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Abstract
We consider interactive algorithms in the pool-based setting, and in the stream-based setting. In-
teractive algorithms observe suggested elements (representing actions or queries), and interactively
select some of them and receive responses. Pool-based algorithms can select elements at any order,
while stream-based algorithms observe elements in sequence, and can only select elements imme-
diately after observing them. We assume that the suggested elements are generated independently
from some source distribution, and ask what is the stream size required for emulating a pool algo-
rithm with a given pool size. We provide algorithms and matching lower bounds for general pool
algorithms, and for utility-based pool algorithms. We further show that a maximal gap between the
two settings exists also in the special case of active learning for binary classification.
Keywords: Interactive algorithms, active learning, pool-based, stream-based

1. Introduction

Interactive algorithms are algorithms which are presented with input in the form of suggested ele-
ments (representing actions or queries), and iteratively select elements, getting a response for each
selected element. The reward of the algorithm, which is application-specific, is a function of the
final set of selected elements along with their responses. Interactive algorithms are used in many ap-
plication domains, including, for instance, active learning (McCallum and Nigam, 1998), interactive
sensor placement (Golovin and Krause, 2011), summarization (Singla et al., 2016) and promotion
in social networks (Guillory and Bilmes, 2010). As a specific motivating example, consider an ap-
plication in which elements represent web users, and the algorithm should select up to q users to
present with a free promotional item. For each selected user, the response is the observed behavior
of the user after having received the promotion, such as the next link that the user clicked on. The
final reward of the algorithm depends on the total amount of promotional impact it obtained, as
measured by some function of the set of selected users and their observed responses. Note that the
algorithm can use responses from previous selected users when deciding on the next user to select.

We consider two interaction settings for interactive algorithms: The pool-based setting and the
stream-based setting. In the pool-based setting, the entire set of suggested elements is provided in
advance to the algorithm, which can then select any of the elements at any order. For instance, in the
web promotion example, there might be a set of users who use the website for an extended period of
time, and any of them can be approached with a promotion. In the stream-based setting, elements are
presented to the algorithm in sequence, and the algorithm must decide immediately after observing
an element, whether to select it or not. In the web promotion example, this is consistent with
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a setting where users access the website for single-page sessions, and so any promotion must be
decided on immediately when the user is observed.

The stream-based setting is in general weaker than the pool-based setting. Nonetheless, it is
important and useful: In many real-life scenarios, it is not possible to postpone selection of ele-
ments, for instance due to storage and retrieval constraints, or because of timing constraints. This
is especially pertinent when the data stream is real-time in nature, such as in streaming document
classification (Bouguelia et al., 2013), in spam filtering (Chu et al., 2011), in web streams such as
Twitter (Smailović et al., 2014), in video surveillance (Loy et al., 2012) and with active sensors
(Krishnamurthy, 2002).

In this work, our goal is to study the relationship between these two important settings. Both of
these settings have been widely studied in many contexts. In active learning, both settings have been
studied in classic works (Cohn et al., 1994; Lewis and Gale, 1994). Works that address mainly the
stream-based setting include, for instance, Balcan et al. (2009); Hanneke (2011); Dasgupta (2012);
Balcan and Long (2013); Sabato and Munos (2014). Some theoretical results hold equally for the
stream-based and the pool-based settings (e.g., Balcan and Long, 2013; Hanneke and Yang, 2015).

Several near-optimal algorithms have been developed for the pool-based setting (Dasgupta,
2005; Golovin and Krause, 2011; Golovin et al., 2010b; Hanneke, 2007; Sabato et al., 2013; Gonen
et al., 2013; Cuong et al., 2014). The pool-based setting is also heavily studied in various active
learning applications (e.g., Tong and Koller, 2002; Tong and Chang, 2001; Mitra et al., 2004; Gos-
selin and Cord, 2008; Cebron and Berthold, 2009; Guo et al., 2013). General interactive algorithms
have also been studied in both a pool-based setting (e.g., Golovin and Krause, 2011; Guillory and
Bilmes, 2010; Deshpande et al., 2014) and in stream-based settings (e.g., Demaine et al., 2014; Ar-
lotto et al., 2014; Streeter and Golovin, 2009; Golovin et al., 2010a). Note that unlike some works
on interactive algorithms, in our stream-based setting, the only direct restriction is on the timing of
selecting elements. We do not place restrictions on storage space or any other resources.

To study the relationship between the pool-based setting and the stream-based setting, we as-
sume that in both settings the suggested elements, along with their hidden responses, are drawn
i.i.d. from some unknown source distribution. We then ask under what conditions, and at what
cost, can a stream-based algorithm obtain the same output distribution as a given black-box pool
algorithm. Such an exact emulation is advantageous, as it allows direct application of methods and
results developed for the pool-based setting, in the stream-based setting. Especially, if a pool-based
algorithm succeeds in practice, but its analysis is unknown or limited, exact emulation guarantees
that success is transferred to the stream setting as well.

For discrete source distributions, any pool-based algorithm can be emulated in a stream-based
setting, simply by waiting long enough, until the desired element shows up again. The challenge for
stream-based interactive algorithms is thus to achieve the same output distribution as a pool-based
algorithm, while observing as few suggested elements as possible. Clearly, there are many cases in
which it is desired to require less suggested elements: this could result in saving of resources such
as time, money, and communication. In active learning as well, while examples are usually assumed
cheap, they are not usually completely free in all respects.

We study emulation of pool-based algorithm in two settings. First, we consider the fully general
case. We provide a stream algorithm that can emulate any given black-box pool algorithm, and uses
a uniformly bounded expected number of observed elements. The bound on the expected number
of observed elements is exponential in the number of selected elements. We further prove a lower
bound which indicates that this exponential dependence is necessary. Second, we consider utility-
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based interactive algorithm for the pool setting. We provide a stream algorithm that emulates such
pool algorithms, using repeated careful solutions of the well known “Secretary Problem” (Dynkin,
1963; Gilbert and Mosteller, 1966; Ferguson, 1989). The expected number of observed elements
for this algorithm is only linear in the number of selected elements. In this case too we prove a
matching lower bound.

Finally, we show a lower bound that applies to active learning for binary classification. We
conclude that even in this well-studied setting, there are cases in which there exists a significant gap
between the best pool-based algorithm and the best stream-based algorithm. This result generalizes
a previous observation of Gonen et al. (2013) on the sub-optimality of CAL (Cohn et al., 1994), the
classical stream-based active learning algorithm, compared to pool algorithms.

This paper is structured as follows: In Section 2 formal definitions and notations are provided.
Section 3 discusses natural but suboptimal solutions. Section 4 provides an algorithm and a lower
bound for the general case, and Section 5 addresses the case of utility-based pool algorithms. In
Section 6 we provide a lower bound that holds for active learning for binary classification. We
conclude in Section 7. Some of the proofs are provided in Appendix A.

2. Definitions

For a predicate p, denote by I[p] the indicator function which is 1 if p holds and zero otherwise. For
an integer k, denote [k] := {1, . . . , k}. For a sequence S, S(i) is the i’th member of the sequence.
Denote concatenation of sequences by ◦. For A,B which are both sequences, or one is a set and
one a sequence, we use A =π B and A ⊆π B to denote equality or inclusion on the unordered sets
of elements in B and in A.

Let X be a measurable domain of elements, and let Y be a measurable domain of responses.
A pool-based (or just pool) interactive algorithm Ap receives as input an integer q ≤ m, and a
pool of elements (x1, . . . , xm) ∈ Xm. We assume that for each xi there is a response yi ∈ Y ,
which is initially hidden from Ap. Denote S = ((xi, yi))i∈[m]. For a given S, SX denotes
the pool (x1, . . . , xm). At each round, Ap selects one of the elements it that have not been se-
lected yet, and receives its response yit . After q rounds, Ap terminates. Its output is the set
{(xi1 , yi1), . . . , (xiq , yiq)}. For a pool algorithm Ap, denote by selp(S, t) the element that Ap se-
lects at round t, if S is the pool it interacts with. selp(S, t), which can be random, can depend on
SX and on yik for k < t. Denote by selp(S, [t]) the sequence of elements selected by Ap in the
first t rounds. pairsp(S, t) and pairsp(S, [t]) similarly denote the selected elements along with their
responses. The final output of Ap is the set of pairs in the sequence pairsp(S, [q]). We assume that
S 7→ pairsp(S, [q]) is measurable.

We assume that the pool algorithm is permutation invariant. That is, for any S, S′ ⊆ (X ×Y)m,
if S′ is a permutation of S then selp(S, [q]) = selp(S

′, [q]), or if Ap is randomized then the output
distributions are the same. When the pool S is drawn i.i.d. this does not lose generality.

A stream-based (or just stream) interactive algorithm As receives as input an integer q. We
assume an infinite stream S ⊆ (X × Y)∞, where S(t) = (xt, yt). At iteration t, As observes xt,
and may select one of the following actions:

• Do nothing

• Select xt and observe yt

• Terminate.
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At termination, the algorithm outputs a subset of size q of the set of pairs (xt, yt) it observed. Denote
by sels(S, t) the t’th element that As selects and is also in the output set. Denote by sels(S, [t]) the
sequence of first t elements selects and are also in the output set. Use pairss to denote the elements
along with their responses. The output of As when interacting with S is the set of the pairs in the
sequence pairss(S, [q]). We assume S 7→ pairss(S, [q]) is measurable. The total number of elements
selected by As when interacting with S (including discarded elements) is denoted Nsel(As, S, q).
The number of iterations (observed elements) until As terminates is denoted Niter(As, S, q).

We look for stream algorithms that emulate pool algorithms. We define an equivalence between
a stream algorithm and a pool algorithm as follows.

Definition 1 Let D be a distribution over X ×Y and let q be an integer. Let S ∼ Dm, S′ ∼ D∞. A
pool algorithm Ap and a stream algorithm As are (q,D)-equivalent, if the total variation distance
between the distributions of pairsp(S, [q]) and pairss(S

′, [q]) is zero.

Denote by DX the marginal of D on X . Below, unless specified otherwise, we assume that the
probability under DX of observing any single x ∈ X is zero. This does not lose generality, since
if this is not the case, DX can be replaced by the distribution DX × Unif[0, 1], with the interactive
algorithms ignoring the second element in the pair.

3. Simple equivalent stream algorithms

Let Ap be a pool algorithm. For any discrete distribution D over X × Y , and any q, it is easy to
define a stream algorithm which is (q,D)-equivalent to Ap. Let “?” be some value not in Y , and
define Await as in Alg. 1.

Algorithm 1 Algorithm Await

1: In the first m iterations, observe x1, . . . , xm and do nothing.
2: S ← ((x1, ?), . . . , (xm, ?))
3: j ← 1
4: repeat
5: In iteration t, observe element xt
6: if xt = selp(S, j) then
7: Select xt and observe yt
8: S(i)← (xt, yt)
9: j ← j + 1.

10: end if
11: until j = q + 1
12: Return the set of all the pairs (x, y) in S with y 6= ?.

This stream algorithm is (q,D) equivalent to Ap for any discrete distribution D, and it has
Nsel(Await, S

′, q) = q for all S′ ∈ (X ×Y)∞. However, ES′∼D∞ [Niter(Await, S
′, q)] is not bounded

for the class of discrete distributions.
On the other hand, the stream algorithm Anowait defined in Alg. 2 is also (q,D) equivalent to

Ap. We have Niter(Await, S
′, q) = m for all S′ ∈ (X × Y)∞, the same as the pool algorithm.

However, also Nsel(Anowait, S
′, q) = m > q. These two simple approaches demonstrate a possible

tradeoff between the number of selected elements and the number of iterations when emulating a
pool algorithm.
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Algorithm 2 Algorithm Anowait

input Pool size m, Black-box pool algorithm Ap.
1: In each iteration t ∈ [m], select xt and observe yt.
2: Return the pairs in pairsp(S, q).

4. An equivalent algorithm with a uniform bound on expected iterations

We present the stream algorithmAgen (see Alg. 3), which can emulate any pool based algorithmAp
using only black-box access to Ap. The algorithm emulates a general pool algorithm, by making
sure that in each iteration, its probability of selecting an element is identical to the conditional
probability of the pool algorithm selecting the same element, conditioned on the history of elements
and responses selected and observed so far. This is achieved by repeatedly drawing the remaining
part of the pool, and keeping it only if it is consistent with the elements that were already selected.
We further can use the partial pool draw only if the element to be selected happens to have been
observed last.

Algorithm 3 Algorithm Agen

input Original pool size m, label budget q < m, black-box pool algorithm Ap.
1: S0 ← ()
2: for i = 1 : q do
3: repeat
4: Draw m− i+ 1 elements, denote them x̄i,i, . . . , x̄i,m.
5: S′i ← ((x̄i,i, ?), . . . , (x̄i,m, ?)).
6: until pairsp(Si−1 ◦ S′i, [i− 1]) =π Si−1 and selp(Si−1 ◦ S′i, i) = x̄i,m.
7: Select x̄i,m, get the response ȳi,m.
8: Si ← Si−1 ◦ ((x̄i,m, ȳi,m)).
9: end for

10: Output Sq.

Below we show that Agen improves over the two stream algorithms presented above, in that it
selects exactly q elements, and has a uniform upper bound on the expected number of iterations, for
any source distribution. First, we prove that Agen indeed emulates any pool-based algorithm. The
proof is provided in Appendix A.

Theorem 2 For any pool algorithmAp, any distributionD over X ×Y , any integerm and q ≤ m,
As := Agen(Ap) is (q,D)-equivalent to Ap.

The next theorem provides an upper bound on the expected number of elements observed by
Agen. Unlike Await, this upper bound holds uniformly for all source distributions.

Theorem 3 For any pool algorithmAp, any distributionD over X ×Y , any integerm and q ≤ m,
if As := Agen(Ap), Nsel(As, S, q) = q for any S ∈ (X × Y)∞, and

ES∼D∞ [Niter(As, S, q)] ≤ m2

(
em

q − 1

)q−1

.
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Proof First, clearly Nsel(As, S, q) = q for any S ∼ D∞. We now prove the upper bound on
the expected number of iterations of As. Let S ∼ Dm. For i ≥ 1, z1, . . . , zi−1 ∈ X , denote
Zj = {z1, . . . , zj}, and let

pi(z1, . . . , zi) := P[selp(S, [i]) =π Zi | Zi ⊆π SX ].

Suppose that (Si−1)X =π Zi−1. The expected number of times that steps 3 to 6 are repeated for
index i is the inverse of the probability that the condition in 6 holds. This condition, in our notation,
is that selp(Si−1 ◦S′i, [i−1]) =π Zi−1 and selp(Si−1 ◦S′i, i) = x̄i,m. We have, from the permutation
invariance of Ap,

P[selp(Si−1 ◦ S′i, [i− 1]) =π Zi−1 | (Si−1)X =π Zi−1] = pi−1(z1, . . . , zi−1).

In addition, for every draw of S′i,

P[selp(Si−1 ◦ S′i, i) = x̄i,m | selp(Si−1 ◦ S′i, [i− 1]) =π Zi−1 ∧ (Si−1)X =π Zi−1] =
1

m− i+ 1
.

This is since under the conditional, one of the elements in S′i must be selected by Ap in round i.
Therefore, the probability that the condition in step 6 holds is pi−1(z1, . . . , zi−1)/(m− i+ 1). The
expected number of times that steps 3 to 6 are repeated for index i is the inverse of that, and in each
roundm−i+1 elements are observed. Therefore the expected number of elements observed until se-
lection i is made conditioned on z1, . . . , zi−1 is (m−i+1)2/pi−1(z1, . . . , zi−1). The unconditional
expected number of elements observed until selection i is (m− i+1)2 ·E[1/pi−1(sels(S

′, [i−1]))].
For a set of indices J , denote S|J = {S(j) | j ∈ J}.

E[1/pi(sels(S
′, [i])] = E[1/pi(selp(S, [i])]

=

∫
{z1,...,zi}⊆X×Y

dP[selp(S, [i]) =π Zi] ·
1

pi(z1, . . . , zi)

=

∫
{z1,...,zi}⊆X×Y

dP[Zi ⊆π SX ],

Hence

E[1/pi(sels(S
′, [i])] ≤

∫
{z1,...,zi}⊆X×Y

∑
J⊆[m],|J |=i

dP[(S|J)X = Zi]

=
∑

J⊆[m],|J |=i

∫
{z1,...,zi}⊆X×Y

dP[(S|J)X = Zi]

=
∑

J⊆[m],|J |=i

1 =

(
m

i

)
.

It follows that the expected number of elements observed after the i − 1’th selection and until
selection i is at most (m− i+ 1)2

(
m
i−1

)
. We conclude that

E[Niter(As, S, q)] ≤
q−1∑
i=0

(m− i)2

(
m

i

)
≤ m2

(
em

q − 1

)q−1

.
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This completes the proof.

From the existence of Agen we can conclude that the pool-based and the stream-based setting
are essentially equivalent, up to the number of observed elements. However, the expected number of
observed elements is exponential in q. In the next section we show that this exponential dependence
cannot be avoided for general pool algorithms.

4.1. A lower bound for expected number of iterations

We provide a lower bound, which shows that for some pool algorithm, any equivalent stream al-
gorithm has an expected number of observed elements which is at least exponential in q. This
indicates that not much improvement can be achieved overAgen for the class of all pool-based algo-
rithms. The proof involves constructing a pool-based algorithm in which the last selected element
determines the identity of the previously selected elements. This is easy in a pool setting, since the
algorithm has advance knowledge of all the available elements. In a stream setting, however, this
requires a possibly long wait to obtain the matching last element. Because the stream algorithm is
allowed to select elements in a different order than the pool algorithm, additional care is taken to
make sure that in this case, it is not possible circumvent the problem this way. The proof of Theorem
4 is provided in Appendix A.

Theorem 4 There is an integer q0 and a constant C > 0, such that for q ≥ q0, if 4q2 log(4q) ≤ m,
then there exist a pool algorithm Ap and a marginal DX , such that any stream algorithm As which
is (q,D) equivalent to Ap for all D ∈ DS(DX), and selects only q elements, has

∃D ∈ DS(DX),ES∼D∞ [Niter(A, S, q)] ≥ C
(

m

q2 log(4q)

) q−1
2

.

5. Utility-based pool algorithms

Agen gives a uniform guarantee on expected the number of iterations, however this guarantee is
exponential q. We now consider a more restricted class of pool algorithms, and show that it allows
emulation with an expected number of iterations linear in q.

A common approach for designing pool-based interactive algorithms, employed, e.g., in Seung
et al. (1992); Lewis and Gale (1994); Tong and Koller (2002); Guo and Greiner (2007); Golovin
et al. (2010b); Guillory and Bilmes (2010); Golovin and Krause (2011); Gonen et al. (2013); Cuong
et al. (2014), is to define a utility function, that scores each element depending on the history of
selected elements and their responses so far. In each round, the algorithm selects the element that
maximizes the current utility function. We consider black-box emulation for this class of pool-based
algorithms.

Formally, a utility-based interactive pool algorithm is defined by a utility function U , of the
form U : ∪∞n=0(X × Y)n ×X → R. U(x, St−1) is the score of element x given history St−1. The
pool algorithm selects, in each round, the element that is assigned the maximal score by the utility
function given the history. We assume for simplicity that there are no ties in U . The utility-based
interactive pool algorithm for U , denoted AUp , is defined in Alg. 4.
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Algorithm 4 AUp
input Elements x1, . . . , xm, budget q < m.

1: S0 ← ()
2: M0 ← [m]
3: for t = 1 : q do
4: it ← argmaxj∈Mt−1

U(xj , St−1).
5: Select xit , get yit .
6: St ← St−1 ◦ (xit , yit).
7: Mt ←Mt−1 \ {it}.
8: end for
9: Output the set of all pairs in Sq.

5.1. An stream algorithm for utility-based pool algorithms

We propose a stream algorithm AUs that emulates utility-based pool algorithms AUp . We stress that
we do not attempt to maximize the value of U on selected elements, but to emulate the behavior of
the pool algorithm that uses U . This is because we do not assume any specific relationship between
the value of the utility function and the reward of the algorithm. For instance, the utility-based pool
algorithm might be empirically successful although its analysis is not fully understood (e.g. Tong
and Koller, 2002).

The definition of AUs uses the solution to the well-known secretary problem (Dynkin, 1963;
Gilbert and Mosteller, 1966; Ferguson, 1989). In the classical formulation of this problem, an
algorithm sequentially observes a stream of n real numbers, and selects a single number. The goal
of the algorithm is to select the maximal number out of the n, but it can only select a number
immediately after it is observed, before observing more numbers. It is assumed that the n numbers
in the stream are unknown and selected by an adversary, but their order of appearance is uniformly
random. The goal is to select the maximal number with a maximal probability, where n is known to
the algorithm.

This task can be optimally solved by a simple deterministic algorithm, achieving a success
probability psp(n), which satisfies limn→∞ psp(n) = 1/e. The optimal algorithm observes the first
t(n) numbers, then selects the next observed number which is at least as large as the first t(n). The
limit of t(n)/n for n→∞ is 1/e.

Given a stream of size k of real values R = (r1, . . . , rk), we say that SecPr(n,R) holds if
the optimal solution to the secretary problem for size n selects rk after observing the stream prefix
R. AUs is given in Alg. 5. It uses repeated applications of the solution to the secretary problem
to retrieve each of the selected elements. Because the solution succeeds with a probability less
than 1, its application might fail. This can be identified in retrospect. In this case, a new solution
is selected. This trial-and-error approach means that AUs usually selects more than q elements.
However the expected number of selected elements is a constant factor over q.

To make sure the equivalence holds, AsU never selects an element that could not have been in
a pool in which the previous elements have been selected. This is achieved by discarding such
elements in each round. The upper bound on the expected number of observed elements bounds the
expected number of elements discarded in this way.

First, we show that AUs is indeed equivalent to AUp . The proof is provided in Appendix A.
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Algorithm 5 AsU
1: L0 ← ()
2: X1 = X
3: for i = 1 : q do
4: repeat
5: for j = 1 : m− i+ 1 do
6: Repeatedly draw elements from DX , until drawing an element in Xi.

Denote it xi,j , and let ri,j ← U(xi,j , Li−1).
7: if SecPr(m− i+ 1, (ri,1, . . . , ri,j)) then
8: k ← j
9: Select xi,k, get its response yi,k.

10: end if
11: end for
12: until ri,k = max{ri,1, . . . , ri,m−i+1}.
13: ki ← k
14: Li ← Li−1 ◦ (xi,ki , yi,ki).
15: Xi+1 ← {x ∈ Xi | U(x, Li−1) < U(xi,ki , Li−1)}
16: end for
17: Output the set of pairs in Lq.

Theorem 5 For any utility function U , any distribution D over X × Y , any integer m and q ≤ m,
AUs is (q,D)-equivalent to AUp .

The following theorem give an upper bound on the expected number of selected elements and
the expected number of observed elements used by AUs .

Theorem 6 For any utility function U , any distribution D over X × Y , any integer m and q ≤ m,

ES∼D∞ [Nsel(AUs , S, q)] = p−1
sp (m)q,

and
ES∼D∞ [Niter(AUs , S, q)] ≤ p−1

sp (m) exp(
q

m− q
) · qm.

For q ≤ m/2, and m → ∞, it follows from Theorem 6 that the expected number of selected
elements is eq, and the expected number of observed elements is at most e2qm.
Proof [of Theorem 6] Call a full run of the loop starting at step 5 an attempt for the i’th element. In
each attempt for the i’th element,m−i+1 elements from Xi are observed. The expected number of
attempts for each element i is e, since each attempt is a run of the secretary problem, with a success
probability of psp(m). Therefore, the expected number of elements from Xi observed until xi is
selected is p−1

sp (m) · (m− i+ 1).
Denote by fi the utility function U(·, Li−1). Let xi := xi,ki , be the i’th element added to Li.

Then Xi = {x ∈ Xi−1 | fi−1(x) ≤ fi−1(xi−1)}.
Consider the probability space defined by the input to the stream algorithm S ∼ D∞, and let

Zi, Z
′
i ∼ DX for i ∈ [q] such that these random variables and S are all independent. Denote

p(α, i) := P[fi(Zi) ≤ α | Zi ∈ Xi].
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p(α, i) is a random variable since Xi depends on S. Let Ui := p(fi(Z
′
i), i). Since we assume no

ties in U , and no single x has a positive probability in DX , then conditioned on Xi, Ui is distributed
uniformly in [0, 1]. Hence U1, . . . , Uq are statistically independent.

For i > 1, define the random variable Mi := p(fi−1(xi−1), i− 1). Then Mi = P[Xi]/P[Xi−1].
The expected number of elements that need to be drawn from D to get a single element from Xi is
1/P[Xi] = (

∏i
j=1Mj)

−1. Therefore,

E[Niter(AUs , S, q) |M2, . . . ,Mq] =

q∑
i=1

p−1
sp (m) · (m− i+ 1)∏i

j=1Mj

.

The element xi maximizes the function x 7→ fi(x) overm−i+1 independent draws of elements
x from DX conditioned on x ∈ Xi, hence it also maximizes x 7→ p(fi(x), i). Therefore, for i > 1,
Mi is the maximum of m− i+ 2 independent copies of Ui, hence P [Mi ≤ p] = pm−i+2. Hence

dP [M2, . . . ,Mq](p2, . . . , pq)/dp2 · . . . · dpq =

q∏
i=2

dP [Mi ≤ pi]/dpi =

q∏
i=2

(m− i+ 2)pm−i+1
i .

We have

E[Niter(AUs , S, q)] =

∫ 1

M2=0
. . .

∫ 1

Mq=0
E[Niter(AUs , S, q) |M1, . . . ,Mq]dP [M1, . . . ,Mq]

=

∫ 1

M2=0
. . .

∫ 1

Mq=0

q∑
i=1

p−1
sp (m) · (m− i+ 1)∏i

j=1Mj

q∏
l=2

(m− l + 2)Mm−l+1
l dMl

=

q∑
i=1

p−1
sp (m) · (m− i+ 1)

∫ 1

M2=0
. . .

∫ 1

Mq=0

i∏
l=2

(m− l + 2)Mm−l
l dMl

·
q∏

l=i+1

(m− l + 2)Mm−l+1
l dMl,

Therefore

E[Niter(AUs , S, q)] =

q∑
i=1

p−1
sp (m) · (m− i+ 1)

i∏
l=2

m− l + 2

m− l + 1

=

q∑
i=1

p−1
sp (m) · (m− i+ 1)

i∏
l=2

(1 +
1

m− l + 1
)

≤ p−1
sp (m) · qm(1 +

1

m− q
)q ≤ p−1

sp (m) · exp(
q

m− q
) ·mq.

This concludes the proof.

5.2. A lower bound for expected number of iterations

The following lower bound shows that the expected number of observed elements required by Alg. 5
cannot be significantly improved by any emulation of general utility-based pool algorithms. This

10
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theorem holds for stream algorithms that select exactly q elements, while Alg. 5 selects approxi-
mately eq elements. We conjecture that even if allowing a constant factor more element selections,
one can achieve at most a constant factor improvement in the expected number of observed ele-
ments.

The proof of the lower bound follows by constructing a utility function which in effect allows
only one set of selected elements, and has an interaction pattern that forces the stream algorithm
to select them in the same order as the pool algorithm. For a given distribution DX over X , let
DS(DX) be the set of distributions over X ×Y such that their marginal over X is equal to DX . The
proof of Theorem 7 is provided in Appendix A.

Theorem 7 For any m ≥ 8, q ≤ m/2, there exists a utility-based pool algorithm, and a marginal
DX , such that any stream algorithm As which is (q,D) equivalent to the pool algorithm for all
D ∈ DS(DX), and selects only q elements, has

∃D ∈ DS(DX),ES∼D∞ [Niter(As, S, q)] ≥
q

8

⌊
m

2 log(2q)

⌋
.

6. Active Learning for Binary Classification

In active learning for binary classification, recent works provide relatively tight label complex-
ity bounds, that hold for both the stream-based and the pool-based settings. In Balcan and Long
(2013), tight upper and lower bounds for active learning of homogeneous linear separators under
log-concave distributions are provided. The bounds hold for both the stream-based and the pool-
based setting, and with the same bound on the number of unlabeled examples. In Hanneke and Yang
(2015), tight minimax label complexity bounds for active learning are provided for several classes
of distributions. These bounds also hold for both the stream-based and the pool-based setting. In
that work no restriction is placed on the number of unlabeled examples.

These results leave open the possibility that for some distributions, a pool-based algorithm with
the same label complexity as a stream-based algorithm might require significantly fewer unlabeled
examples. In Example 1 and Theorem 8 we show that this is indeed the case.

Example 1 For given integers m and q ≤ m, and T ≤ q, define X = {ak,j | k ∈ [q], j ∈
{0, . . . , 2min(k,T )−1 − 1}} ∪ X ′, where X ′ includes arbitrary elements so that |X | = n, for some
n ≥ q2T /2. Define the following hypothesis classH ⊆ YX .

H := {hi | i ∈ {0, . . . , 2q − 1}}, where hi(ak,j) =

{
I[i mod 2k = j] k ≤ T,
I[ bi/2T−kc mod 2T = j]. k > T.

(1)

Essentially, for k ≤ T , hi(ak,j) = 1 if the k least significant bits in the binary expansion of i are
equal to the binary expansion of j to T bits. For k ≥ T , hi(ak,j) = 1 if T consecutive bits in i,
starting from bit T − k, are equal to the binary expansion of j.

Theorem 8 Let q ≥ 22 and m ≥ 8 log(2q)q2 be integers. Consider Example 1 with m, q, setting
T = dlog2(q)e and n = bm/7 log(2q)c. Consider H as defined in Eq. (1). There exist δ, ε ∈ (0, 1)
such that there is a pool-based active learning algorithm that uses a pool of m unlabeled examples
and q labels, such that for any distribution D which is consistent with some h∗ ∈ H and has a
uniform marginal over X , with a probability of at least 1− δ, P[ĥ(X) 6= h∗(X)] ≤ ε. On the other

11
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hand, for q > 22, any stream-based active learning algorithm with the same guarantee requires at
least q

32

⌊
m

7 log(2q)

⌋
unlabeled examples in expectation.

The proof is provided in Appendix A. This result shows that a gap between the stream-based
and the pool-based settings exists not only for general interactive algorithms, but also specifically
for active learning for binary classification.

The gap is more significant when q = Θ̃(
√
m), and can be as large as Ω̃(m3/2) unlabeled

examples in a stream, versus m that are required in a pool. It has been previously observed (Gonen
et al., 2013) that in some cases, a specific pool-based active learning algorithm for halfspaces is
superior to the classical stream-based algorithm CAL (Cohn et al., 1994). Theorem 8 shows that
this is not a limitation specifically of CAL, but of any stream-based active learning algorithm.

The upper bound in Theorem 6 for utility-based pool algorithms can be applied for several de-
terministic pool-based active-learning algorithms which use a utility function (e.g., Golovin and
Krause, 2011; Gonen et al., 2013; Cuong et al., 2014). The upper bound shows that when the
label budget q is relatively small, the gap between the stream and the pool settings is not signifi-
cant. For instance, consider an active learning problem in which a utility-based pool active learner
achieves a label complexity close to the information-theoretic lower bound for the realizable setting
(Kulkarni et al., 1993), so that q ∈ Θ(log(1/ε)). The passive learning sample complexity is at
most m ∈ Θ(1/ε). Therefore, a stream-based active learner with the same properties needs at most
O(log(1/ε)/ε) unlabeled examples. Therefore, in this case the difference between the pool-based
setting and the stream-based setting can be seen as negligible.

7. Conclusions

In this work we studied the relationship between the stream-based and the pool-based interactive
settings, by designing algorithms that emulate pool-based behavior in a stream-based setting, and
proving upper and lower bounds on the stream sizes required for such emulation. Our results con-
cern mostly the case where the label budget of the stream algorithm is similar or identical to that of
the pool algorithm. We expect that as the label budget grows, there should be a smooth improve-
ment in the expected stream length, which should approach m as the label budget approaches m.
There are many open problems left for further work. Among them, whether it is possible to emulate
utility based pool algorithms with a linear stream size in q and exactly q labels, and a relaxation of
the requirement for exact equivalence, which would perhaps allow using smaller streams.
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Appendix A. Additional Proofs

Several proofs use the following lemma.

Lemma 9 Let α ∈ (0, 1
2), p ∈ (0, α2/2). Let X1, X2, . . . be independent Bernoulli random vari-

ables with P[Xi = 1] ≤ p. Let I be a random integer, which can be dependent on the entire
sequence X1, X2, . . .. Suppose that P[XI = 1] ≥ α. Then E[I] ≥ α2

2p .

Proof E[I] is minimized under the constraint when P[Xi = 1] = p. Therefore assume this equality
holds. Let W be the random variable whose value is the smallest integer such that XW = 1. Let T
be the largest integer such that P[W ≤ T ] ≤ α.

The expectation of I is lower bounded subject to P[XI = 1] ≥ α by I such that P[I = W |
W ≤ T ] = 1, P[I = W |W = T + 1] = α− P[W ≤ T ], and in all other cases, I = 0. Therefore,

E[I] ≥ E[W · I[W ≤ T ]].

We have

1

p
= E[W ] = E[W · I[W ≤ T ]] + E[W · I[W > T ]]

= E[W · I[W ≤ T ]] + (
1

p
+ T )(1− p)T .

Therefore
E[I] ≥ E[W · I[W ≤ T ]] =

1

p
− (

1

p
+ T )(1− p)T .
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From the definition of T , T is the largest integer such that 1− (1− p)T ≤ α. Hence T ≥ log(1−α)
log(1−p)

and (1− p)T ≤ (1− α)/(1− p). Therefore

E[I] ≥ 1

p
−
(

1

p
+

log(1− α)

log(1− p)

)
1− α
1− p

≥ 1

p
−
(

1

p
− log(1− α)

2p

)
1− α
1− p

Hence
pE[I] ≥ 1 +

1− α
1− p

(log(1− α)/2− 1)

For p ≤ a2/2 and α ∈ (0, 1/2), elementary calculus shows that pE[I] ≥ α2/2.

Proof [of Theorem 2] Consider the probability space defined by the infinite sequence S′ ∼ D∞
which generates the input to the stream algorithm, and an independent sequence S ∼ Dm which is
the input to the pool algorithm.

For z1, . . . , zq ∈ X × Y , denote Zj = {z1, . . . , zj}. We have, for every i ∈ [q],

dP[pairsp(S, [i]) =π Zi] =

i∑
j=1

dP[pairsp(S, i) = zj | pairsp(S, [i− 1]) =π Zi \ {zj}] · dP[pairsp(S, [i− 1]) =π Zi \ {zj}].

The same holds for pairss(S
′, ·). To show the equivalence it thus suffices to show that for all

z1, . . . , zq ∈ X × Y , i ∈ [q],

dP[pairss(S
′, i) = zi | pairss(S′, [i−1]) =π Zi−1] = dP[pairsp(S, i) = zi | pairsp(S, [i−1]) =π Zi−1].

From the definition of As we have

dP[pairss(S
′, i) = zi | pairss(S′, [i− 1]) =π Zi−1]

= dP[pairsp(Si−1 ◦ S′i, i) = zi | Si−1 =π Zi−1 ∧ pairsp(Si−1 ◦ S′i, [i− 1]) =π Zi−1]

= dP[pairsp(S, i) = zi | pairsp(S, [i− 1]) =π Zi−1].

The last equality follows since Ap is permutation invariant and never selects the same index twice.
This proves the equivalence.

Proof [of Theorem 4] Denote by Πk the set of permutations over [k]. Let the domain of elements be
X = [0, 2] and assume responses in Y = {0, 1}. We now define a pool algorithm as follows. Call a
pool SX in which exactly one element in the pool is in (1, 2] and the rest are in [0, 1] a “good pool”.
On bad pools, Ap always selects only elements in [0, 1] or only elements in (1, 2].

For a good pool, denote for simplicity the single element in (1, 2] by xm, and other elements by
x1, . . . , xm−1, where xi−1 < xi for i ∈ [m− 1]. Define a mapping ψ : (1, 2]→ Πm−1, such that if
xm is uniform over (1, 2], then for ψ(xm) all permutations in the range are equally likely.
Ap behaves as follows: Let σ = ψ(xm). The first q−1 elements it selects are xσ(1), . . . , xσ(q−1).

The last element it selects is xm if the response for all previous elements was 0, and xσ(q) otherwise.
Define the marginal DX over X in which for X ∼ DX , P[X ∈ [0, 1]] = 1 − 1/m, P[X ∈

(1, 2]] = 1/m, and in each range [0, 1], (1, 2], X is uniform. The probability of a good pool under
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D ∈ DS(DX) is (1 − 1/m)m−1 ≥ 1/e2 =: pg. We now show a lower bound on the expected
number of iterations of a stream algorithm which is (q,D)-equivalent to any D ∈ DS(DX). Let D0

be the distribution over X ×Y such that for (X,Y ) ∼ D0, X ∼ DX and Y = 0 with probability 1.
Let S ∼ Dm0 be the input to Ap.

The proof will follow a series of claims:

1. The probability that, on a good pool, ψ(xm) is in a given set of permutation Φ(Z), where Z
is the set of first q − 1 selected elements, is at least 1/2.

2. When As emulates a good pool, it selects an element from (1, 2] only after selecting q − 1
elements from [0, 1].

3. Therefore, when As emulates a good pool, the expected number of observed elements until
selecting the last element is lower bounded, and so the overall expected number is lower
bounded.

We start with claim 1. For a given set Z = {z1, . . . , zq−1} ⊆ [0, 1], define the set of permuta-
tions Φ(Z) as follows. The expected number of elements that are smaller than zi in SX ∼ DmX , if
Z ⊆π SX , is ni = (m− q)zi +

∑q−1
j=1 I[zj < zi]. Let ε :=

√
(m− q) log(4q)/2, and define

Φ(Z) := {σ ∈ Πm−1 | ∃σ′ ∈ Πq−1,∀i ∈ [q − 1], |σ−1(i)− nσ′(i)| ≤ ε}. (2)

These are the permutations such that the first q−1 elements according to the permutation are mapped
from elements with ranks in [ni − ε, ni + ε]. For x ∈ SX , denote by rS(x) the rank of x in SX ,
when the elements in SX are ordered by value. Since ψ(selp(S, q)) determines the choice of Z from
SX , we have

P[ψ(selp(S, q)) ∈ Φ(Z) | selp(S, [q − 1]) =π Z ∧ S is good]

≥ P[∀i ∈ [q − 1], |rS(zi)− ni| ≤ ε | selp(S, [q − 1]) =π Z ∧ S is good]

= P[∀i ∈ [q − 1], |rS(zi)− ni| ≤ ε | Z ⊆π S ∧ S is good].

The last inequality follows since ψ(selp(S, q)) is uniform over all permutations. By Hoeffding’s
inequality, for any i ≤ q − 1,

P[|rS(zi)− ni| > ε | Z ⊆π S ∧ S is good] ≤ 2 exp(−2ε2/(m− q)).

Therefore, using the definition of ε and applying the union bound, we get, for any Z ⊆ [0, 1] with
|Z| = q − 1,

P[ψ(selp(S, q)) ∈ Φ(Z) | selp(S, [q − 1]) =π Z ∧ S is good] ≥ 1

2
. (3)

This completes the proof of claim 1.
We now turn to claim 2. Consider a stream algorithm which is (q,D)-equivalent to Ap for any

D ∈ DS(DX). Consider runs of As with input S′ ∼ D∞0 . Denote by Eg the event that the output of
As is equal to a possible output of Ap on a good pool with S ∼ Dm0 . Then P[Eg] ≥ pg. Claim 2 is
that

P[sels(S
′, [q − 1]) ⊆π [0, 1] | Eg] = 1. (4)
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In other words, when simulating a good pool, the elements in [0, 1] are all selected before the
element in (1, 2].

To show claim 2, note that by the definition of Ap, for any source distribution over X × Y , if
Ap outputs a set with elements both in [0, 1] and in (1, 2], then there is exactly one element in (1, 2]
in the output, and all the responses in the output for elements in [0, 1] are 0 with probability 1.

Now, suppose that P[sels(S
′, [q−1]) ⊆π [0, 1] | Eg] < 1. Then P[sels(S

′, q) ∈ [0, 1] | Eg] > 0,
since there can be only one element in (1, 2] in the output of a good pool. But, consider running
As with a source distribution D′ ∈ DS(DX) such that for (X,Y ) ∼ D′, X ∼ DX and PD′ [Y =
0|X = x] = 1

2 for all x. There is a positive probability that in the first q − 1 selected elements all
the responses are 0, just as for D0. Therefore, also for S′′ ∼ D′∞, P[sels(S

′′, q) ∈ [0, 1] | Eg] > 0.
But then there is a positive probability that the response for the last element, which is in [0, 1], is 1,
contradicting the (q,D′)-equivalence of the pool and As. This proves claim 2.

We now show claim 3 which completes the proof. From claim 2 in Eq. (4), we conclude that
P[sels(S

′, q) ∈ (1, 2] | Eg] = 1. Therefore, from claim 1 in Eq. (3), for any Z ⊆π [0, 1] with
|Z| = q − 1,

P[ψ(sels(S
′, q)) ∈ Φ(sels(S

′, [q − 1])) | Eg] ≥ 1/2.

Therefore
P[ψ(sels(S

′, q)) ∈ Φ(sels(S
′, [q − 1]))] ≥ P[Eg]/2 ≥ pg/2.

Now, let Xi ∼ DX be the i’th element observed after selecting the first q − 1 elements, and let
Bi = I[ψ(Xi) ∈ Φ(Z)], where Z is the set of q−1 selected elements. Bi are independent Bernoulli
random variables, each with a probability of success at most p, where from the definition of φ in
Eq. (2),

p ≤ |Φ(Z)|
|Πm−1|

≤
(

(q − 1)(2ε+ 1)

m− 1

)q−1

≤
(

2q2 log(4q)

m

) q−1
2

.

Let I be the number of elements As observes after selecting Z, until selecting element q. We have
P[BI = 1] ≥ pg/2. By Lemma 9, for p ≤ p2

g/8, pE[I] ≥ p2
g/8. From the assumption in the

theorem statement, 2q2 log(4q)/m ≤ 1
2 , hence for a large enough q, p ≤ 2−(q−1) ≤ p2

g/8, and so

E[I] ≥ p2g
8 p
−1. Hence there is a constant such that

E[I] ≥ C
(

m

q2 log(4q)

) q−1
2

.

Since E[Niter(A, S, q)] ≥ E[I], this completes claim 3 and finalizes the proof.

Proof [of Theorem 5] Consider the probability space defined by S ∼ Dm and S′ ∼ D∞, where
S, S′ are independent. We prove the equivalence by showing that for any j ∈ [q] and Lj =
((xi,ki , yi,ki))i∈[j] that could have been selected by the pool algorithm,

dP[pairsp(S, j + 1) | pairsp(S, [j]) = Lj ] = dP[pairss(S
′, j + 1) | pairss(S′, [j]) = Lj ].

For a given Lj , denote by Dj+1 the distribution generated by drawing (X,Y ) ∼ D conditioned on
X ∈ Xj+1, where Xj+1 depends on Lj . Denote by G all the finite sequences of pairs such that when
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the optimal secretary problem solution is applied to the sequence, it succeeds. That is, the optimal
value under the score (x, y)→ U(x, Lj) is indeed selected. From the definition of AsU , we have

dP[pairss(S
′, j + 1) | pairss(S′, [j]) = Lj ] = dP

S̄∼Dm−j
j+1

[argmax
(x,y)∈S̄

U(x, Lj) | S̄ ∈ G].

For a given sequence S̄ = ((x̄i, yi))i∈[m−j], let σ(S̄) : [m − j] → [m − j] be a permutation such
that for all i ≤ m − j, x̄σ(i) ≤ x̄σ(i+1). The success of the optimal secretary problem algorithm
depends only on the ordering of ranks in its input sequence, hence there is a set of permutations
G′ such that S̄ ∈ G if and only if σ(S̄) ∈ G′. Now, argmax(x,y)∈S̄ U(x, Lj) depends only on the
identity of pairs in S̄, while σ(S̄) depends only on their order. Since the elements in S̄ are i.i.d.,
these two properties are independent. Therefore

dP
S̄∼Dm−j

j+1
[argmax

(x,y)∈S̄
U(x, Lj) | S̄ ∈ G] = dP

S̄∼Dm−j
j+1

[argmax
(x,y)∈S̄

U(x, Lj)].

Therefore

dP[pairss(S
′, j + 1) | pairss(S′, [j]) = Lj ]

= dP
S̄∼Dm−j

j+1
[argmax

(x,y)∈S̄
U(x, Lj)]

= dPŜ∼Dm−j [argmax
(x,y)∈Ŝ

U(x, Lj) | Ŝ ⊆ (Xj+1 × Y)m−j ]

= dPŜ∼Dm−j [argmax
(x,y)∈Ŝ

U(x, Lj) | ∀(x, y) ∈ Ŝ, i ∈ [j], U(x, Li−1) < U(xi,ki , Li−1)]

= dPŜ∼Dm−j [argmax
(x,y)∈Ŝ

U(x, Lj) | pairsp(Lj ◦ Ŝ, [j]) = Lj ]

= dPS∼Dm [ argmax
(x,y)∈S\Lj

U(x, Lj) | pairsp(S, [j]) = Lj ]

= dPS∼Dm [pairsp(S)(j + 1) | pairsp(S, [j]) = Lj ].

HereLi is the prefix of length i ofLj . Since this equality holds for all j ∈ [q−1], dP[pairss(S
′, [q])] =

dP[Ōq(S, [q])].

Proof [of Theorem 7] Let n =
⌊

m
2 log(2q)

⌋
, and let DX be a uniform distribution over X = {ai | i ∈

[n]}. Assume Y = {0, 1}. A pool of size m then includes all elements in A := {ai | i ∈ [2q − 1]}
with a probability of at least α ≥ 1− (2q − 1) exp(−m/n) ≥ 1− 1

2q .
Consider a utility function U such that given a history of the form ((a1, 0), . . . , (at, 0)) for t ∈

[q−1], assigns a maximal score inX to at+1, and given a history of the form ((a1, 0), . . . , (at−1, 0), (at, 1)),
for t ∈ [q − 1], assigns a maximal score in X to aq+t−1. Then, in a pool that includes all elements
a1, . . . , a2q−1, the pool algorithm based on U behaves as follows: In every round, if all selected
elements so far received the response 0, it selects at round t the element at. Otherwise, it selects the
element aq+t−1.

Let D0 be a distribution in which the response is deterministically zero. If the distribution is
D0, As selects Z0 = {a1, . . . , aq} with a probability at least α. Denote Dt for t ∈ [q], in which the
response is deterministically zero for X ∈ {a1, . . . , aq} \ {at} and 1 for at. For this distribution,
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the algorithm must select the elements in Zt = {a1, . . . , at, aq+t, . . . , a2q−1} with a probability at
least α.

We show a lower bound on the probability that As selects a1, . . . , aq in order when the input
sequence is S ∼ D∞0 . Denote this probability β, and the event that this occurs E.

Consider the random process defined by the input sequence S ∼ D∞0 and the randomness of
As. Let T be a random variable, such that T is the smallest round in which the algorithm selects
some at′ , for t′ > T , or T = 0 if no such round exists. Since P[T ∈ [q]] = 1− β, there exists some
t∗ ∈ [q] such that P[T = t∗] ≥ (1 − β)/q. Now, consider the distribution Dt∗ . Define a sequence
of pairs γ(S) such that S and γ(S) have the same elements in the same order, and the responses
in γ(S) are determined by Dt∗ instead of by D0. Clearly, γ(S) is distributed according to D∞t∗ .
Consider a run of the algorithm on S and a parallel run (with the same random bits) on γ(S). The
algorithm selects the same elements for both sequences until the T ’th selection, inclusive. But the
T ’th selection is some element in {aT+1, . . . , aq}. If T = t∗, then Zt∗ does not include the element
selected in round T . Since As selects exactly the set Zt∗ with a probability of at least α, we have
P[T = t∗] ≤ 1− α. Therefore (1− β) = P[T ∈ [q]] ≤ q(1− α), hence β ≥ 1

2 .
LetWi be the number of elements thatAs observes after selecting element i−1, until observing

the next element. Let Xi ∼ DX be the i’th element observed after selecting the first i− 1 elements,
and let Bi = I[Xi) = ai]. Bi are independent Bernoulli random variables with P[Bi = 1] = 1/n,
and P[BWi = 1] ≥ P[E] = β ≥ 1

2 . By Lemma 9, if 1
n ≤

1
8 , E[Wi] ≥ n

8 .

It follows that the expected number of iterations over q selections is at least qn8 = q
8

⌊
m

2 log(2q)

⌋
.

Proof [of Theorem 8] Let DX be uniform over X . Let E be the event that X *π SX , and define
δ := PS∼Dm

X
[E]. Define ε = 1/n, so that P[ĥ(X) 6= h∗(X)] < ε if and only if ĥ = h∗. Let i∗ such

that h∗ = hi∗ .
First, a pool-based algorithm can achieve the required accuracy as follows: Let jt := i∗ mod 2t

for t ≤ T , and jt := bi∗/2T−tc mod 2T for t ≥ T . If E holds, then t’th element selected by the
pool algorithm is at,j , where j is obtained as follows: If t ≤ T , j = jt−1. If t > T , j = bjt−1/2c.
In round 1, j = 0 and the selected element is a1,0. Inductively, in this strategy the algorithm finds
the t’th least significant bit in the binary expansion of i∗ in round t, thus it can use jt−1 to set j for
round t. Under E, after q labels i∗ is identified exactly. This happens with a probability of 1− δ for
any D with the uniform marginal DX .

Now, letDh be a distribution with a uniform marginal overX with labels consistent with h ∈ H.
Consider a stream-based algorithm As, denote its output by h̄ and its input by S ∼ D∞h∗ .

Let I be a random variable drawn uniformly at random from {0, . . . , 2q − 1}. Let H = hI
be a hypothesis chosen uniformly at random from H. Consider the probability space defined by
I, S ∼ D∞H , and the run of As on S. Let (Z1, Y1), . . . , (Zq, Yq) be the examples that As receives
and the labels it gets, in order. Let Y = (Y1, . . . , Yq). Let α = P[Z1 = a1,0 | SX ]. If Z1 = a1,0,
then P[Y1 = 0 | SX ] = 1

2 . If Z1 6= a1,0, then P[Y1 = 0 | SX ] ≥ 3/4. Let H be the base-2 entropy,
and Hb be the binary entropy. Then Hb(Y1 | SX) = Hb((α+ 1)/4), and so

H(H | Y, SX) = H(H,Y | SX)−H(Y1 | SX)−H(Y1, . . . , Yq | Y1, SX)

≥ q −Hb((α+ 1)/4)− (q − 1)

= 1−Hb((α+ 1)/4).
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From the Taylor expansion of the binary entropy around 1/2, Hb(p) ≤ 1 − (1 − 2p)2/2, therefore
H(H | Y, SX) ≥ (1− α)2/8. We have P[h̄ 6= H] ≤ δ, hence PSX

[P[h̄ 6= H | SX ] ≤ 2δ] ≥ 1
2 . By

Fano’s inequality, for any SX such that P[h̄ 6= H | SX ] ≤ 2δ,

(1− α)2/8 ≤ H(H | Y, SX) ≤ Hb(2δ) + 2δq ≤ 2δ(log2(
1

2δ
) + 2 + q).

Where the last inequality follows from Hb(p) ≤ p log2(1/p) + 2p. From the definition of δ, we
have δ ≤ |X | exp(−m/n). Setting T = dlog2(q)e, and noting that |X | ≤ q2T /2 ≤ q2 and so
m ≥ n log(128q3|X |), we have δ ≤ 1

128q3
.

Therefore, for q ≥ 22, 1− α ≤ 1
2q .

It follows that PSX
[P[Z1 6= a1,0 | SX ] ≤ 1

2q ] ≥ 1/2. Now, the same argument holds for any
round t conditioned on I mod 2t = 0 and Z1 = a1,0, . . . , Zt = at,0, since in this case after t
labels, the algorithm has q − t queries left, and needs to select from H′, which is equivalent to H,
with q − t instead of q. Moreover, P[h̄ = H | I mod 2t = 0] ≤ 1− δ as well, since this holds for
every H individually. We conclude that for every t ≤ q, with a probability at least 1

2 over SX ,

P[Zt 6= at,0 | SX , H = h0] ≤ 1

2q
.

It follows that with a probability at least 1
2 over SX , P[Z1 = a1,0, . . . , Zq = aq,0 | SX , H = h0] ≥

1/2. Hence P[Z1 = a1,0, . . . , Zq = aq,0 | H = h0] ≥ 1/4.
Now, suppose H = h0. Let Wt be the number of elements that As observes after selecting

element t − 1, until observing the next element. Let Xj ∼ DX be the j’th element observed after
selecting the first t− 1 elements, and let Bj = I[Xj = at,0]. Bj are independent Bernoulli random
variables with P[Bj = 1] = 1/n, and P[BWt = 1] ≥ P[E] = β ≥ 1

4 . By Lemma 9, if 1
n ≤

1
8 ,

then E[Wt] ≥ n
32 . It follows that the expected number of iterations over q selections is at least

qn
32 ≥

q
32

⌊
m

7 log(2q)

⌋
.
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