliminaries

We proceed with designing approximation algorithms for partition functions of Ising models
first. Recall, an Ising model is a distribution p : {−1, 1}n → [0, 1] that has the form p(x) ∝
exp

(∑n
i,j=1 Ji,jxixj

)
and its partition function is Z =

∑
x∈{−1,1}n

(∑n
i,j=1 Ji,jxixj

)
.3

They are very commonly used in practical applications in machine learning because of their
flexibility (and other appealing properties like being max-entropy distributions subject to moment
constraints), and are extensively studied in theoretical computer science, statistical physics and
probability theory.

A full survey is out of the scope of this paper, but we just mention that it can be shown that
approximating Z within any polynomial factor is NP-hard for general potentials Ji,j (Jerrum and
Sinclair, 1993). When the potentials Ji,j are all non-negative (also known as the ferromagnetic
Ising model), (Jerrum and Sinclair, 1993) exhibit an FPRAS for computing Z .

Let us set up the basic tools we will be using.

3.1. Variational methods

One of the main ideas all the algorithms will use is the following simple lemma, which characterizes
Z as the solution of an optimization problem. It essentially dates back to Gibbs (Ellis, 2012), who
used it in the context of statistical mechanics, though it has been rediscovered by machine learning

3. There are many generalizations of this, allowing linear or higher order terms, as well as different domains than
{−1, 1}n. Most results we prove can be generalized appropriately to these settings completely mechanically, so for
clarity sake we focus on this case.
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researchers (Wainwright and Jordan, 2008; Yedidia et al., 2003). For completeness, we reprove it
here:

Lemma 3 (Variational characterization of logZ) For any distribution µ : {−1, 1}n → [0, 1],∑
i,j

Ji,jEµ [xixj ] +H(µ) ≤ logZ

with equality at µ = p.

Proof For any distribution µ : {−1, 1}n → [0, 1], we can write the KL divergence between µ and
p as

KL(µ||p) = Eµ [logµ(x)]− Eµ [log p(x)] = −H(µ)−
∑
i,j

Ji,jEµ [xixj ] + logZ

Since the KL divergence is always non-negative, −H(µ) −
∑
i,j

Ji,jEµ [xixj ] + logZ ≥ 0.

Hence, logZ ≥ H(µ) +
∑
i,j

Ji,jEµ [xixj ] which proves the first claim of the lemma. However,

equality is achieved whenever the KL divergence is 0, which happens when µ = p. This finishes
the second part of the lemma.

An immediate consequence of the above is the following:

Corollary 4 logZ = maxµ∈M

{∑
i∼j Ji,jEµ [xixj ] +H(µ)

}
, where M is the polytope of distri-

butions over {−1, 1}n.

We will use the above corollary as follows: instead of considering µ ∈ M, which is a polytope
we cannot optimize over in polynomial time, we will consider µ ∈ M′, for a polytope M′ satisfying
M ⊆ M′, and feasible to optimize over. In fact, M′ will be a polytope of pseudo-distributions,
associated with either Sherali-Adams or Lasserre hierarchies. This idea is not new – it has appeared
implicitly or explicitly in works on various types of belief propagation. (Wainwright and Jordan,
2008)

The novel thing is how we handle the entropy portion of the objective. Since µ ∈ M′ is no
longer necessarily a distribution, we need to design surrogates for the entropy of µ. A popular
choice in the literature is the so-called Bethe entropy, which roughly arises by taking the expression
for the entropy of µ in terms of the pairwise marginals when the graph is a tree. (Of course, this
expression is exact only if the graph is a tree. (Yedidia et al., 2003)) However, this approximation
is not a relaxation of logZ in the standard sense – the Bethe entropy is not an upper bound of
the entropy, and the constructed approximation to logZ is not concave in general, so the analysis
proceeds by analyzing the belief propagation messages directly.4

We take a completely different approach. To get a proper relaxation for logZ , we design func-
tionals H̃(µ) defined on µ ∈ M′, s.t. H̃(µ) ≥ H(µ) whenever µ ∈ M. In brief, we will use the
following Corollary to 4:

4. This approach usually works for graphs that are locally-tree-like (i.e. don’t have short cycles), and for which some
form of correlation decay holds.
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Corollary 5 If M ⊆ M′ and H(µ) ≤ H̃(µ) for µ ∈ M, then

logZ ≤ max
µ∈M′

∑
i∼j

Ji,jEµ [xixj ] + H̃(µ)


Subsequently, we will round the pseudo-distributions to actual distributions, in a manner that

doesn’t lose too much in terms of the value of the objective function.

3.2. Sherali-Adams and Lasserre hierarchies

We will be strongly using hierarchies of convex relaxations, capturing constraints on low-order
moments and marginals of distributions. These are where our polytope M′ will come from. While
convex hierarchies have recently become relatively well-known in theoretical computer science, we
still provide a (very) brief overview for completeness sake. For more details, the reader can consult
(Barak et al., 2011; 2014; Laurent, 2009).

Recall, we are considering relaxations of the polytope of distributions over {−1, 1}n. The k-
level Sherali-Adams hierarchy (henceforth SA(k)) has variables µS(xS),xS ∈ {−1, 1}|S| specify-
ing local distributions over all subsets S ⊆ [n], |S| ≤ k. The distributions µS : {−1, 1}|S| → [0, 1]
and µT : {−1, 1}|T | → [0, 1], for any S, T s.t. |S ∪ T | ≤ k must be “consistent” on S ∩ T . More
precisely, it’s the case that

Pr
xS∼µS

[xS∩T = α] = Pr
xT∼µT

[xS∩T = α], ∀S, T ⊆ [n], |S ∪ T | ≤ k

The fact that these constraints can be written as a linear program is well-known. (See e.g. (Barak
et al., 2011))

We can also define a conditioning operation thanks to the existence of these local distributions.
More precisely, for a vertex v, conditioning on v involves sampling v according to the local dis-
tribution µ{v}. This operation specifies a solution to the k − 1-st level SA hierarchies: just define
µS(xS) = µS∪{v}(xS∪v).

The additional power we get from the k-th level of the Lasserre hierarchy (henceforth LAS(k))
is that the semidefinite program provides vectors vS,α for each subset S and possible assignment of
values α to it, s.t. ⟨vS,α, vT,β⟩ = PrµS∪T (xS = α,xT = β), if |S ∪ T | ≤ k.

4. Entropy respecting roundings

In this section we consider the functionals acting as surrogates for entropy. Recall, these need to be
upper bounds on the entropy of a distribution µ on which we have essentially no handle other than
having the first few moments. A clear candidate to do this is the chain rule.

Notice that for any set S of size at most k, where k is the number of levels of the Sherali-Adams
or Lasserre hierarchy, H(µS) is a well-defined quantity: it’s exactly

H(µS) =
∑

xS∈{−1,1}|S|

µS(xS) log(µs(xS))

Since these local quantities are essentially all the information about the joint distribution µ we have,
our functional must involve such quantities only.

The simplest functional one can design surely is the following:

6
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Definition The mean-field pseudo-entropy functional HMF(µ) is defined as HMF(µ) =∑n
i=1H(µi).

Remark Note, this is not the same as the usual mean-field approximation in statistical physics.
The mathematical program analogue of that approximation would be to enforce that Eµ[xixj ] =
Eµ[xi]Eµ[xj ] – which would result in a non-convex relaxation generally. We think the name is
appropriate though, since the bound on the entropy is mean-field, i.e. results by treating µ as if it
were a product distribution.

Almost trivially for any µ ∈ M, the following proposition holds:

Proposition 6 For any distribution µ : {−1, 1}n → [0, 1], H(µ) ≤ HMF(µ)

Proof By the chain rule, H(µ) =
∑n

i=1H(µi|µ[i−1]), where [i−1] denotes the set {1, 2, . . . , i−1}
and H(X|Y ) is the conditional entropy of X given Y . However, since H(µi|µ[i−1]) ≤ H(µi) the
claim trivially holds.

We will also consider generalizations of the above – where before applying the above ”mean-
field” bound on the entropy, one can condition on a small subset first. Namely,

Definition The augmented mean-field pseudo-entropy functional for subsets of size k, HaMF,k(µ)
is defined as HaMF,k(µ) = min|S|≤k

{
H(µS) +

∑
i/∈S H(µi|µS)

}
.

The same proof as in Proposition 6 implies:

Proposition 7 H(µ) ≤ HaMF,k(µ)

Furthermore, it’s quite easy to show that HaMF,k(µ), like HMF(µ), is a concave function.

Lemma 8 The pseudo-entropy functional HaMF,k(µ) = min|S|≤k

{
H(µS) +

∑
i/∈S H(µi|µS)

}
is

concave in the variables {µS∪{i}
(
xS∪{i}

)
||S| ≤ k, i ∈ [n]}.

Proof Since HaMF,k(µ) = min|S|≤k

{
H(µS) +

∑
i/∈S H(µi|µS)

}
, and the minimum of concave

functions is concave, all we need to show is that H(µS)+
∑

i/∈S H(µi|µS) is concave for all S. It’s
well known that entropy is a concave function, so H(µS) is concave. What remains to be shown is
that

∑
i/∈S H(µi|µS) is concave. But, since the sum of concave functions is concave, it suffices to

prove H(µi|µS) is concave.
The proof of this is essentially the same as the proof of concavity of entropy. Abusing notation

a bit, we will denote as µA|xB the conditional distribution on the variables in A, conditioned on the
variables in B having the value xB . We recall that

H(µi|µS) =
∑

xS∈{−1,1}|S|

µs(xS)H(µi|xs)

= −
∑

xS∈{−1,1}|S|

∑
xi∈{−1,1}

µs(xS)µi|xS
(xi) log(µi|xS

(xi))

= −
∑

xS∈{−1,1}|S|

∑
xi∈{−1,1}

µS∪{i}(xS∪{i}) log(µi|xS
(xi))

= −
∑

xS∈{−1,1}|S|

∑
xi∈{−1,1}

µS∪{i}(xS∪{i}) log

(
µS∪{i}(xS∪{i})

µs(xS)

)

7



RISTESKI

We rewrite the last expression as a KL divergence as follows:

−
∑

xS∈{−1,1}|S|

∑
xi∈{−1,1}

µS∪{i}(xS∪{i}) log

(
µS∪{i}(xS∪{i})

µs(xS)
1
2

)
+1 = −KL(µS∪{i}||(µS×r))+1

(4.1)
where r is a uniform distribution over {−1, 1}.

Then, if µλ
S∪{i} = λµ1

S∪{i} + (1− λ)µ2
S∪{i}, we want to show

H(µλ
i |µλ

S) ≥ λH(µ1
i |µ1

S) + (1− λ)H(µ2
i |µ2

S)

By (4.1) and the convexity of KL divergence,

H(µλ
i |µλ

S) = −KL(µλ
S∪{i}||(µ

λ
S × r)) + 1

≥ −λKL(µ1
S∪{i}||(µ

1
S × r))− (1− λ)KL(µ2

S∪{i}||(µ
2
S × r)) + 1

= λH(µ1
i |µ1

S) + (1− λ)H(µ2
i |µ2

S)

which is what we want.

4.1. Dense Ising models

We finally turn to designing an algorithm for “dense” Ising models.
There are multiple reasons to study this particular subclass: from the theoretical computer sci-

ence point of view, we have various PTAS for constraint satisfaction problem when the constraint
graph is dense (Yoshida and Zhou, 2014; Arora et al., 1995) so we might hope to get results better
than the worst-case one ones for partition function calculation as well.

Another motivation comes from mean-field ferromagnetic Ising model (also known as the Curie-
Weiss model (Ellis and Newman, 1978)), which is frequently studied as a very simplified model of
ferromagnetism because one can get relatively easily results about global properties of the model
like the partition function, magnetization, etc. In the mean-field model, each spin interacts (equally
strongly) with every other spin.

We will, in this section, generalize the classical results about the ferromagnetic Curie-Weiss
model, as well as provide the natural counterpart of the results in (Yoshida and Zhou, 2014; Arora
et al., 1995) for partition functions.

Let us first review the standard results about Curie-Weiss. Recall, this model follows the dis-
tribution p(x) ∝ exp

(∑n
i,j=1

J
nxixj

)
, J > 0. It is easy to analyze because p(x) factorizes and

can be “reparametrized” in terms of the magnetization. Namely, since
∑n

i,j=1
J
nxixj =

J
n (
∑

i xi)
2,

and (
∑

i xi)
2 ∈ [−n, n], one can show (Ellis and Newman, 1978):

Theorem 9 ((Ellis and Newman, 1978)) For the Curie-Weiss model,

logZ = (1± o(1))

(
n max

m∈[−1,1]

(
Jm2 +

1−m

2
log

1−m

2
+

1 +m

2
log

1 +m

2

))
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The proof of this theorem involves rewriting the expression for Z as follows:

Z =
∑

x∈{−1,1}n
exp

∑
i,j

J

n
xixj

 =
∑
l

exp

(
J

n
l2
)
· nl

where nl is the number of terms where
∑n

i=1 xi = l. Then, using Stirling’s formula and some more
algebraic manipulation, one can estimate the dominating term in the summation. The claim of the
theorem then follows.

We significantly generalize the above claim using notions from theoretical computer science.
The goal is to prove Theorem 1.

Let JT =
∑

i,j |Ji,j |. As discussed in Section 2, we define the following notion of density
inspired by the definition of a dense graph in combinatorial optimization (Yoshida and Zhou, 2014):

Definition An Ising model is ∆-dense if ∀i ̸= j,∆|Ji,j | ≤ JT
n2 , ∆ ∈ (0, 1].

We will consider the relaxation for logZ given by the augmented pseudo-entropy functional
and the level k = O(1/(∆ϵ2)) Sherali-Adams relaxation, namely:

max
µ∈SA(k),k=O(1/(∆ϵ2))

∑
i,j

Ji,jEµ [xixj ] +HaMF,k(µ)

 (4.2)

We also recall correlation rounding as defined in (Barak et al., 2011). In correlation rounding,
we pick a “seed set” of a certain size, condition on it, and round the rest of the variables indepen-
dently. The usual thing to prove is that there is a good “seet set” of a small size to condition on. In
particular, for the dense case, the following lemma was proven in (Yoshida and Zhou, 2014):

Lemma 10 ((Yoshida and Zhou, 2014)) There exists a set S of size k = O(1/(∆ϵ2)), s.t.∣∣∣∣∣∣
∑
i,j

Ji,jEµ [xixj |xS ]−
∑
i,j

Ji,jEµ [xi|xS ]Eµ [xj |xS ]

∣∣∣∣∣∣ ≤ 100

∆k
JT

With this in hand, we proceed to the main theorem of this section:

Theorem 11 (Restatement of Theorem 1) The output of 4.2 is an ϵJT additive approximation to
logZ.

Proof The function 4.2 is optimizing is a sum of two terms:
∑

i∼j Ji,jEµ [xixj ] and an entropy
term. Following standard terminology in statistical physics, we will call the former term average
energy.

We will analyze the quality of the convex relaxation by exhibiting a rounding of the pseudo-
distribution to an actual distribution. There is a difference in what this means compared to the
roundings we use in combinatorial optimization: there we only care about producing a single
{+1,−1} solution. Here, because of the entropy term, it’s essential that we produce a distribu-
tion over {+1,−1} solutions.

9
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We use the fact that correlation rounding can be viewed as producing distributions with a fairly
explicit expression for their entropy. Let S be the set of size O( 1

∆ϵ2
) that Lemma 10 gives. Con-

sider the distribution µ̃(x) = µ(xS)Πi/∈Sµ(xi|xS)
5. In other words, this is the distribution which

rounds the variables in S according to their local distribution, and all other variables independently
according to the conditional distribution on xS .

Consider the average energy first. By Lemma 10,∣∣∣∣∣∣
∑
i,j

Ji,jEµ [xixj |xS ]−
∑
i,j

Ji,jEµ̃ [xixj |xS ]

∣∣∣∣∣∣ ≤ JT ϵ

Now consider the entropy term. The entropy of the distribution µ̃ is H(µ̃) = H(µS) +∑
i/∈S H(µi|µS). But, since HaMF,k(µ) = min|S|≤k

{
H(µS) +

∑
i/∈S H(µi|µS)

}
, HaMF,k(µ) ≤

H(µ̃) follows. This immediately implies that∑
i,j

Ji,jEµ [xixj ] +HaMF,k(µ)

−

∑
i,j

Ji,jEµ̃ [xixj ] +H(µ̃)

 =

∑
i,j

Ji,jEµ [xixj ]−
∑
i,j

Ji,jEµ̃ [xixj ]

+ (HaMF,k(µ)−H(µ̃)) ≤ JT ϵ

This exactly proves the claim we want.

Notice, in the case of the Curie-Weiss model, since J > 0, the value of the relaxation 4.2 is at
least JT , Theorem 11 gives a 1+ϵ multiplicative factor approximation to logZ for any constant ϵ, so
generalizes the statement of Theorem 9 to cases where the potentials Ji,j might vary in magnitude
and sign.

4.2. Low threshold rank Ising models

If we use the added power of the Lasserre hierarchy, we can also handle Ising models whose weights
look like low rank matrices. We want to prove Theorem 2.

We will consider for simplicity in this section regular Ising models in the weighted sense, mean-
ing

∑
j |Ji,j | = J ′, ∀i 6. The adjacency matrix of an Ising model will be the doubly-stochastic

matrix with entries |Ji,j |/J ′.
Let’s recall the definition of threshold rank from (Arora et al., 2010):

Definition The τ -threshold rank of a regular graph is the number of eigenvalues of the normalized
adjacency matrix greater than or equal to τ .

We will, in analogy, define the threshold rank of an Ising model.

5. Notice this is an actual, well-defined distribution, and not only a pseudo-distribution anymore.
6. Though we remind again, all of the claims can be appropriately generalized at the expense of more bothersome

notation.
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Definition The τ -threshold rank of a regular Ising model is the number of eigenvalues of its adja-
cency matrix greater than or equal to τ .

We will consider the following convex program:

max
µ∈LAS(k)

∑
i,j

Ji,jEµ [xixj ] +HaMF,k(µ)

 (4.3)

Consider the vectors vi, i ∈ [n], s.t. ⟨vj , vj⟩ = Eµ [xixj ]. Then, (Barak et al., 2011) prove that
when the graph has low threshold rank, “local” correlations propagate to “global” correlations, and
as a consequence of this, there is a set of size at most rank(Ω(ϵ2))/Ω(ϵ2), such that conditioning on
it causes the

∣∣∣∑i,j Ji,jEµ [xixj |xS ]−
∑

i,j Ji,jEµ̃ [xixj |xS ]
∣∣∣ to drop below ϵJT . More precisely:

Lemma 12 ((Barak et al., 2011)) There exists a set S of size t ≤ rank(Ω(ϵ2))/Ω(ϵ2), where
rank(τ) is the τ -threshold rank of the Ising model, s.t. 7∣∣∣∣∣∣

∑
i,j

Ji,jEµ [xixj |xS ]−
∑
i,j

Ji,jEµ [xi|xS ]Eµ [xj |xS ]

∣∣∣∣∣∣ ≤ ϵJT

Hence, analogously as in Theorem 11, we get:

Theorem 13 (Restatement of Theorem 2) The output of 4.3 is a ϵJT additive approximation to
logZ .

5. Discussion on interpreting the results

Since the above results are stated in terms of the additive approximation they provide for logZ , we
discuss how one should interpret them in different “temperature regimes” i.e. different scales of
the potentials Ji,j . Note that partition function approximation problems are not scale-invariant, and
their hardness is sensitive to the size of the coefficients Ji,j .

For simplicity of the discussion, let’s focus on the case where there is an underlying graph
G = (V,E), such that Ji,j = ±J , for (i, j) ∈ E(G), and 0 otherwise. Furthermore, let’s assume
the graph G is d-regular.

There are generically three regimes for the problem:

• “High temperature regime”, i.e. when |J | = O
(
1
d

)
for a sufficiently small constant in the

O (·) notation. In this case, standard techniques like Dobrushin’s uniqueness criterion show
that there is correlation decay. This is the regime where generically Markov Chain methods
work. Note that using such methods, generally one can get a (1 + ϵ)-factor approximation
for Z in time poly

(
n, 1ϵ

)
, which is unfortunately much stronger than what our method gets

in that regime. It would be extremely interesting to see if the methods in our paper can be
modified to subsume this regime as well.

7. Note, JT = nJ ′ in this case.
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• “Around the transition threshold”, i.e. when |J | = Θ(1d) for a sufficiently large constant
in the Θ notation, such that there is no correlation decay. Generally, unless there is some
special structure, Markov Chain methods will provide no non-trivial guarantee in this regime
– however, we get an order ϵn additive factor approximation to logZ , which translates to a
(1 + ϵ)n factor approximation of Z . We do not, to the best of our knowledge, know how to
get such results using any other methods.

• “Low temperature regime”, i.e. when |J | = ω(1/d). In this case, in light of the variational
characterization of logZ and the fact that the entropy is upper bounded by n, the dominating
term will typically be the energy term

∑
(i,j)∈E(G) Ji,jEµ[xixj ], so essentially the quality of

approximation will be dictated by the hardness of the optimization problem corresponding
to the energy term. (e.g., for the anti-ferromagnetic case, where all the potentials Ji,j are
negative, the optimization problem corresponding to the energy term is just max-cut, and we
cannot hope for more than a constant factor approximation to logZ for general (negative)
potentials.)

6. Conclusion

We presented simple new algorithms for calculating partition functions in Ising models based on
variational methods and convex programming hierarchies. To the best of our knowledge, these
techniques give new, non-trivial approximation guarantees for the partition function when correla-
tion decay does not hold, and are the first provable, convex variational methods. Our guarantees are
for dense or low threshold rank graphs, and in the process we design novel entropy approximations
based on the low-order moments of a distribution.

We barely scratched the surface, and we leave many interesting directions open. Our methods
are very generic, and are probably applicable to many other classes of partition functions apart from
Ising models. One natural candidate is weighted matchings due to the connections to calculating
non-negative permanents.

Another intriguing question is to determine if there is a similar approach that can subsume prior
results on partition function calculation in the regime of correlation decay, as our guarantees are
much weaker there. This would give a convex relaxation interpretation of these types of results.
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