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Abstract
This paper studies the Best-of-K Bandit game: At each time the player chooses a subset S among
all N-choose-K possible options and observes reward max(X(i) : i in S) where X is a random vector
drawn from a joint distribution. The objective is to identify the subset that achieves the highest
expected reward with high probability using as few queries as possible. We present distribution-
dependent lower bounds based on a particular construction which force a learner to consider all
N-choose-K subsets, and match naive extensions of known upper bounds in the bandit setting ob-
tained by treating each subset as a separate arm. Nevertheless, we present evidence that exhaustive
search may be avoided for certain, favorable distributions because the influence of high-order or-
der correlations may be dominated by lower order statistics. Finally, we present an algorithm and
analysis for independent arms, which mitigates the surprising non-trivial information occlusion that
occurs due to only observing the max in the subset. This may inform strategies for more general
dependent measures, and we complement these result with independent-arm lower bounds.

1. Introduction

This paper addresses a variant of the stochastic multi-armed bandit problem, where given n arms
associated with random variablesX1, . . . , Xn, and some fixed 1 ≤ k ≤ n, the goal is to identify the
subset S ∈

([n]
k

)
that maximizes the objective E [maxi∈S Xi]. We refer to this problem as “Best-of-

K” bandits to reflect the reward structure and the limited information setting where, at each round,
a player queries a set S of size at most k, and only receives information about arms Xi : i ∈ S:
e.g. the vector of values of all arms in S, {Xi : i ∈ S} (semi-bandit), the index of a maximizer
(marked bandit), or just the maximum reward over all arms maxi∈S Xi (bandit). The game and its
valid forms of feedback are formally defined in Figure 1.

While approximating the Best-of-K problem and its generalizations have been given consid-
erable attention from a computational angle, in the regret setting (Hofmann et al., 2011; Raman
et al., 2012; Radlinski et al., 2008; Yue and Guestrin, 2011; Streeter and Golovin, 2009), this work
aims at characterizing its intrinsic statistical difficulty as an identification problem. Not only do
identification algorithms typically imply low (simple) regret algorithms by first exploring and then
exploiting, every result in this paper can be easily extended to the PAC learning setting where we
aim to find a set whose reward is within ε of the optimal, a pure-exploration setting of interest for
science applications (Kaufmann et al., 2015; Kaufmann and Kalyanakrishnan, 2013; Hao et al.,
2013).
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For joint reward distributions with high-order correlations, we present distribution-dependent
lower bounds which force a learner to consider all subsets S ∈

([n]
k

)
in each feedback model of in-

terest, and match naive extensions of known upper bounds in the bandit setting obtained by treating
each subset S as a separate arm. Nevertheless, we present evidence that exhaustive search may be
avoided for certain, favorable distributions because the influence of high-order order correlations
may be dominated by lower order statistics. Finally, we present an algorithm and analysis for in-
dependent arms, which mitigates the surprising non-trivial information occlusion that occurs in the
bandit and marked bandit feedback models. This may inform strategies for more general dependent
measures, and we complement these result with independent-arm lower bounds.

1.1. Motivation

In the setting whereXi ∈ {0, 1}, one can interpret the objective max
S∈([n]k ) E[maxi∈S Xi] as trying

to find the set of items which affords the greatest coverage. For example, instead of using spread
spectrum antibiotics which have come under fire for leading to drug-resistant “super bugs” (Huycke
et al., 1998), consider the doctor that desires to identify the best k subset of narrow spectrum an-
tibiotics that leads to as many favorable outcomes as possible. Here each draw from Xi represents
the ith treatment working on a random patient, and for antibiotics, we may assume that there are
no synergistic effects between different drugs in the treatment. Thus, the antibiotics example falls
under the bandit feedback setting since k treatments are selected but it is only observed if at least
one k-tuple of treatment led to a favorable outcome: no information is observed about any particular
treatment.

Now consider content recommendation tasks where k items are suggested and the user clicks on
either 1 or none. Here, each draw of X ∈ {0, 1}n encodes the users joint preferences for the items
in question, where Xi = 1 if the user likes the i-th item, and Xi = 0 otherwise. Because allow for
dependencies between the entries of X , our model can account for complex correlations between
users’ preferences for different items. In this setting, we only get to observe one item which the user
has clicked on, which we designate marked-bandit feedback.

Our final example comes from virology where multiple experiments are prepared and performed
k at a time, resulting in k simultaneous, noisy responses (Hao et al., 2013); this motivates our
consideration of the semi-bandit feedback setting.

1.2. Problem Description

We denote [n] = {1, 2, . . . , n}. For a finite set W , we let 2W denote its power set,
(
W
p

)
denote the

set of all subsets of W of size p, and write V ∼ Unif[W,p] to denote that V is drawn uniformly
from

(
W
p

)
. If X is a length n vector (binary, real or otherwise) and W ⊂ [n], we let XW denote the

sub-vector indexed by entries i ∈W .
In what follows, let X = (X1, . . . , Xn) be a random vector drawn from the probability distri-

bution ν over {0, 1}n. Unless otherwise stated, ν can be an arbitrary distribution over {0, 1}n in
that the entries of X may be dependent. If the entries are X are jointly independent, then we will
call ν an independent measure.

We refer to the index i ∈ [n] as the i-th arm, set µi = E[Xi] to be the expected reward of the
i-th arm, let νi denote the marginal distribution of its corresponding entry in X , e.g. (Eν [X])i =

Eνi [Xi] = µi. We define S :=
([n]
k

)
, and for a given S ∈ S, we we call E[maxi∈S Xi] the expected

reward of S, and refer casually to the random instantiations maxi∈S Xi as simply the reward of S.
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Best-of-k Bandits Game
for t = 1, 2, ...

Player picks St ∈ S and adversary simultaneously picks xt ∈ {0, 1}n

Player observes



Bandit feedback: max
i∈St

xt,i

Marked-Bandit feedback:

∅ if xt,i = 0 , ∀i ∈ St
unif(arg max

i∈St
xt,i) otherwise.

Semi-bandit feedback: xt,i ∀i ∈ St

Figure 1: Best-of-k Bandits game for the different types of feedback considered. While this work is
primarily interested in stochastic adversaries, our lower bound construction also has consequences
for non-stochastic adversaries. Moreover, in marked feedback, we might consider non-uniform and
even adversarial marking.

At each time t, nature draws a rewards vector xt = X where X is i.i.d from ν. Simultaneously,
our algorithm queries a subset St ∈ S of k arms, and we refer to the entries i ∈ St as the arms
pulled by the query. As we will describe later, this problem has previously been studied in a regret
framework, where a time horizon T ∈ N is fixed and an algorithm’s objective is to minimize its
regret

Rν(T ) = T max
S∈S

Eν [max
i∈S

Xi]− Eν [

T∑
t=1

max
i∈St

Xi]. (1)

In this work, we are more concerned with the problem of identifying the best subset of k arms.
More precisely, for a given measure ν, denote the optimal subset

S∗ := arg max
S∈S

Eν
[
max
i∈S

Xi

]
(2)

and let TS denote the (possibly random) number of times a particular subset S ∈
([n]
k

)
has been

played before our algorithm terminates. The identification problem is then

Definition 1 (Best-of-K Subset Identification) For any measure ν and fixed δ ∈ (0, 1), return
an estimate Ŝ such that Pν(Ŝ 6= S∗) ≤ δ, and which minimizes the sum

∑
S∈([n]k ) TS either in

expectation, or with high probability.

Again, we remind the reader that an algorithm for Best-of-K Subset Identification can be extended
to active PAC learning algorithm, and to an online learning algorithm with low regret (with high
probability) (Kaufmann et al., 2015; Kaufmann and Kalyanakrishnan, 2013; Hao et al., 2013).

1.3. Related Work

Variants of Best-of-K have been studied extensively in the context of online recommendation and
ad placement (Yue and Guestrin, 2011; Hofmann et al., 2011; Raman et al., 2012). For example,
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Radlinski et al. (2008) introduces “Ranked Bandits” where the arms Xi are stochastic random vari-
ables, which take a value 1 if the t-th user finds item i relevant, and 0 otherwise. The goal is to
recommend an ordered list of items S = (i1, . . . , ik) which maximizes the probability of a click on
any item in the list, i.e. maxi∈S Xi, and observes the first item (if any) that the user clicked on.

Streeter and Golovin (2009) generalizes the Best-of-K problem to the online maximization
of a sequence of monotone, submodular function {Ft(S)}1≤t≤T subject to knap-sack constraints
|S| ≤ k, under a variety of feedback models. Since the function S 7→ maxi∈S Xi is submodu-
lar, identifying S∗ corresponds to special case of optimizing the monotone, submodular function
F (S) := E[maxi∈S Xi] subject to these same constraints. Streeter and Golovin (2009) also con-
sider a variety of feedback models, including the ranked/cascading feedback described above.

Streeter and Golovin (2009), Yue and Guestrin (2011), and Radlinski et al. (2008) propose
online variants of a well-known greedy offline submodular optimization algorithm (see, for example
Iyer and Bilmes (2013)) , which attain (1− 1

e )-approximate regret guarantees of the form

T∑
t=1

Ft(St)−
(

1− 1

e

)
max

S∗:|S∗|≤k
Ft(S

∗) ≤ R(T ) (3)

where R(T ) is some regret term that decays as O(poly(n, k)) · o(T ). Computationally, this 1 − 1
e

is the best one could hope for in general: Best-of-K and Ranked Bandits are online variants of the
Max-K-Coverage problem, which cannot be approximated to within a factor of 1 − 1

e + ε for any
fixed ε > 0 under standard hardness assumptions (Vazirani, 2013). For completeness, we provide a
formal reduction from Best-of-K identification to Max-K-Coverage in Appendix A.

For independent measures, however, one can circumvent the 1 − 1
e approximation factor. For

example, Kveton et al. (2015) introduces non-approximate low-regret UCB-like algorithms for the
ranked bandits game from Radlinski et al. (2008), which they call “cascading bandits”, under the
assumption that the rewards Xi are binary and independent. These guarantees are related to our
upper bounds for independent distributions, but with two key differences: first, their feedback model
sits strictly between bandit and semi-bandit feedback (figure 1), but is not compararable to our
“marked-bandit” game, in which feedback is given uniformly at random, rather than based on the
ordering of a list.

Finally, Gopalan et al. (2014) obtains regret upper bounds for the Best-of-K bandit setting as a
corrolary of a general Thompson Sampling scheme. They obtain regret on the order ofO(

(
n−1
k

)
log T )

for bandits, and O(n log T ) for the semi-bandit setting. However, these regret upper bounds seem
to require the assumption that the entries Xi are independent. In light of our pure exploration up-
per bounds for independent measures, we conjecture that their results are quite loose, and should
actually scale like O(n log T ) for bandit feedback and O(nk log T ) for semi-bandits.

1.4. Our Contributions

Focusing on the stochastic pure-exploration setting with binary rewards, our contributions are as
follows:

• We propose a family of joint distributions such that any algorithm that solves the best of k
identification problem with high probability must essentially query all

(
n
k

)
combinations of

arms. Our lower bounds for the bandit case are nearly matched by trivial identification and
regret algorithms that treat each k-subset as an independent arm. For semi-bandit feedback,
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our lower bounds are exponentially smaller in k than those for bandit feedback (though still
requiring exhaustive search). To better understand this gap, we sketch an upper bound that
achieves the lower bound for a particular instance of our construction. While in the general
binary case, the difficulty of marked bandit feedback is sandwiched between bandit and semi-
bandit feedback, in our particular construction we show that marked bandit feedback has no
benefit over bandit feedback. In particular, for worst-case instances, our lower bounds for
marked bandits are matched by upper bounds based on algorithms which only take advantage
of bandit feedback.

• Our construction plants a k-wise dependent set S∗ among
(
n
k

)
− 1 k-wise independent sets,

creating a needle-in-a-haystack scenario. One weakness of this construction is that the gap
between the rewards of the best and second best subset are exponentially small in k. This is
particular to our construction, but not to our analysis: We present a partial converse which
establishes that, for any two k − 1-wise independent distributions defined over {0, 1}k with
identical marginal means µ, the difference in expected reward is exponentially small in k1.
This begs the question: can low order correlation statistics allows us to neglect higher order
dependencies? And can this property be exploited to avoid combinatorially large sample
complexity in favorable scenarios with moderate gaps?

• We lay the groundwork for algorithms for identification under favorable, though still depen-
dent, measures by designing a computationally efficient algorithm for independent measures
for the marked, semi-bandit, and bandit feedback models. Though independent semi-bandits
is straightforward (Jun et al., 2016), special care needs to be taken in order to address the
information occlusion that occurs in the bandit and marked-bandit models, even in this sim-
plified setting. We provide nearly matching lower bounds, and conclude that even for inde-
pendent measures, bandit feedback may require exponentially (in k) more samples than in the
semi-bandit setting.

2. Lower Bound for Dependent Arms

Intuitively, the best-of-k problem is hard for the dependent case because the high reward subsets
may appear as a collection of individually low-pay off arms if not sampled together. For instance,
for k = 2, if X1 = Bernoulli(1/2), X2 = 1−X1, and Xi = Bernoulli(3/4) for all 3 ≤ i ≤ n, then
clearly E[max{X1, X2}] = 1 is the best subset because E[max{X1, Xi}] = 1− (1/2)(1/4) = 7/8
and E[max{Xi, Xj}] = 1 − (1/4)2 = 15/16 for all 3 ≤ i ≤ j ≤ n. However, identifying set
{1, 2} appears difficult as presumably one would have to consider all

(
n
2

)
sets since if X1 and X2

are not queried together, they appear as Binomial(1/2).
Our lower bound generalizes this construction by introducing a measure ν such that (1) the

arms in the optimal set S∗ are dependent but (2) the arms in every other non-optimal subset of
arms S ∈ S − S∗ are mutually independent. This construction amounts to hiding a “needle-in-a-
haystack” S∗ among all other

(
n
k

)
−1 subsets, requiring any possibly identification to examine most

elements of S.

1. Note that our construction requires all subset of k − 1 of S∗ to be independent
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We now state our theorem, which characterizes the difficulty of recovering S∗ arms in terms of
the gap ∆ between the expected reward of S∗ and of the second best subset

∆ := Eν
[
max
i∈S∗

Xi

]
− max
S∈S\S∗

Eν
[
max
i∈S

Xi

]
(4)

Theorem 2.1 (Dependent) Fix k, n ∈ N such that 2 ≤ k < n. For any ε ∈ (0, 1] and µ ∈ (0, 1/2]
there exists a distribution ν with ∆ = εµk such that any algorithm that identifies S∗ with probability
at least 1− δ requires, in expectation, at least

(i)
4(1− ε( µ

1−µ)k)

3
·
(
1− (1− µ)k

)
(1− µ)k

(
n

k

)
∆−2 log( 1

2δ ) (marked-)bandit, or

(ii)
2

3
µ2k(1− ε)

(
n

k

)
∆−2 log( 1

2δ ) semi-bandit

observations. In particular, for any 0 < ξ ≤ (2k)−k there exists a distribution ν with ∆ = ξ that
requires at least 1

3

(
n
k

)
∆−2 log( 1

2δ ) (marked-)bandit observations. And for any 0 < ξ ≤ 2−k−1

there exists a distribution ν with ∆ = ξ that requires at least 1
32−2k

(
n
k

)
∆−2 log( 1

2δ ) semi-bandit
observations.

Remark 2.1 Marked-bandit feedback provides strictly less information than semi-bandit feedback
but at least as much as bandit feedback. The above lower bound for marked-bandit feedback and
the nearly matching upper bound for bandit feedback remarked on below suggests that marked-
bandit feedback may provide no more information than bandit feedback. However, the lower bound
holds for just a particular construction and in Section 3 we show that there exist instances in which
marked-bandit feedback provides substantially more information than merely bandit feedback.

In the construction of the lower bound, S∗ = [k] and all other subsets behave like completely
independent arms. Each individual arm has mean µ, i.e. Eν [Xi] = µ for all i, so each S 6= S∗ has a
bandit reward of Eν [maxi∈S Xi] = 1− (1−µ)k. The scaling (1− (1−µ)k)(1−µ)k in the number
of bandit and marked-bandit observations corresponds to the variance of this reward and captures
the property that the number of times a set needs to be sampled to accurately predict its reward is
proportional to its variance. Since µ ≤ 1/2, we note that the term 1 − ε( µ

1−µ)k is typically very
close to 1, unless µ is nearly 1/2 and ε is nearly 1.

While the lower bound construction makes it necessary to consider each subset S ∈
([n]
k

)
indi-

vidually for all forms of feedback feedback, semi-bandit feedback presumably allows one to detect
dependencies much faster than bandit or marked-bandit feedback, resulting in an exponentially
smaller bound in k. Indeed, Remark E.2 describes an algorithm that uses the parity of the ob-
served rewards that nearly achieves the lower bound for semi-bandits for the constructed instance
when µ = 1/2. However, the authors are unaware of more general matching upper bounds for the
semi-bandit setting and consider this a possible future avenue of research.

2.1. Comparison with Known Upper Bounds

By treating each set S ∈ S as an independent arm, standard best-arm identification algorithms can
be applied to identify S∗. The KL-based LUCB algorithm from Kaufmann and Kalyanakrishnan
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(2013) requires O(∆2(1 − (1 − µ)k)(1 − µ)k
(
n
k

)
· k log n) samples, matching our bandit lower

bound up to a a multiplicative factor of k log n (which is typically dwarfed by
(
n
k

)
). The lil’UCB

algorithm of Jamieson et al. (2014) avoids paying this multiplicative k log n factor, but at the cost
of not adapting to the variance term (1 − (1 − µ)k)(1 − µ)k. Perhaps a KL- or variance-adaptive
extension of lil-UCB could attain the best of both worlds.

From a regret perspective, the exact construction as used in the proof of Theorem 2.1 can be used
in Theorem 17 of Kaufmann et al. (2015) to state a lower bound on the regret after T =

∑
S∈S Ts

bandit observations. Specifically, if an algorithm obtain a stochastic regret RT (ν) = o(Tα) for all
α ∈ (0, 1], then for all S ∈

([n]
k

)
− S∗, we have lim infT→∞

Eν [TS ]
log(T ) ≥

(1−(1−µ)k)(1−µ)k

∆2 where ∆ is
given in Theorem 2.1. Alternatively, in an adversarial setting, the above construction with µ = 1/2

also implies a lower bound of
√

2−O(k)
(
n
k

)
T =

√(Ω(n)
k

)
T for any algorithm over a time budget

T . Both of these regret bounds are matched by upper bounds found in Bubeck and Cesa-Bianchi
(2012).

2.2. Do Large Sample Complexities Require Small Gaps?

While Theorem 2.1 proves the existence of a family of instances in which
(
n
k

)
∆−2 log(1/δ) samples

are necessary to identify the best k-subset, the possible gaps ∆ are restricted to be no larger than
min{µk, (1 − µ)k}. The following theorem demonstrates that, for the construction in our lower
bounds, these restrictions on the gaps are tight. More precisely, we show that when all subsets of
size k − 1 have identical lower-order statistics, then the gaps must be exponentially small in k:

Theorem 2.2 Let X = (X1, . . . , Xk) be a random variable supported on {0, 1}k with k − 1-wise
independent marginal distributions, such that E[Xi] = µ ∈ [0, 1] for all i ∈ {1, . . . , k}. Then there
is a one-to-one correspondence between joint distributions over X and probability assignments
P(X1 = · · · = Xk = 0). When µ < 1/2, all such assignments lie in the range

(1− µ)k

(
1−

(
µ

1− µ

)keven)
≤ P(X1 = · · · = Xk = 0) ≤ (1− µ)k

(
1 +

(
µ

1− µ

)kodd)
(5)

Here, kodd is the largest odd integer ≤ k, and keven the largest even integer ≤ k. Moreover, when
µ ≥ 1/2, all such assignments lie in the range

0 ≤ P(X1 = · · · = Xk = 0) ≤ (1− µ)k−1 (6)

The constrapositive of the above theorem implies that, when the gaps are not exponentially small in
k, there must be differences in the lower order statistics. If there are substantial differences between
lower order statistics, then we we might be able to design optimisitc algorithms which can use lower
order information to circumvent the need for exhaustive search.

Example 2.1 Consider the case where k = 2, and fix an index i∗ ∈ [n]. Suppose that µ∗ :=
E[Xi∗ ], and for i ∈ [n] − {i∗}, µi := E[Xi] <

µ∗

2 . Then, any set S ⊂ [n] containing i∗ must have
E[maxi∈S X1] ≥ E[Xi∗ ] = µ∗, whereas any subset S not containing i∗ must have E[maxi∈S X1] ≤
E[
∑

i∈S Xi] < 2µ
∗

2 = µ∗. Thus, regardless of the dependencies between the arms, we know that S∗

must contain i∗.
Even if one did not know the index i∗, one could then use this fact to design an algorithm

whose sample complexity for this instance is linear in n by first trying to identify the arm i∗ with the
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unsually high mean, and then searching over all sets of the form S = {i∗, j} for i ∈ [n] − {i∗} to
find S∗. It is also conceivable that optimistic algorithms could adapt to this unknown structure.

The above example points to a more general phenomenon: when X are drawn iid from a joint
distribution over {0, 1}n, lower order cross moments of X enforce very strict contraints on higher
order moments. These lower order statistics can be directly estimated in the semi-bandits setting,
or in a natural relaxation of the bandit game when you are allowed to play k′ < k arms. With
exceptionally gaps, one may also be able to estimate useful confidence intervals on lower-order
statistics using strict bandit feedback which mandates pulling exactly k arms per query.

Ultimately, we might hope that to design an optimistic algorithm which avoids exhaustive search
by estimating lower order statistics before moving on to higher order ones, ruling out large collec-
tions of subsets as it goes along. By the same token, we believe that a more general version of
Theorem 2.2 - one which precisely characterizes the sizes of differences between lower order statis-
tics for problem instances which have very large gaps - would lead to a sharper characterization of
the difficulty of Best-of-K in benign problem instances.

3. Best of K with Independent Arms

While the dependent case is of considerable practical interest, the remainder of this paper inves-
tigates the best-of-k problem where ν is assumed to be a product distribution of n independent
Bernoulli distributions. We show that even in this presumably much simpler setting, there remain
highly nontrivial algorithm design challenges related to the information occlusion that occurs in
the bandit and marked-bandit feedback settings. We present an algorithm and analysis which tries
to mitigate information occlusion which we hope can inform strategies for favorable instances of
dependent measures.

Under the independent Bernoulli assumption, each arm is associated with a mean µi ∈ [0, 1)
and the expected reward of playing any set S ∈

(
[n]
2

)
is equal to 1 −

∏
i∈S(1 − µi) and hence best

subset of k arms is precisely the set of arms with the greatest k means µi.

3.1. Results

Without loss of generality, suppose the means are ordered µ1 ≥ . . . µk > µk+1 ≥ . . . µn. Assuming
µk 6= µk+1 ensures that the set of top k means is unique, though our results could be easily extended
to a PAC Learning setting with little effort. Define the gaps and variances via

∆i :=

{
µi − µk+1 if i ≤ k
µk − µi if i > k

and Vi := µi(1− µi) (7)

For τ > 0, introduce the transformation

Tn,δ(τ) := τ log

(
16n log2 e

δ
log

(
8nτ log2 e

δ

))
= Θ̃

(
τ log

(n
δ

))
(8)

where Θ̃(·) hides logarithmic factors of its argument. We present guarantees for the Stagewise
Elimination of Algorithm 3 in our three feedback models of interest; the broad brush strokes of
our analysis are addressed in Appendix B, and the details are fleshed in the Appendices C and B.2.
Our first result holds for semi-bandits, which slightly improves upon the best known result for the
k-batch setting (Jun et al., 2016) by adapting to unknown variances:
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Theorem 3.1 (Semi Bandit) With probability 1−δ, Algorithm 3 with semi-bandit feedback returns
the arms with the top k means using no more than

8Tn,δ(τσ(1)) +
4

k

n∑
i=k+1

Tn,δ(τσ(i)) = Õ

((
τσ(1) +

1

k

n∑
i=k+1

τσ(i)

)
log
(n
δ

))
(9)

queries where

τi :=
56

∆i
+

256

∆2
i

{
max{Vi,maxj>k Vj} i ≤ k
max{Vi,maxj≤k Vj} i > k

(10)

and σ is a permutation so that τσ(1) ≥ τσ(2) ≥ . . . τσ(n).

The above result also holds in the more general setting where the rewards have arbitrary distributions
bounded in [0, 1] almost surely (where Vi is just the variance of arm i.)

In the marked-bandit and bandit settings, our upper bounds incur a dependence on information-
sharing terms HM (marked) and HB (bandit) which capture the extent to which the max operator
occludes information about the rewards of arms in each query.

Theorem 3.2 (Marked Bandit) Suppose we require each query to pull exactly k arms. Then Al-
gorithm 3 with marked bandit feedback returns the arms with the top k means with probability at
least 1− δ using no more than

16Tn,δ

(
τMσ(1)

HM

)
+

8

k

n∑
i=k+1

Tn,δ

(
τMσ(i)

HM

)
= Õ

(
log (n/δ)

HM

(
τMσ(1) +

1

k

n∑
i=k+1

τMσ(i)

))
(11)

queries. Here, τMi is given by

τMi :=
56

∆i
+

256

∆2
i

{
µi i ≤ k
µk i > k

(12)

σ is a permutation so that τσ(1) ≥ τσ(2) ≥ . . . τσ(n), and HM is an “information sharing term”
given by

HM := EX1,...,Xk−1

[
1

1 +
∑

`∈[k−1] I(X` = 1)

]
(13)

If we can pull fewer than k arms per round, then we can achieve

8 max
i∈[k−1]

iT (τMσ(i)) +
8

kHM

n∑
i=2

Tn,δ
(
τMσ(i)

)
= Õ

((
max

i∈{1,k−1}
iτMσ(1) +

1

kHM

n∑
i=2

τMσ(i)

)
log
(n
δ

))
(14)

We remark that as long as the means are at no more than 1−c, τi ≤ 1
c τ

M
i , and thus the two differ by

a constant factor when the means are not too close to 1 (this difference comes from loosing (1− µ)
term in a Bernoulli variance in the marked case). Furthermore, note that HM ≥ 1

k . Hence, when
we are allowed to pull fewer than k arms per round, Stagewise Elimination with marked-bandit
feedback does no worse than a standard LUCB algorithms for stochastic best arm identification.

9
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When the means µi are on the order of 1/k, then HM = Ω(1), and thus Stagewise Eliminations
gives the same guarantees for marked bandits as for semi bandits. The reason is that, when the
means are O(1/k), we can expect each query S to have only a constant number of arms ` ∈ S for
which X` = 1, and so not much information is being lost by observing only one of them.

Finally, we note that our guarantees depend crucially on the fact that the marking is uniform.
We conjecture that adversarial marking is as challenging as the bandit setting, whose guarantees are
as follows:

Theorem 3.3 (Bandit) Suppose we require each query to pull exactly k arms, n ≥ 7k/2, and
∀i : µi < 1. Then Algorithm 3 with bandit feedback returns the arms with the top k means with
probability at least 1− δ using no more than

20Tn,δ

(
τBσ(1)

HB

)
+

5

k

n∑
i=k+1

Tn,δ

(
τBσ(i)

HB

)
= Õ

(
log (n/δ)

HB

(
τBσ(1) +

1

k

n∑
i=k+1

τBσ(i)

))
(15)

queries where HB :=
∏
`∈[k−1](1− µ`) is an “information sharing term”,

τBi ≤
66

∆i
+

2560

∆2
i

{
2(1− µk+1)µi + (1− µk+1)2(1−HB) i ≤ k
2(1− µi)µk+1 + (1− µi)2(1−HB) i > k

and σ is a permutation so that τBσ(1) ≥ τ
B
σ(2) ≥ . . . τ

B
σ(n).

The condition that µi < 1 ensures identifiability (see Remark B.11). The condition n ≥ 7k/2
is an artifact of using a Balancing Set B defined in Algorithm 4; without B, our algorithm succeeds
for all n ≥ k, albeit with slightly looser guarantees (see Remark B.9).

Remark 3.1 Suppose the means are greater than α(k)/k where α(k) ≥ C log k and C is a con-
stant; for example, think α(k) = k/2. Then HB ≤ (1− α(k)

k )k = O(exp(−α(k)))� 1/k. Hence,
Successive Elimination requires on the order of 1

k ·
1
HB = exp(Ω(α(k))

k more queries to identify the
top k-arms than the classic stochastic MAB setting where you get to pull 1-arm at a time, despite
the seeming advantage that the bandit setting lets you pull k arms per query. When α(k) ≥ C log k,
then exp(Ω(α(k)))

k is at least polynomially large in k, and when α = Ω(k), is exponentially large in
k (e.g, α(k) = k/2).

On the other hand, when the means are all on the order of α/k for α = O(1), thenHB = Ω(1),
but the term 1−HB is at least Ω(α). For this case, our sample complexity looks like

Õ(
log(n/δ)

k

∑
i

α/k + α

∆2
i

+
1

∆i
) = Õ(log(n/δ)

∑
i

α

∆2
i

) (16)

which matches, but does not out-perform, the standard 1-arm-per-query MAB guarantees, with
variance adaptation (e.g., Theorem 3.1 with k = 1, note that α captures the variance). Hence,
when the means are all roughly on the same order, it’s never worse to pull 1 arm at a time and
observe its reward, than to pull k and observe their max. Once the means vary wildly, however, this
is certainly not true; we direct the reader to Remark B.12 for further discussion.

10
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3.2. Algorithm

At each stage t ∈ {0, 1, 2, . . . }, our algorithm maintains an accept set At ⊂ [n] of arms which we
are confident lie in the top k, a reject set Rt ⊂ [n] of arms which we are confident lie in the bottom
n − k, and an undecided set Ut containing arms for which we have not yet rendered a decision.
The main obstacle is to obtain estimates of the relative performance of i ∈ Ut, since the bandit
and marked bandit observation models occlude isolated information about any one given arm in a
pull. The key observation is that, if we sample S ∼ Unif[Ut, k], then for i, j ∈ Ut, the following
differences have the same sign as µi − µj (stated formally in Lemma B.2):

E[max
`∈S

X`

∣∣i ∈ S]− E[max
`∈S

X`

∣∣j ∈ S] (bandits) and

P( observe Xi = 1
∣∣i ∈ S)− P( observe Xj = 1

∣∣j ∈ S) (marked/semi-bandits)
(17)

This motivates a sampling strategy where we partitionUt uniformly at random into subsets S1, S2, . . . , Sp
of size k, and query each Sq, q ∈ {1, . . . , p}. We record all arms ` ∈ Sq for which X` = 1 in the
semi/marked-bandit settings (Algorithm 1, Line 3), and, in the bandit setting, mark down all arms
in Sq if we observe max`∈Sq X` = 1 - i.e, we observe a reward of 1 (Algorithm 1, Line 4). This
recording procedure is summarized in Algorithm 1:

Algorithm 1: PlayAndRecord(S, S+, Y )

1 Input S, S+ ⊂ [n], Y ∈ Rn
2 Play S ∪ S+

3 Semi/Marked Bandit Setting: Y` ← 1 for all ` ∈ S for which we observe X` = 1
4 Bandit Bandit Setting: If A returns a reward of 1, Y` ← 1 for all ` ∈ S
5 Return Y

Note that PlayAndRecord[S, S+, Y ] plays a the union of S and S+, but only records entries of
Y whose indices lie in S. UniformPlay (Algorithm 2) outlines our sampling strategy. Each call to
UniformPlay[U,A,R, k(1)] returns a vector Y ∈ Rn, supported on entries i ∈ U , for which

E[Yi] =

{
PS,S+( observe Xi = 1

∣∣i ∈ S ∪ S+) marked/semi-bandit
PS,S+(max`∈S∪S+ X` = 1

∣∣i ∈ S ∪ S+) bandit
(18)

where S ∼ Unif[U, k(1)] and S+ is empty unless |Ut| < k or we are allowed to pull fewer than k
arms per query in which case elements of S+ are drawn from A ∪ R as outlined in Algorithm 2,
Line 3 otherwise.

There are a couple nuances worth mentioning. When |U | < k, we cannot sample k arms
from the undecided set U ; hence UniformPlay pulls only k(1) from U per query. If we are forced
to pull exactly k arms per query, UniformPlay adds in a “Top-Off” set of an additional k − k(1)

arms, from R and A (Lines 3-9). Furthermore, observe that lines 13-15 in UniformPlay carefully
handle divisibility issues so as to not “double mark” entries i ∈ U , thus ensuring the correctness of
Equation 18. Finally, note that each call to UniformPlay makes exactly d|U |/k(1)e queries.

We deploy the passive sampling in UniformPlay in a stagewise successive elimination procedure
formalized in Algorithm 3. At each round t = {1, 2, . . . }, use a doubling sample size to T (t) := 2t,
and set the k(1) parameter for UniformPlay to be min{|Ut|, k} (line 3). Next, we construct the sets

11
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Algorithm 2: UniformPlay(U,A,R, k(1))

1 Inputs: U , A, R, sample size k(1)

2 Uniformly at random, partition U into p := b|U |/k(1)c sets S(1), . . . , S(p) of size k(1) and place
remainders in S(0) // thus S(1), . . . , S(p) ∼ Unif[U, k(1)]2

3 If Require k Arms per Pull and k(1) < k // Construct Top-Off Set S+

4 k(2) ← k − k(1) // k(2) = |S+|
5 S+ ← Unif[R,min{|R|, k(2)}] //sample as many items from reject as possible
6 If |R| < k(2): // sample remaining items from accept
7 S+ ← R ∪Unif[A, k(2) − |R|]
8 Else // Top-Off set unnecessary
9 S+ ← ∅, k(2) ← 0

10 Initalize rewards vector Y ← 0 ∈ Rn
11 For q = 1, . . . , p

12 Y ← PlayAndRecord[S(q), S+, Y ] // only mark S(q)

13 If |S(0)| > 0 // if remainder
14 Draw S(0,+) ∼ Unif[U − S(0), k(1) − |S(0)|] // thus S(0) ∪ S(0,+) ∼ Unif[U, k(1)]

15 Y ← PlayAndRecord[S(0), S(0,+) ∪ S+, Y ] // only mark S(0) to avoid duplicate marking
16 Return Y

(U ′t , R
′
t) from which UniformPlay samples: in the marked and semi-bandit setting, these are just

(Ut, At, Rt) (Line 4), while in the bandit setting, they are obtained by from Algorithm 4 which
transfers a couple low mean arms from Rt into U ′t (Line 5). This procedure ameliorates the effect
of information occlusion for the bandit case.

Line 7 through 9 average together T (t) := 2t independent, and identically distributed samples
from UniformPlay[U ′t , R

′
t, At, k

(1)] to produce unbiased estimates µ̂i,t of the quantity E[Yi] defined
in Equation 18. µ̂i,t are Binomial, so we apply an empirical Bernstein’s inequality from Maurer and
Pontil (2009) to build tight 1− δ confidence intervals

Ĉi,t :=

√
2V̂ log(8nt2/δ)

T (t)
+

8 log(8nt2/δ)

3(T (t)− 1)
where V̂i,t :=

T (t)µ̂i,t(1− µ̂i,t)
T (t)− 1

(19)

Note that V̂i,t coincide with the canonical definition of sample variance. The variance-dependence
of our confidence intervals is crucial; see Remarks B.7 and B.8 for more details. For any ` ≤ |Ut|
let

`
max
j∈Ut

= `-th largest element (20)

As mentioned above, Lemma B.2 ensures E[µ̂i,t] > E[µ̂j,t] if and only if µi > µj . Thus, accepting
an arm for µ̂i,t is in the top k.

The Balance Procedure is described in Algorithm 4, and ensures that U ′t contains sufficiently
many arms that don’t have very high (top k + 1) means. The motivation for the procedure is some-
what subtle, and we defer its discussion to the analysis in Appendix B.3.3, following Remark B.8:

12
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Algorithm 3: Stagewise Elimination(S, k, δ)

1 Input S1 = [n], Batch Size k, t = 0
2 While |At| < k // fewer than k arms accepted
3 Sample Size T (t)← 2t, Rewards Vector Y (t) ← 0 ∈ Rn, k(1) ← min{|Ut|, k}
4 (U ′t , R

′
t)← (Ut, Rt) // Sampling Sets for UniformPlay, identical to Ut and Rt in

marked/semi bandits
5 If Bandit Setting // Add low mean arms from Rt to Ut
6 (U ′t , R

′
t)← Balance(Ut, Rt)

7 For s = 1, 2, . . . , T (t)

8 Y (t) ← Y (t) + UniformPlay[U ′t , R
′
t, At, k

(1)] // get fresh samples
9 µ̂i,t ← 1

T (t) · Y
(t) // normalize

10 kt ← k − |At|
11 At+1 ← At ∪ {i ∈ Ut : µ̂i,t − Ĉi,t > maxkt+1

j∈Ut µ̂j,t + Ĉj,t} // Equation 19
12 Rt+1 ← Rt ∪ {i ∈ Ut : µ̂i,t + Ĉi,t < maxktj∈Ut µ̂j,t − Ĉj,t}
13 If |Rt| = n− k //n− k arms rejected
14 At+1 ← At+1 ∪ Ut
15 Ut+1 ← Ut − {At+1 ∪Rt+1}
16 t← t+ 1

Algorithm 4: Balance(U,R)

1 Input U,R
2 B ∼ Unif[R,max{0, d5k(1)

2 − |U | − 1
2e}] //Balancing Set

3 U ′ ← U ∪B , R′ ← R−B // Transfer B from R to U
4 Return (U ′, R′)

4. Lower bound for Independent Arms

In the bandit and marked-bandit settings, the upper bounds of the previous section depended on
“information sharing” terms that quantified the degree to which other arms occlude the performance
of a particular arm in a played set. Indeed, great care was taken in the design of the algorithm to
minimize impact of this information sharing. The next theorem shows that the upper bounds of
the previous section for bandit and semi-bandit feedback are nearly tight up to a similarly defined
information sharing term.

Theorem 4.1 (Independent) Fix 1 ≤ p ≤ k ≤ n. Let ν =
∏n
i=1 νi be a product distribution

where each νi is an independent Bernoulli with mean µi. Assume µ1 ≥ · · · ≥ µk > µk+1 ≥ · · · ≥
µn (the ordering is unknown to any algorithm). At each time the algorithm queries a set S′ ∈

(
[n]
p

)
and observes E[maxi∈S′ Xi]. Then any algorithm that identifies the top k arms with probability at
least 1− δ requires at least (

max
j=1,...,n

τj +
1

p

n∑
j=1

τj

)
log( 1

2δ )

13
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observations where

(i) τj =


(1−µj−∆j)

∆2
j

1−hj+µjhj
hj

if j > k

(1−µj)
∆2
j

1−hj+(µj−∆j)hj
hj

if j ≤ k
for bandit observations, and

(ii) τj =


(1−µj−∆j)µj

∆2
j

if j > k

(1−µj)(µj−∆j)

∆2
j

if j ≤ k
for semi-bandit observations.

where hj = max
S∈([n]−jp−1 )

∏
i∈a\j(1− µi).

Our lower bounds apply to our upper bounds when p = k. In the bandit setting, considering
p < k reveals a trade-off between the information sharing term, which decreases with larger p, with
the benefit of a 1

p factor gained from querying p arms at once. One can construct different instances
that are optimized by the entire range of 1 ≤ p ≤ k. Future research may consider varying the
subset size in an adaptive setting to optimize this trade off.

The information sharing terms defined in the upper and lower bounds correspond to the most
pessimistic and optimistic scenarios, respectively, and result from applying coarse bounds in ex-
change for simpler proofs. Thus, our algorithm may fare considerably better in practice than is
predicted by the upper bounds. Moreover, when maxi µi − mini µi is dominated by mini µi our
upper and lower bounds differ by constant factors.

Finally, we note that our upper and lower bounds for independent measures are tailored to
Bernoulli payoffs, where the best k-subset corresponds to the top k means. However, for general
product distributions ν on [0, 1]n, this is no longer true (see Remark B.1). This leaves open the
question: how difficult is Best-of-K for general, independent bounded product measures? And, in
the marked feedback setting (where one receives an index of the best element in the query), is this
problem even well-posed?
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Appendix A. Reduction from Max-K-Coverage to Best-of-K

As in the main text, let X = (X1, . . . , Xn) ∈ {0, 1}n be a binary reward vector, let S∗ =
{arg max

S∈([n]k ) E[maxi∈S Xi]} be set of all optimal k-subsets of [n] (we allow for non-uniqueness),

and define the gap ∆ := Eν [maxi∈S∗ Xi] −maxS∈S\S∗ Eν [maxi∈S Xi] as the minimum gap be-
tween the rewards of an optimal and sub-optimal k-set. We say S̃ is α−optimal for α ≤ 1 if
E[maxi∈S̃ Xi] ≥ αE[maxi∈S∗ Xi], where S∗ ∈ S∗. We formally introduce the classical Max-K-
Coverage problem:

Definition 2 (Max-K-Coverage(m, k,V)) A Max-K-Coverage instance is a tuple (m, k,V), where
V is a collection of subsets V1, . . . , Vn ∈ 2[m]. We say S ⊂ V is a solution to Max-K-Coverage if
|S| = k and S maximizes |

⋃
Vi∈S Vi|. Given α ≤ 1, we say S is an α approximation if |

⋃
Vi∈S Vi| ≥

αmaxS′∈(Vk)
|
⋃
Vi∈S′ Vi|.

It is well known that Max-K-Coverage in NP-Hard, and cannot be approximated to within α =
1− 1

e + o(1) under standard hardness assumptions Vazirani (2013). The following theorem gives a
reduction from Best of K Indentification (under any feedback model) to Max-K-Coverage:

Theorem A.1 Fix α ≤ 1, and let A be an algorithm which indentifies an α-optimal k-subset
of n arms probability in time polynomial in n, k, and 1/∆, with probability at least η (under
any feedback model). Then there is a polynomial time α-approximation algorithm for Max-K-
Coverage[m, k,V]which succeeds with probability at least η. When α = 1, this implies a polyno-
mial time algorithm for exact Max−K− Coverage[m, k,V].

Proof Consider an instance of Max−K− Coverage[m, k,V], and set n = |V|. We construct
a reward vector X ∈ {0, 1}n as follows: At each time t, draw ω uniformly from [m], and set
Xi := I(ω ∈ Vi). We run A on the reward vector X , and it returns a candidate set Ŝ ∈

(
n
[k]

)
which is α-optimal with probability η. We then return the sets Vi ∈ V whose indicies lie in Ŝ.
We show this reduction completes in polynomial time, and if Ŝ is α-optimal, then {Vi}i∈Ŝ is an
α-approximation for the Max-K-Coverage instance.

Correctness: Since ω is uniform from [m], the reward of a subset S ⊂ [n] is E[maxi∈S I(ω ∈
Vi)] = E[I(ω ∈

⋃
i∈S Vi)] =

|
⋃
i∈S Vi|
m ∝ |

⋃
i∈S Vi|. Hence, an α-optimal subset S corresponds to

an α-approximation to the Max-K-Coverage instance.
Runtime: Let R(n, k,∆) = O(poly(n, k, 1/∆)) denote an upper bound runtime of A, and

let T (n, k,∆) = O(poly(n, k, 1/∆)) be an upper bound on the number of queries required by
Algorithm A to return to α-optimal k-subset. Note that sampling ω takes O(m) time, and set-
ting each Xi(ω) completes in time O(mn). Moreover, the expected reward of any S ∈

([n]
k

)
lies

in {0, 1
m , . . . , 1}, so ∆ ≤ 1/m. Thus, the runtime of our reduction is R(n, k,∆) + O(mn) ·

T (n, k,∆)) ≤ R(n, k, 1/m) +O(mn) · T (n, k, 1/m)) = O(poly(n, k,m)).

Remark A.1 Note that the parameter m in the Max-K-Coverage instance shows up in the gap ∆
in the runtime of the Max-K-Coverage instance. Our lower bound construction holds in the regime
where ∆ = exp(−O(k)), which morally corresponds to Max-K-Coverage instances in the regime
where m = exp(Ω(k)).
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Appendix B. High Level Analysis for Independent Upper Bound

B.1. Preliminaries

At each stage t of Algorithm 3, there are three sources of randomness we need to account for.
First, there is the randomness over all events that occurred before we start sampling from Uni-
formPlay: this randomness determines the undecided, accept, and rejected sets Ut, At, and Rt, as
well as their modifications U ′t , and R′t. In what follows, we will define a so-called “Data-Tuple”
Dt := (Ut, At, Rt, U

′
t , R

′
t) which represents the state of our algorithm, in round t, before collecting

samples.
The second source of randomness comes from the uniform partitioning of U ′t into the sets

S(0), S(1), . . . , S(q) (Algorithm 2, Line 2) and the draw of the Top-Off set S+ (Lines 3-3), at each
call to UniformPlay. Finally, there is randomness over the values that the arms X` ∈ S ∪ S+ take,
when pulled in PlayAndMark. To clear up any confusion, we define the probability and expectation
operators

P·|t [·] := P[·
∣∣Dt] and E·|t [·] := E[·

∣∣Dt] (21)

P·|t [·] and E·|t [·] condition on the data in Dt, and take expectations over the randomness in the
partitioning of U ′t , draw of S+, and the values of each arm pulled.

Treating Dt as fixed, we will let S denote a set with same distribution of one of the randomly
partitioned subsets S(1), . . . , S(q) of U ′t in UniformPlay, S+ to denote a set with the distribution of
the Top-Off set chosen in UniformPlay. Recall that the purpose of S+ is simply to ensure that we
pull exact k arms per query. If either k(1) = k, or we do not enforce exactly k-pulls per round, then
S+ = ∅. We remark that the distributions of S and S+ are explicitly

S ∼ Unif[U ′t , k
(1)] and S+ ∼

{
Unif[R′t, k

(2)] |R′t| ≥ k(2)

R′t ∪Unif[At, k
(2) − |R′t|] |R′t| < k(2)

(22)

Note thatDt exactly determines k(1) := |S|, which we recall is defined at each round as min{|Ut|, k}
(Algorithm 2, Line 3). It also determines the size of the Top-Off set k(2) (Algorithm 2, Lines 4
and 9). We further note that the play S(0) ∪ S(0,+) (Algorithm 2, Lines 13-15 ) is also uniformly
drawn as Unif[U ′t , k

(1)], and hence has the same distribution of S. We also remark that

Claim B.1 The sets S and S+ are independent and disjoint under Pt. In the marked and semi-
bandit setting, there are always enough accepted/rejected arms in |At ∪ Rt| to ensure that we can
fill S+ with k(2) arms. In the bandit setting, there are sufficiently many accepted/rejected arms in
|At ∪R′t| as long as n ≥ 7k/2.

This condition n ≥ 7k/2 is an artifact of the balancing set in our algorithm, and is discussed in
more detail in Section B.3.3.

B.2. Guarantees for General Feedback Models

The core of our analysis is common to the three feedback models. To handle bandits and marked/semi
bandits settings simultaneous, we define a win functionW : [n]× 2[n] → {0, 1} which reflects the

18



BEST-OF-K BANDITS

recording strategy in PlayAndRecord

W(i, S′) =


1 if bandit setting and max`∈S′ X` = 1

1 if marked/semi-bandit setting and observe Xi = 1

0 otherwise

(23)

That is, PlayAndRecord[S, S+, Y ] sets Yi = 1 ∀i ∈ S : W(i, S ∪ S+) = 1. The following lemma
characterizes the distribution of our estimations µ̂i,t

Lemma B.2

µ̂i,t ∼
1

T (t)
Binomial(µ̄i,t, T (t)) and E[V̂i,t] = Vi,t (24)

where

µ̄i,t = Et[W(i, S ∪ S+)
∣∣i ∈ S] and Vi,t := µ̄i,t(1− µ̄i,t) (25)

Moreover, in semi-bandit and marked bandit settings, and if µ1 ≤ 1 in the bandit setting, then given
i, j ∈ St, µ̄i,t > µ̄j,t if and only if µi > µj .

Remark B.1 In the partial feedback models, the property that µ̄i,t > µ̄j,t if and only if µi > µj is
quite particular to independent Bernoulli observations. The case of dependent Bernoullis measures
is adressed by Theorem 2.1. For independent, non-Bernoulli distributions, consider the setting
where n = 3, k = 2, and let X1, X2, X3 be independent, where X1

d
= X2

a.s.
= 2/3, and X3 ∼

Bernoulli(1/2). Then, E[max(X1, X2)] = 2/3, while E[max(X1, X3)] = E[max(X2, X3)] =
1
2 + 1

3 = 5/6. Hence, if S ∼ Unif[{1, 2, 3}, 2], E[max`∈S X`

∣∣3 ∈ S] > E[max`∈S X`

∣∣2 ∈ S] =
E[max`∈S X`

∣∣1 ∈ S].

The last preliminary is to define the stage-wise comparator arms ci,t for i ∈ Ut:

ci,t :=

{
min{j ∈ Ut : j > k} i ≤ k
max{j ∈ Ut : j ≤ k} i > k

(26)

Intuitively, the comparator arm is the arm we are mostly to falsely accept instead of i when i ≤ k,
and falsely reject instead of i when i > k.

Remark B.2 As long as the accept set At only consists of arms i ≤ k, and Rt only consists of arms
i > k, ci,t is guaranteed to exists. Indeed, fix i ∈ Ut, and suppose ci,t does not exist. If i ≤ k, then
this would mean that Ut doesn’t contain any rejected arms, but since At only contains accepted
arms, all rejected arms are inR′t, in which case Algorithm 3 will have already terminated (Line 14).
A similar contradiction arises when i > k.

Finally, we define the stagewise effective gaps

∆i,t := |µ̄i,t − µ̄ci,t,t| (27)

Observe that, conditioned on the data in Dt, the means µ̄i,t, gaps ∆i,t and the variances Vi,t are
all deterministic quantities. We now have the following guarantee for Algorithm 3, which holds for
the bandit, marked-bandit, and semi-bandit regimes:
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Lemma B.3 (General Performance Guarantee for Successive Elimination) In the bandit, marked-
bandit, and semi-bandit settings, the following is true for all t ∈ {0, 1, . . . } simultaneously with
probability 1− δ: Algorithm 3 never rejects i if i ≤ k and never accepts i if i > k. Furthermore, if
for a stage t and arm i ∈ Ut, the number of sample T (t) := 2t satisfies

T (t) ≥ Tn,δ(τi,t) := τi,t log

(
24n

δ
log

(
12nτi,t
δ

))
(28)

where

τi,t :=
56

∆i,t
+

256 max{Vi,t, Vi,ci,t}
∆2
i,t

(29)

then by the end of stage t, i is accepted if i ≤ k and rejected if i > k + 1.

Remark B.3 The above theorem holds quite generally, and its proof abstracts out most details of
best-of-k observation model. In fact, it only requires that (1) for each i ∈ Ut, µ̂i,t ∼ 1

T (t)Binomial(µ̄i,t, T (t))
and (2) µ̄i,t > µ̄j,t ⇐⇒ µi > µj . In our three settings of interest, both conditions are ensured by
Lemma B.2. It also holds in the semi-bandit setting when the arms have arbitrary distributions, as
long as the rewards are bounded in [0, 1].

The final lemma captures the fact that each call to UniformPlay often makes fewer than |Ut|
queries to pull each arm in Ut:

Lemma B.4 Suppose that, at round t, each call of uniformly play queries no more than α|Ut|/k
times when |Ut| ≥ k, and no more than α samples when |Ut| ≤ k. Let t∗i be the first stage at which
i /∈ Ut. Then, Algorithm 3 makes no more than the following number of queries

4αT (t∗σ(1)) +
2α

k

n∑
i=k+1

T (t∗σ(i)) (30)

where σ is permutation chosen so that t∗σ(1) ≥ t
∗
σ(2) ≥ · · · ≥ t

∗
σ(n), and T (t) = 2t, as above.

Remark B.4 In the marked-bandit and semi-bandit settings, it is straightforward to verify that
one can take α = 2 in the above lemma. This is because Algorithm 3 always calls UniformPlay
(Line 8) on U ′t = Ut (Algorithm 4). Then, UniformPlay (Algorithm 8) partitions Ut into at most
d|Ut|/k(1)e queries S+

q . Recall that k(1) = min{|Ut|, k} (Algorithm 3, Line 3) so that d|Ut|/k(1)e ≤
d|Ut|/ke ≤ 2|Ut| when |Ut| ≥ k, while |Ut|/k(1) = 1 ≤ 2|Ut| once |Ut| < k. Controlling bound
on α is slightly more involved in the bandit setting, and is addressed in Claim B.6.

B.3. Specializing the Results

In the following sections, we again condition on the data Dt := (Ut, At, Rt, U
′
t , R

′
t). We proceed

to compute the stage-wise means µ̄i,t, variances Vi,t, and time parameters τi,t in Lemma B.3. As a
warm up, let’s handle the semi-bandit case:
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B.3.1. SEMI-BANDITS

In Semi-Bandits, µ̄i,t = µi, and so

τi,t = τi =
256 max{Vi, Vci,t}

∆2
i

+
56

∆i
(31)

as in Theorem 3.1. Noting that ci,t > k if i ≤ k, while ci,t ≤ k if i > k, we can bound

Vci,t ≤

{
maxj>k Vj i ≤ k
maxj≤k Vj i > k

(32)

Plugging the above display into Equation 31, we see that τi,t ≤ τi, as defined in Theorem 3.1.
Combining this observation with Lemmas B.3 and B.4 and Remark B.4 concludes the proof of
Theorem 3.1. Note that we pick up an extra factor of two, since we might end up collected at most
2Tn,δ(τi) samples before either accepting, or rejected, an arm i.

B.3.2. MARKED BANDIT

In marked bandits, the limited feedback induces an “information-sharing” phenomenon between
entries in the same pull. We can now define the information sharing term as:

HM
i,j,t = Et

[
1

1 +
∑

`∈S∪S+−{i,j} I(X` = 1)

∣∣i ∈ S] (33)

where again S+ has the distribution as S+ in Algorithm 2, and the operator Et treats the data in Dt
as deterministic. The following remark explains the intuition behind HM

i,j,t.

Remark B.5 When we query a set S ∪ S+, marked bandit feedback uniformly selects one arm in
{` ∈ S ∪ S+ : X` = 1} if its non-empty and selects no arms otherwise. Hence, the probability of
receiving the feedback that Xi = 1 given that i ∈ S and Xi = 1 is

Et

[
1

1 +
∑

`∈S∪S+−{i} I(X` = 1)

∣∣i ∈ S] (34)

The above display captures how often the observation Xi = 1 is “suppressed” by another arm in
the pull. In contrast, HM

i,j,t is precisely the probability of receiving feedback that Xi = 1, given that
Xi = 1 and i ∈ S, but under a slightly different observation model where arm j is never marked,
and instead we observe a marking uniformly from {` ∈ S ∪ S+ − {j} : X` = 1}. Hence, we can
think of HM

i,j,t as capturing how often arms other than j prevent us from observing Xi = 1. Note
that the smaller HM

i,j,t, the more the information about Xi is suppressed.

We also remark on the scaling of HM
i,j,t:

Remark B.6 Given i ∈ S, |S ∪ S+ − {i, j}| ≤ k − 1, and thus HM
i,j,t ≥ 1/k. When the means

are all high, its likely that Ω(k) arms ` in a query will have X` = 1, and so we should expect that
HM
i,j,t = O(1/k). When the means are small, say O(1/k), then Hm

i,j,t can be as large as Ω(1). This
is because if we observe that Xi = 1 from a query S ∪ S+, then its very likely that Xi = 1 in
only a constant fraction of them. Stated otherwise: if the means are small, then seeing just one arm
uniformly for which Xi = 1 as about as informative as seeing all the values of all the arms at once.
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With this definition in place, we have

Proposition B.5

µ̄i,t − µ̄j,t = (µi − µj)HM
i,j,t and Vi,t ≤ µiHM

i,j,t (35)

As a consequence, we have

τi,t ≤
1

HM
i,ci,t,t

(
256 max{µi, µci,t}

∆2
i

+
56

∆i

)
≤ τMi
HM
i,ci,t,t

(36)

where τMi is as in Equation 12.

Remark B.7 In the above proposition, the variance term Vi,t has a factor HM
i,j,t, which cancels

out one of the HM
i,j,t terms from the gap ∆2

i,t. If we did not take advantage of a variance-adaptive
confidence interval, our sample complexity would have to pay a factor of (HM

i,j,t)
−2 instead of just

(HM
i,j,t)

−1.

It is straightforward to give a worst case lower bound on HM
i,j,t:

HM
i,j,t ≥ HM := EX1,...,Xk−1

[
1

1 +
∑

`∈[k−1] I(X`)

]
(37)

As in the semi-bandit case, we can prove the first part Theorem 3.2 by stringing together Lem-
mas B.3 and B.4 and Remark B.4, using Proposition B.5 to control τi,t, and Equation 37 to give a
worst case bound on the information sharing term. The argument for improving the sample com-
plexity when we can pull fewer than k arms per query (Equation 14 in Theorem 3.2) is a bit more
delicate, and is deferred to section C.2.1.

B.3.3. BANDIT SETTING

Fix i, j ∈ U ′t . When UniformPlay pulls both i and j in the same query, we receive no relative
information about Xi versus Xj . Moreover, when another arm X` for ` ∈ S ∪ S+ − {i} takes a
value 1 (now assuming j /∈ S ∪ S+), it masks all information about Xi. Hence the analogue of the
information sharing term HM

i,j,t is the product HB
i,j,t · κ1, where

HB
i,j,t := P·|t

[
{X` = 0 : ∀` ∈ S ∪ S+ − {i}}

∣∣i ∈ S, j /∈ S] and

κ1 := P·|t
[
j /∈ S ∪ S+

∣∣i ∈ S] = P·|t
[
j /∈ S

∣∣i ∈ S] (38)

We defer the interested reader to the proof of Lemma C.1 in the appendix, which transparently
derives the dependence on HB

i,j,t · κ1. We also show that, due the uniformity of the distribution of
S, κ1 does not depend on the particular indices i and j.

Remark B.8 As in the Marked Bandit setting, we use a variance-adaptive confidence interval to
cancel out one factor of κ1H

B
i,j,t. This turns out to incur a dependence on a parameter κ2 - defined

precisely in Section C.3 - which roughly corresponds to the inverse of the fraction of arms in U ′t
whose means do not lie in the top k + 1.
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The balancing set B is chosen precisely to control κ1 and κ2 It ensures that arms i, j ∈ Ut do
not co-occur in the same query with constant probability (thus bounding κ1 below) and that each
draw of S ∼ Unif[U ′t , k

(1)] contains a good fraction of small mean arms as well (thus bounding κ2

above). The following claim makes this precise:

Claim B.6 Let κ1 = P·|t
[
j ∈ S

∣∣i ∈ S] and κ2 be as in Section C.3, Equation 58. Then choice of

|B| = max{0, d5k
(1)

2
− |U | − 1

2
e} (39)

be as in Algorithm 4 ensures that κ1 ≥ 1/2, κ2 ≤ 2, and |U ′| ≤ 5
2 |U |. Moreover, as long as

n ≥ 7k
2 , Algorithm 4 can always sample B from the reject set R.

Remark B.9 (Conditions on n) The condition n ≥ 7k/2 ensures that the balancing set B is large
enough to bound both κ1 and κ2. If we omit the balancing set, our algorithm can then identify the
top k means for any n ≥ k, albeit with worse sample complexity guarantees.

Proposition B.7 (Characterization of the Gaps) For all i, ∆i,t ≥ ∆iH
B
i,ci,t,t

and

max{Vi,t, Vci,t}
∆2
i,t

≤ (1 + 2κ2)
max{(1− µi)µ̄i,t, (1− µci,t,t)µ̄ci,t,t}

∆i ∆i,t

≤ 1 + 2κ2

κ1HB
i,ci,t,t

· 1

∆2
i

{
2(1− µk+1)µi + (1− µk+1)2(1−HB

i,ci,t,t
) i ≤ k

2(1− µi)µk+1 + (1− µi)2(1−HB
i,ci,t,t

) i > k

(40)

where κ1 and κ2 are as in Claim B.6.

Remark B.10 Again, the variance-adaptivity of our confidence interval reduces our dependence
on information-sharing from (HB

i,j,t)
−2 to (HB

i,j,t)
−1.

Plugging in κ1 and κ2 as bounded by Claim B.6,

τi,t ≤
56

∆iHB
i,ci,t,t

+
2560

HB
i,ci,t,t

· 1

∆2
i

{
2(1− µk+1)µi + (1− µk+1)2(1−HB

i,ci,t,t
) i ≤ k

2(1− µi)µk+1 + (1− µi)2(1−HB
i,ci,t,t

) i > k
(41)

We can wrap up the proof by a straightforward lower bound on HB
i,j,t:

HB
i,j,t ≥ HB :=

∏
`∈[k−1]

(1− µ`) (42)

and by invoking Claim B.6 to apply Lemma B.3 with α = 5/2 as long as n ≥ 7k/2.

Remark B.11 (Conditions on µi) The condition µi < 1 ensures identifiability, since the top k
arms would be indistinguishable from any subset of k arms which contains a arm i for which µi = 1.
More quantitatively, this condition ensures that the information sharing term is nonzero.
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Remark B.12 (Looseness of Equation 42) When all the means µ1, . . . , µn are roughly on the
same order, the worst case bound on HB

i,j,t in Equation 42 is tight up to constants. Then, as re-
marked 3.1, there is never an advantage to looking at k-arms at a time and receiving their max
over testing each arm individually. On the other hand, if the means vary widely in their magnitude,
then there may very well be an advantage to querying k arms at a time.

For example, suppose there are k high means µ1, . . . , µk ≥ 1/2, and the remaining n − k
means are order 1/k, and n � k2. Then, in the early rounds (|Ut| � k2), a random pull of S
will contain at most a constant number of means from with top k with constant probability, and so
HB
i,j,t = Ω((1 − O(1/k))k) = Ω(1). From Lemma C.1, we see empirical means µ̂i,t of the high

meaned arms will be Ω(1) variance. Thus, for early stages t, τi,t = O(1/∆2
i ). That is, we neither

pay the penalty for a small information sharing term that we pay when the means are uniformly
high, nor pay a factor of k in the variance which would occur when the means are small. However,
we still get to test k arms a time, and hence querying k arms at a time is roughly k times as effective
as pulling 1.

Appendix C. Computing τi,t with (Marked-)Bandit Feedback

C.1. Preliminaries

We need to describe the distribution of two random subsets related to S. Again, taking the data Dt
as given, define the sets S−i∨j and S−i∧j as follows

S−i∧j ∼ Unif[U ′t − {i, j}, k(1) − 2] and S−i∨j ∼ Unif[U ′t − {i, j}, k(1) − 1]] (43)

S−i∧j (read: “S minus i and j”) has the same distribution as S−{i, j} given that both i and j are in
S. Similarly, S−i∨j (read: “S minus i or j”) has the same distribution as S − {i, j} given that either
i or j are in S, but not both. Equivalently, it has the same distribution as S − {i}

∣∣i ∈ S, j /∈ S, and
symmetrically, as S − {j}

∣∣j ∈ S, i /∈ S. We will also define the constant

κ1 := Pt(j /∈ S
∣∣i ∈ S) = 1− k(1) − 1

|U ′t | − 1
(44)

Note that the definition of κ1 is independent of i and j, is deterministic given the data Dt, and is
well defined since Algorithm 3 always ensures |U ′t | > 13.

C.2. Marked Bandits

In marked bandits, Ut = U ′t . Recall the definition

HM
i,j,t = E·|t

[
1

1 +
∑

`∈S∪S+−{i,j} I(X` = 1)

∣∣i ∈ S] (45)

By splitting up into the case when j /∈ S
∣∣i ∈ S and j ∈ S

∣∣i ∈ S, we can also express

HM
i,j,t = κ1E·|t

[
1

1 +
∑

`∈S−i∨j∪S+ I(X` = 1)

]

+ (1− κ1)E·|t

[
1

1 +
∑

`∈S−i∧j∪S+ I(X` = 1)

] (46)

3. the undecided set, and its modification, always contain at least two elements
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Note that S−i∨j is well defined except when |Ut−{i, j}| = |Ut| − 2 < k(1)− 1. Since |Ut| ≥ k(1),
this issue only occurs if |Ut| = k(1)−1, and thus κ(1) = 0. To make our notation more compact, we
let |S′|W =

∑
`∈S′ I(X` = 1) (think “cardinality of winners”). In this notation, the above display

takes the form:

HM
i,j,t = κ1E·|t

[(
1 +

∣∣S−i∨j ∪ S+
∣∣
W
)−1
]

+ (1− κ1)E·|t
[(

1 +
∣∣S−i∧j ∪ S+

∣∣
W
)−1
]

(47)

Proof [Proof of Proposition B.5] Our goal is to bound µ̄i,t − µ̄j,t.
By the law of total probability and the definition of κ1, we have

µ̄i,t = µiE·|t
[
(1 + |S − {i}|W)−1

∣∣i ∈ S]
= µiP·|t

[
j /∈ St

∣∣i ∈ S]E·|t [(1 +
∣∣S−i∨j ∪ S+

∣∣
W
)−1
]

+ µiP·|t
[
j ∈ S

∣∣i ∈ S]E·|t [(1 +
∣∣{j} ∪ S+ ∪ S−i∧j

∣∣
W
)−1
]

= µiκ1E·|t
[(

1 +
∣∣S+ ∪ S−i∨j

∣∣
W
)−1
]

+ µi(1− κ1)E·|t
[(

1 +
∣∣{j} ∪ S+ ∪ S−i∧j

∣∣
W
)−1
]

(48)
By conditioning on the events when arm j takes the values of 1 or zero, respectively, we can de-
compose E[(1 + |{j} ∪ S−i∧j |W)−1] into

µjE·|t
[
(2 +

∣∣S+ ∪ S−i∧j
∣∣
W)−1

]
+ (1− µj)E·|t

[
(1 +

∣∣S+ ∪ S−i∧j
∣∣
W)−1

]
(49)

Substituting into the previous display and rearranging yields

µ̄i,t = µiH
M
i,j,t + µiµj(1− κ1)E·|t

[(
2 +

∣∣S+ ∪ S−i∧j
∣∣
W
)−1 −

(
1 +

∣∣S+ ∪ S−i∧j
∣∣
W
)]

Hence, we conclude

µ̄i,t − µ̄j,t = (µi − µj)HM
i,j,t (50)

To control Vi,t, we have 1− µi,t ≤ 1, and

µ̄i,t = µiκ1E
[(

1 +
∣∣S+ ∪ S−i∨j

∣∣
W
)−1
]

+ µi(1− κ1)E
[(

1 +
∣∣{j} ∪ S+ ∪ S−i∧j

∣∣
W
)−1
]

≤ µiκ1E
[(

1 +
∣∣S+ ∪ S−i∨j

∣∣
W
)−1
]

+ µi(1− κ1)E
[(

1 +
∣∣S+ ∪ S−i∧j

∣∣
W
)−1
]

= µiH
M
i,j,t

C.2.1. IMPROVED COMPLEXITY WITH FEWER THAN k PULLS PER QUERY

In this section, we prove the second part of Theorem 3.2, which describes the setting where we
permit fewer than k pulls per query.
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Proof [Proof of Second Part of Theorem 3.2] We mirror the proof of Lemma B.4 in Section D.3,
and adopt its notation where t∗i be the first stage at which i /∈ Ut, let t0 be the first stage for which
|Ut| < k. The same argument from Lemma B.4 show that

2α

k

n∑
i=1

T (t∗i ) +
∑
t>t0

I(|Ut| > 0)T (t) (51)

If tfin is the last stage of the algorithm for which |Ut| > 0, then the doubling nature of the sample
size lets us bound ∑

t>t0

I(|Ut| > 0)T (t) ≤ 2T (tfin) (52)

and clearly tfin = min{t∗i : i ∈ Utfin}. We now bound τMi,j,tfin for i ∈ Utfin and any j ∈ Utfin .
Indeed, recall that

HM
i,j,t = κ1E·|t

[(
1 +

∣∣S−i∨j ∪ S+
∣∣
W
)−1
]

+ (1− κ1)E·|t
[(

1 +
∣∣S−i∧j ∪ S+

∣∣
W
)−1
]

(53)

When we are allowed to pull fewer than k arms at once, then the “Top-Off Set” S+ is empty
(Algorithm 3, Line 3), and so the above is bounded above by max{|S−i∨j |, |S−i∧j |} ≤ |Ut| − 1.
Thus, we can easily bound HM

i,j,t ≥ 1
|Ut| . In particular, this bound holds when j = ci,t. Hence,

τi,ci,t,tfin =
τi

Hi,ci,t,tfin

≤ |Utfin | · τi (54)

Recalling that Tn,δ(τ) is monotone, and applying the easy to verify identity that

Tn,δ(τ · k′) ≤ 2k′Tn,δ(τ) (55)

for all k′ ≤ n, we have that for all i ∈ Utfin that

T (t∗i ) ≤ 2Tn,δ(τi,j,tfin) ≤ 2Tn,δ(τi|Utfin |) ≤ 4|Utfin |Tn,δ(τi) (56)

If σ is a permutation such that τσ(1) ≥ τσ(2) ≥ · · · ≥ τσ(n), then for i ∈ Utfin , τi ≤ τσ(|Utfin |).
Hence, taking the worst case over |Utfin |, we have∑

t>t0

I(|Ut| > 0)T (t) ≤ 2T (tfin) ≤ 8|Utfin |T (τσ(|Utfin |)) ≤ 8 max
i∈[k−1]

iT (τσ(i)) (57)

C.3. Bandits

In this section, we drop the dependence on t from the sets Ut, At, Rt, U ′t , R
′
t, and let B be the

“balancing set” from Algorithm 4; thus, U ′ = U ∪ B, A′ = A − B, and R′ = R − B. Let
κ1 = 1− k(1)−1

|U ′|−1 be as in Equation 44, and let

κ2 :=
k(1) − 1

|U ′| − 2k(1)
(58)

26



BEST-OF-K BANDITS

Finally, introduce the loss function L : 2[n] → {0, 1} by L(S′) = I(∀` ∈ S′ : X` = 0). Note
E[L({`})] = 1 − µ`, and if two sets S′, S′′ ⊂ [n] are disjoint, then L(S′ ∪ S′′) = L(S′) · L(S′′).
Moreover, if S′ and S′′ are almost-surely disjoint, random subset of [n] which are independent given
the data in Dt, then EtL(S′ ∪ S′′) = EtL(S′) · EtL(S′′). Hence, the information sharing term can
be expressed as

HB
i,j,t := E·|t

[
L(S−i∨j ∪ S+)

]
= E·|t [L(S−i∨j)] · E·|t

[
L(S+)

]
(59)

and note that this term is nonzero as long as all the means are less than 1, since with nonzero
probability, any query of a nonempty set has a nonzero probability of all its arms taking the value
zero. The following lemma gives an expression of (1− µ̄i,t) in terms of κ1, µi, HB

i,j,t, and an error
term:

Lemma C.1 (Computation of µ̄i,t) For any i 6= j ∈ U ′, we have that

1− µ̄i,t = (1− µi)κ1H
B
i,j,t · (1 + (1− µj) Erri,j,t) (60)

where the term

Erri,j,t :=
1− κ1

κ1
·
E·|t [L(S−i∧j)]

E·|t [L[S−i∨j ]
=

k(1) − 1

|U ′| − k(1)
·
E·|t [L(S−i∧j)]

E·|t [L[S−i∨j ]
(61)

is symmetric in i and j.

Proof Using the independence of the arms, we have

1− µ̄i,t = E·|t
[
L(S ∪ S+)

∣∣i ∈ S] = (1− µi)E·|t
[
L(S − {i})

∣∣i ∈ S]E·|t [L(S+)
]

For i 6= j ∈ U ′, we have

E·|t
[
L(S − {i})

∣∣i ∈ S] = κ1E·|t
[
L(S − {i})

∣∣i ∈ S, j /∈ S]+ (1− κ1)E·|t
[
L(S − {i})

∣∣i ∈ S, j ∈ S]
= κ1E·|t [L(S−i∨j)] + (1− κ1)E[L({j} ∪ S−i∧j ]
= κ1E·|t [L(S−i∨j)] + (1− κ1)(1− µj)E[L(S−i∧j)]

= κ1E·|t [L(S−i∨j)]

(
1 + (1− µj)

1− κ1

κ1
·
E·|t [L(S−i∧j)]

E·|t [L(S−i∨j)]

)
The result now follows from plugging in the above display into the first one, and using the definition
of κ1.

Since both HB
i,j,t and Erri,j,t are symmetric in i and j, we get an exact expression for the gaps.

Corollary C.2 (Bandit Gaps)

µ̄i,t − µ̄j,t = κ1Hi,j,t · (µi − µj) (62)

In particular, µ̄i,t > µ̄j,t if and only if µi > µj , and

∆i,t = κ1Hi,ci,t,t ·
∣∣µi − µci,t∣∣ (63)
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To get an expression for τi,t, as defined in Lemma B.3, we need to get an expression for the

ration of the variance to the gap-squared,
max{Vi,t,Vci,t}

∆2
i,t

. We decompose Vi,t = (1 − µ̄i,t)µ̄i,t, and

similarly for ci,t, and begin by bounding (1− µ̄i,t)/∆i,t and (1− µ̄ci,t,t)/∆i,t:

Lemma C.3

1− µ̄i,t
∆i,t

≤ (1 + 2κ2)(1− µi)
∆i

and
1− µ̄ci,t,t

∆i,t
≤

(1 + 2κ2)(1− µci,t)
∆i

(64)

This result uses 1 − µ̄i,t to kill off one factor of κ1H
B
i,j,t from the stagewise gaps ∆i,t, so that our

final expression τi,t depends on the inverse information sharing term, and not its square. The proof
of the above lemma is somewhat delicate, and we defer it to the end of this section. Next, we need
an upper bound on µ̄i,t. Clearly, we can upper bound this quantity by 1, but this can be loose when
the means are small, and so we introduce the following lemma

Lemma C.4

max{(1− µi)µ̄i,t, (1− µci,t)µ̄ci,t,t}
∆i,t

(65)

≤ 1

κ1∆iHB
i,ci,t,t

{
2(1− µk+1)µi + (1− µk+1)2(1−HB

i,ci,t,t
) i ≤ k

2(1− µi)µk+1 + (1− µi)2(1−HB
i,ci,t,t

) i > k
(66)

Combining Corollary C.2, Lemma C.3 and C.4, establishes Proposition B.7

C.3.1. PROOF OF LEMMA C.4

We start out with a simple upper bound on µ̄i and µ̄ci,t :

Lemma C.5

µ̄i,t ≤ µi + µci,t + (1− µi)(1−HB
i,ci,t,t) (67)

and similarly when we swap i and ci,t

Proof [Proof of Lemma C.5] Let c = ci,t. For S′ ∈ 2[n], define the “win” function W(S′) :
1 − L(S′) which takes a value of 1 if ∃` ∈ S′ : X` = 1. By a union bound, E[W(S′ ∪ S′′)] ≤
E[W(S′)] + E[W(S′′)], even when S′ and S′′ are dependent. Hence,

µ̄i,t = E·|t
[
W(S ∪ S̃)

∣∣i ∈ S] (68)

= E·|t
[
I(Xi = 1)W(S ∪ S̃)

∣∣i ∈ S]+ E·|t
[
I(Xi 6= 1)W(S ∪ S̃)

∣∣i ∈ S] (69)

≤ µi + (1− µi)E·|t
[
W(S − {i} ∪ S̃)

∣∣i ∈ S] (70)

Now, using the union bound property ofW , we have

E·|t
[
W(S − {i} ∪ S̃)

∣∣i ∈ S] ≤ µc + E·|t
[
W(S − {i} − {c} ∪ S̃)

∣∣i ∈ S] (71)
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Finally, by decomposing into the cases when c ∈ S and c /∈ S, we

E·|t
[
W(S − {i} − {c} ∪ S̃)

∣∣i ∈ S] = κ1EtW(S−i∨c) + (1− κ1)E·|t [S−i∧c] (72)

Observe that S−i∧c ∼ Unif[U ′, k(1)−2], whereas S−i∨c ∼ Unif[U ′, k(1)−1]; consequently, playing
S−i∨c has a greater chance of yielding a win than S−i∧c. Thus, we can bound

E·|t
[
W(S − {i} − {c} ∪ S̃)

∣∣i ∈ S] ≤ E·|t [W(S−i∨j)] = 1−HB
i,c,t (73)

Now, Lemma C.4 follows from the following claim, together with the expression for the gap
∆i,t from Corollary C.2:

Claim C.6

max{(1− µi)(µi + µci,t), (1− µci,t)(µi + µci,t)}
|µi − µci,t |

≤ 2

∆i
·

{
(1− µk+1)µi i ≤ k
(1− µi)µk i > k

(74)

and

max{(1− µi)2, (1− µci,t)2}
|µi − µci,t |

≤ 1

∆i

{
(1− µk+1)2 i ≤ k
(1− µi)2 i > k

(75)

Proof Suppose first that i > k, so that (1−µci,t)(µi+µci,t) ≤ (1−µi)(µi+µci,t) ≤ 2(1−µi)µci,t .
Then,

2(1− µi)µci,t
|µci,t − µi|

=
2(1− µi)µci,t
µci,t − µi

(76)

=
2(1− µi)

1− µi/µci,t
(77)

≤ 2(1− µi)
1− µi/µk

(78)

≤ 2(1− µi)µk
µk − µi

(79)

≤ 2(1− µi)µk
∆i

(80)

The rest follows from similar arguments.

C.3.2. PROOF OF LEMMA C.3

Lemma C.3 follows from the expression for the gaps in Corollary C.2, and the following technical
lemma:
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Lemma C.7 Fix i ∈ U ′, and let c ∈ U ′ ∩ [k] if i > k and c ∈ U ′ − [k]. Then,

1− µ̄i,t
|µi − µc|

≤ 1− µi
∆i

· κ1(1 + 2κ2)Hi,j,c (81)

and

1− µ̄c,t
|µi − µc|

≤ 1− µc
∆i

· κ1(1 + 2κ2)Hi,j,c (82)

Proof By Lemma C.1,

1− µ̄i,t = (1− µi)κ1Hi,c,t (1 + (1− µc)Erri,c,t) . (83)

The following lemma, proved later, controls the term on Erri,c,t.

Lemma C.8 Suppose that j ∈ [k + 1] , and that the balancing set B satisfies B ∩ [k] = ∅. Then,
for any i 6= c ∈ U (where possibly j 6= c), we have

(1− µj)Erri,c,t ≤ κ2. (84)

When i > k, c ∈ [k] and 1− µ̄c,t ≤ 1− µ̄i,t so that

1− µ̄c,t
|µ̄i,t − µ̄c,t|

≤ 1− µ̄i,t
|µ̄i,t − µ̄c,t|

(85)

≤ (1− µi)κ1Hi,c,t(1 + κ2)

|µ̄i,t − µ̄c,t|
(86)

≤ (1− µi)(1 + κ2)

|µi − µc|
(87)

≤ (1− µi)(1 + κ2)

∆i
(88)

where (86) follows from combining (83) and Lemma C.8, (87) follows from Corollary C.2, and (88)
holds by |µi − µc| ≥ max{∆i,∆c}. Moreover, swapping the roles of c and i, we have that when
i ≤ k,

1− µ̄c,t
|µ̄i,t − µ̄c,t|

≤ (1− µc)κ1Hi,c,t(1 + κ2)

|µ̄i,t − µ̄c,t|
(89)

≤ (1− µc)(1 + κ2)

∆i
. (90)

The final case we need to deal with is the computation of 1−µ̄i,t
|µ̄i,t−µ̄c,t| when i ≤ k. The problem is

that it might be the case that c > k + 1, impeding the application of Lemma C.8. We get around
this issue by breaking up into cases:

(1) If 1 − µc and 1 − µi are on the same order, we are not in so much trouble. Indeed, if
1− µc ≤ 2(1− µi), then, we have

1− µ̄i,t = (1− µi)Hi,c,t (1 + (1− µc)Erri,c,t)

≤ (1− µi)Hi,c,t (1 + 2(1− µk+1)Erri,c,t)

≤ (1− µi)Hi,c,t (1 + 2κ2)
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where the last step follows from applying Lemma C.8 with j = k + 1.
(2) What happens when 1− µc > 2(1− µi)? Then we have

(µi − µc)−1(1− µc) =
1− µc

∆i
· ∆i

µi − µc

=
1− µk+1

∆i
· ∆i

µi − µc
· 1− µc

1− µk+1

More suggestively, we can write the above as

1− µk+1

∆i
· (1− µk+1)− (1− µi)

(1− µc)− (1− µi)
· 1− µc

1− µk+1
(91)

As soon as (1− µc) > 2(1− µi), Equation 91 is bounded by

(µi − µc)−1(1− µc) =
1− µk+1

∆i
· (1− µk+1)− (1− µi)

1
2(1− µc)

· 1− µc
1− µk+1

=
2((1− µk+1)− (1− µi))

∆i

≤ 2
1− µk+1

∆i

Hence,
1

µi − µc
·Hi,c,t (1 + (1− µc)Erri,c,t) =

Hi,c,t

µi − µc
+

1− µc
µi − µc

· Erri,c,tHi,c,t

≤ Hi,c,t

∆i
+

2Hi,c,t

∆i
((1− µk+1)Erri,c,t)

=
Hi,c,t

∆i
(1 + 2(1− µk+1)Erri,c,t)

≤ Hi,c,t

∆i
(1 + 2κ2)

where the last line follows from Lemma C.8 with j = k + 1.

Proof [Proof of Lemma C.8]
S−i∨c has the same distribution S−i∧c ∪ y, where y ∼ Unif[U ′ − S−i∧c − {i, c}, 1]. If Y ∼

Bernoulli(µy) then

E·|t [L(S−i∨c)] = E(1− Y )L(S−i∧c) = E·|t
[
E·|t

[
1− Y

∣∣S−i∧c] · L(S−i∧c)
]

(92)

Since j ∈ [k + 1], µj ≥ µ` for all ` /∈ [k], and thus (1 − µ`) ≥ (1 − µj) for all ` /∈ [k]. It thus
follows that

E·|t
[
1− Y

∣∣S−i∧c] =
1

|U ′ − {i, c} − S−i∧c|
∑

`∈U ′−{i,c}−S−i∧c

(1− µ`)

≥ 1

|U ′ − {i, c} − S−i∧c|
∑

`∈U ′−{i,c}−S−i∧c−[k]

(1− µ`)

≥ 1

|U ′ − {i, c} − S−i∧c|
∑

`∈U ′−{i,c}−S−i∧c−[k]

(1− µj)

=
|U ′ − {i, c} − S−i∧c − [k]|
|U ′ − {i, c} − S−i∧c|

(1− µj)
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If r ∈ [k] ∩ U ′ = U ∪ B, then we must have r ∈ U , since B ∩ [k] = ∅ by assumption. This
implies that |U ′ −{i, c}− S−i∧c − [k]| ≥ |U ′ −{i, c}− S−i∧c| −min{k, |U |}. Using the fact that
|U ′ − {i, c} − S−i∧c| = |U ′| − k(1), and that k(1) = min{k, |U |}, we conclude that

E·|t
[
1− Y

∣∣S−i∧c] ≥ (1− µj)
|U ′| − k(1) −min{k, |U |}

|U ′| − k(1)
(93)

= (1− µj)
|U ′| − 2k(1)

|U ′| − k(1)
(94)

Thus, this entails that E[L(S−i∨c)] ≥ (1− µj) |U
′|−2k(1)

|U ′|−k(1) E[L(S−i∧c)], and hence

(1− µj)Erri,c,t =
k(1) − 1

|U ′| − k(1)
· (1− µj)EL(S−i∧c)

EL(S−i∨c)
(95)

≤ k(1) − 1

|U ′| − k(1)
· |U

′| − k(1)

|U ′| − 2k(1)
(96)

=
k(1) − 1

|U ′| − 2k(1)
:= κ2 (97)

as needed.

C.3.3. CONTROLLING κ1 AND κ2

Proof [Proof of Claim B.6] For ease of notation, drop the dependence on the round t and the
definitions κ1 = 1 − k(1)−1

|U ′|−1 and κ2 = k(1)−1
|U ′|−2k(1)

. Noting that |U ′| = |B| + |U |, we see that if
κ1 ≥ 1/2 is desired, we require that

κ1 ≥ 1/2 ⇐⇒ |U ′| − 1 ≥ 2(k(1) − 1) ⇐⇒ |B| ≥ 2k(1) − |U | − 1 (98)

Whereas

κ2 ≤ 2 ⇐⇒ 2(|U ′| − 2k(1)) ≥ k(1) − 1 ⇐⇒ |B| ≥ 5

2
k(1) − |U | − 1

2
(99)

Hence κ ≤ 2 =⇒ κ1 ≤ 1/2, and the above display makes it clear that the choice of B in
Algorithm 4 ensures that this holds. To verify the second condition, note that when |B| = 0, then
|U ′| = |U |. When |B| > 0, we have

|B| = d5k
(1)

2
− |U | − 1

2
e ≤ 5k(1)

2
− |U | (100)

so that |U ′| = |U |+ |B| ≤ 5
2 min{|U |, k}. Finally, in order to always sample a balance set B ⊆ R,

we need to ensure that at each round, |R| ≥ |B|. Again, we may assume that |B| > 0, so that
|U | + |B| ≤ 5k

2 . Using the facts that |R| + |A| + |U | = n (every item is rejected, accepted, and
undecided) and |A| ≤ k − 1 (k accepts ends the algorithm), we have |R| ≥ n − |U | − (k − 1) ≥
n− |U | − (k − 1). But n− |U | − (k − 1) ≥ |B| ⇐⇒ n ≥ (k − 1) + |U ′| ≥ 7k

2 , as needed.
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Appendix D. Concentration Proofs for Section B.2

D.1. An Empirical Bernstein

The key technical ingredient is an empirical version of Bernstein’s inequality, which lets us build
variance-adaptive confidence intervals:

Theorem D.1 (Modification of Theorem 11 in Maurer and Pontil (2009) ) LetZ := (Z1, . . . , Zn)
be a sequence of independent random variables bounded by [0, 1]. Let Z̄n = 1

n

∑
i Zi, Z̄ :=

E[Z̄n], let Varn[Z] denote the empirical variance of Z, 1
n−1

∑n
i=1(Z2

i − Z̄2
n), and set Var[Z] :=

E[Varn[Z]]. Then, with probability 1− δ,

∣∣Z̄ − Z̄n∣∣ ≤ √
2Varn[Z] log(4/δ)

n
+

8 log(4/δ)

3(n− 1)
(101)

≤
√

2Var[Z] log(4/δ)

n
+

14 log(4/δ)

3(n− 1)
(102)

The result follows from Bernstein’s Inequality, and the following concentration result regarding
the square root of the empirical variance.

Lemma D.2 (Theorem 10 in Maurer and Pontil (2009)) In the set up of Theorem D.1,∣∣∣√E[Varn[Z]]−
√

Varn[Z]
∣∣∣ ≤√2 log(2/δ)

n− 1
(103)

hold with probability 1− δ.

Proof [Proof of Theorem D.1] The argument follows the proof of Theorem 11 in Maurer and Pontil
(2009). LetW := 1

n

∑n
i=1 Var[Zi]. It is straightforward to verify thatW ≤ E[Varn[X]], and hence

Bernstein’s inequality yields that, with probability 1− δ,∣∣∣∣∣ 1n
n∑
i=1

Zi − E[Zi]

∣∣∣∣∣ ≤
√

2W log(4/δ)

n
+

2 log(4/δ)

3n

≤
√

2E[Varn[Z]] log(4/δ)

n
+

2 log(4/δ)

3n

≤
√

2 log(4/δ)

n
·
√

Varn[Z] +
2 log(4/δ)√
n(n− 1)

+
2 log(4/δ)

3n

<

√
2Varn[Z] log(4/δ)

n
+

8 log(4/δ)

3(n− 1)

<

√
2E[Varn[Z]] log(4/δ)

n
+

14 log(4/δ)

3(n− 1)

(104)

which completes the proof.
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In our algorithm, the confidence intervals Ĉi,t depend on sample variances, and are thus random.
To insure they are bounded above, we define a confidence parameter Ci,t which depends on the true
(but unkown) stagewise variance parameter

Ci,t :=

√
2Vi,t log(8nt2/δ)

T (t)
+

14 log(8nt2/δ)

3(T (t)− 1)
(105)

We extend our Empirical Bernstein bound to a union bound over all rounds t ∈ {1, 2, . . . }, showing
that, uniformly over all rounds, Ĉi,t is a reasonable confidence interval and never exceeds Ci,t:

Lemma D.3 (Stagewise Iterated Logarithm Bound for Empirical Bernstein) Let

E := {∩∞t=1 ∩ni=1 {|µ̂i,t − µ̄i,t| ≤ Ĉi,t ≤ Ci,t}} (106)

Then P(E) ≥ 1− δ.

Proof Let Ei,t denote the event that {|µ̂i,t − µ̄i,t| ≤ Ĉi,t ≤ Ci,t}. Conditioned on any realization
of the data Dt at stage t, an application of Theorem D.1 shows that P(Ei,t

∣∣Dt) ≤ δ
2nt2

. Integrating
over all such realizations, P(Ei,t) ≤ δ

2nt2
. Finally, taking a union bound over all stages t and arms

i ∈ [n] shows that

P(E) ≤
∞∑
t=1

n∑
i=1

P(Ei,t) ≤
∞∑
t=1

n∑
i=1

δ

2nt
=
δ

2

∞∑
t=1

t−2 ≤ δ (107)

We now invert the Iterated Logarithm via

Lemma D.4 (Inversion Lemma) For any ∆ > 0 and t ≥ 2, Ci,t ≤ ∆ as long as

T ≥
(

16Vi,t
∆2

+
14

∆

)
log

(
24n

δ
log

(
12n

δ

(
16Vi,t

∆2
+

14

∆

)))
(108)

Proof It suffices to show that
√

2Vi,t log(8nt2/δ)
T (t) ≤ ∆/2 and 14 log(8nt2/δ)

3(T (t)−1) ≤ ∆/2. Since t2 =

(log2(T ))2 ≤ (log2 e log(T ))2, it suffices that

8Vi,t log(8n log2
2 e log2(T (t))/δ))

∆2T (t)
≤ 1 and

28 log(8n log2 e log2(T (t))/δ)

3∆(T (t)− 1)
≤ 1

As long as t ≥ 2, so that T (t) ≥ e, it suffices that

16Vi,t log(8n log2 e log(T (t))/δ))

∆2T (t)
≤ 1 and

14 log(8n log2 e log(T (t))/δ)

∆T (t)
≤ 1

Let α1 = 16Vi,t/∆
2, α2 = 14/∆ and β = 8n log2 e/δ < 12n/δ. Then both inequalities take the

form

αp log(β log(T ))/T ≤ 1 (109)
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where we simplify T (t) = T . Using the inversion

T ≥ α log(2β log(αβ)) =⇒ α log(β log(T ))/T ≤ 1 (110)

we obtain that it is sufficient for T ≥ (α1+α2) log(2β log(α1+α2)) ≥ maxp αp log(2β log(αpβ)),
or simply

T ≥
(

16Vi,t
∆2

+
14

∆

)
log

(
24n

δ
log

(
12n

δ

(
16Vi,t

∆2
+

14

∆

)))
(111)

D.2. Proof of Theorem B.3

We show that Theorem B.3 holds as long as the event E from Lemma D.3 holds. The definition of
E and Algorithm 3 immediately imply that no arms in [k] are rejected, and no arms in [n]− [k] are
accepted. To prove the more interesting part of the theorem, fix an index i ∈ Ut, and define

C(i) :=

{
{j ∈ Ut, j > k} i ≤ k
{j ∈ Ut, j ≤ k} i > k

(112)

Also, let ci = arg minj∈C(i) |µi − µj |. We can think of C(i) as the set of all arms competing with i
for either an accept or reject, and ci as the competitor closest i in mean. For i > k to be rejected, it is
sufficient that, for all j ∈ C(i), minj∈C(i) µ̂j,t−Ĉj,t ≥ µ̂i,t+Ĉj,t. Under E , µ̂j,t−Ĉj,t ≥ µ̄j,t−2Cj,t,
and µ̄i,t ≤ µ̄i,t + 2Ci,t, so that it is sufficient for

∀j ∈ C(i) : µ̄j,t − µ̄i,t ≥ 2(Ci,t + Cj,t) (113)

Analogously, for i ≤ k, i is accepted under E as long as ∀j ∈ C(i) : µ̄i,t − µ̄j,t ≥ 2(Ci,t + Cj,t).
Defining ∆i,j,t := |µ̄i,t − µ̄j,t|, we subsume both cases under the condition

∀j ∈ C(i) : ∆i,j,t ≥ 2(Ci,t + Cj,t) (114)

for which it is sufficient to show that

∀j ∈ C(i) : Ci,t ≤ ∆i,j,t/4 and Cj,t ≤ ∆i,j,t/4 (115)

To this end define

τ
(1)
i,j,t =

256Vi,t
∆2
i,j,t

+
56

∆i,j,t
and τ

(2)
i,j,t :=

256Vj,t
∆2
i,j,t

+
56

∆i,j,t
(116)

We now show that τi,t = maxj∈C(i) max
{
τ

(1)
i,j,t, τ

(2)
i,j,t

}
, which by Lemmas D.3 and D.4 implies that

Equation 115 will holds as long as

T ≥ τi,t log

(
24n

δ
log

(
12nτi,t
δ

))
(117)
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Now, we bound τi,t. Note that ∆i,j,t ≥ ∆i,ci,t := ∆i,t for all j ∈ C(i). This implies that
maxj∈C(i) τ

(1)
i,j,t ≤

256Vi,t
∆2
i,t

+ 56
∆i,t

. On the other hand, it holds that

max
j∈C(i)

τ
(2)
i,j,t ≤ 256 max

j∈C(i)

(
Vj,t

∆2
i,j,t

)
+

56

∆i,t
≤ 256Vci,t

∆2
i

+
56

∆i,t
(118)

where the second inequality invokes the following lemma.

Lemma D.5 For i ∈ {1, 2, 3}, Zi ∼ Bernoulli(pi), where either p1 < p2 < p3 or p3 > p2 > p1.
Then,

Var[Z2]

(E[Z1 − Z2])2
≥ Var[Z3]

(E[Z1 − Z3])2
(119)

Proof [Proof of Lemma D.5] The desired inequality and conditions are invariant under the tran-
formation pi 7→ 1 − pi for i ∈ {1, 2, 3}, so we may assume without loss of generality that.
p1 < p2 < p3 ∈ [0, 1]. Then 1 > p1/p2 > p1/p3, which implies that

1

1− p1/p2
≥ 1

1− p1/p3
=⇒ p2

p2 − p1
≥ p3

p3 − p1

=⇒ (1− p2)p2

p2 − p1
≥ (1− p3)p3

p3 − p1

=⇒ (1− p2)p2

(p2 − p1)2
≥ (1− p3)p3

(p3 − p1)2

which is precisely the desired inequality.

D.3. Proof of Lemma B.4

Let et be denote the the “efficiency”, so that, at round t, each call of uniform play for s = 1, . . . , T (t)
makes at most et|Ut| queries. Furthermore, let τ0 denote the first time such that |Ut| < k. By
assumption, we have that et ≤ α

k for 0 ≤ t < τ0, and that et|Ut| ≤ α for t ≥ t0. Finally, let
τ∗i = inf{t : i /∈ Ut}. Then, the total number of samples we collect is

∞∑
t=0

et|Ut|T (t) =

τ0−1∑
t=0

et|Ut|T (t) +

∞∑
t=τ0

et|Ut|T (t) (120)

≤ α

k

τ0−1∑
t=0

|Ut|T (t) + α

∞∑
t=τ0

I(Ut 6= ∅)T (t) (121)

The first sum can be re-arranged via

τ0−1∑
t=0

|Ut|T (t) =

τ0−1∑
t=0

(
n∑
i=1

I(i ∈ ut)

)
T (t) =

n∑
i=1

τ0+1∑
t=0

I(i ∈ Ut)T (t) (122)

≤
n∑
i=1

∞∑
t=0

I(i ∈ Ut)T (t) ≤
n∑
i=1

2τ
∗
i +1 (123)
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whereas the second sum is bounded above by
∑∞

t=τ0
I(Ut 6= ∅)T (t) ≤ 2maxj τ

∗
j +1. Hence,

∞∑
t=0

et|Ut|T (t) ≤ 2α(2maxj τ
∗
j +

1

k

n∑
i=1

2τ
∗
i ) (124)

Finally, let T ∗i := 2τ
∗
i , and let σ() : [n]→ n denote a permutation such that T ∗σ(1) ≥ T

∗
σ(2) . . . T

∗
σ(n).

Then, a straight forward manipulation of the above display yields that
∞∑
t=0

et|Ut|T (t) ≤ 2α(2T ∗σ(1) +
1

k

n∑
i=k+1

T ∗σ(i)) (125)

since 1
k

∑k
i=1 T

∗
σ(i) ≤ T

∗
σ(1).

Appendix E. Dependent Lower Bound Proof

Recall that we query subsets of S ⊂ S :=
([n]
k

)
. Let TS denote the number of times a given subset

S is queried, and note that the expected sample complexity is simply:∑
S∈S

E[TS ]

Further, let d(x, y) denote the KL-divergence between two independent, Bernoulli random vari-
ables with means x and y, respectively. We first need a technical lemma, whose proof we defer the
end of the section:

Lemma E.1 Let d(x, y) = x log(xy ) + (1− x) log(1−x
1−y ). Then

(y − x)2/2

supz∈[x,y] z(1− z)
≤ d(x, y) ≤ (y − x)2/2

x(1− x)− [(y − x)(2x− 1)]+
≤ (y − x)2/2

min{x(1− x), y(1− y)}
(126)

We break the proof up into steps. First we construct the dependent measure ν that is (k−1)-wise
independent, meaning that for any subset S ∈

([n]
k

)
, any subset of size (k − 1) of S behaves like

independent arms. The construction makes it necessary to consider each set of k individually. To
obtain the lower bounds we appeal to a change of measure argument (see Kaufmann et al. (2015) for
details) that proposes an alterantive measure ν ′ in which a different subset is best than that subset
that is best in ν, and then we calculate the number of measurements necessary to rule out ν ′. The
majority of the effort goes into 1) computing the gap between the best and all other subsets and 2)
computing the KL divergences between ν and the alterantive measures nu′ under the bandit and
semi-bandit feedback mechanisms.
Step 1: Construct ν:

Fix p ∈ [0, 1] and µ ∈ [0, 1/2]. Let X = (X1, . . . , Xn) be distributed according to ν. Define
the independent random variables Y as Bernoulli(p), Zi as Bernoulli(1/2), and Ui as Bernoulli(2µ)
for all i ∈ [n]. For i > 1 let Xi = ZiUi and let

X1 = U1Z̃1 where Z̃1 =

{
1 +⊕ki=2Zi if Y = 1

Z1 if Y = 0
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where ⊕ denotes modular-2 addition. Note that Eν [X] = µ1 since

Eν1 [X1] = 2µ
[
p Pν

(
1 +⊕ki=2Zi = 1

)
+ (1− p)1

2

]
= µ

and the calculation for E[Xi] for i > 1 are immediate by independence. Henceforth, denote S∗ =
{1, . . . , k}.
Step 2: Relevant Properties of ν:

1. Any subset of arms S which doesn’t contain all of S∗ are independent. If Y = 0 then the
claim is immediate so assume Y = 1. We may also assume that 1 ∈ S, since otherwise the
arms are independent by construction. Finally, we remark that even when 1 ∈ S and Y = 1,
all arms in S are conditionally independent given {Zi : i ∈ S ∩ S∗}. Thus, it suffices to
verify that {Zi : i ∈ S ∩ S∗ − 1} ∪ {Z̃1} have a product distribution. To see this, note that
{Zi : i ∈ S ∩ S∗ − 1} is a product distribution, so it suffices to show that Z̃1 is independent
of {Zi : i ∈ S ∩ S∗ − 1}. Write Z̃1 = 1 + ⊕i∈S∗\1Zi = 1 ⊕i∈S∗∩S Zi ⊕i∈S∗\S Zi.
The sum over Zi not in S∗, ⊕i∈S∗\SZi, is Bernoulli(1/2), and independent of all the Zi for
which i ∈ S∗ ∩ S. Thus, conditioned on any realization of {Zi : i ∈ S ∩ S∗}, Z̃1 is still
Bernoulli(1/2), as needed.

2. The distribution of ν is invariant under relabeling of arms in S∗, and under relabeling of arms
[n] \ S∗. The second part of the statement is clear. Moreover, since the arms in [n] \ S∗ are
independent of those S∗, it suffices to show that the distribution of arms in S∗ are invariant
under relabeling. Using the same arguments as above, we may reduce to the case where
Y = 1, and only verify that the distribution of {Z̃1} ∪ {Zi : i ∈ S∗ − 1} is invariant under
relabeling.

To more easily facilliate relabeling, we adjust our notation and set Z̃i = Zi for i ∈ S∗ \ 1
(recall again that Y = 1, so there should be no ambiguity). Identify S∗ ≡ [k], fix t ∈ {0, 1}k,
and consider any permutation π : [k]→ [k]. We have

P((Z̃π(1), . . . , Z̃π(k)) = t)

= P((Z̃π(1) = t1
∣∣Z̃π(2), . . . , Z̃π(k)) = t2, . . . , tk)) · P(Z̃π(2), . . . , Z̃π(k)) = t2, . . . , tk)

Using our adjusted notation, the relation between between Z̃i’s becomes Z̃1 = 1⊕i∈S∗−1 Z̃i.
This constraint is deterministic (again, Y = 1) and can be rewritten as ⊕i∈S∗Z̃ = 1, which
is invariant under-relabeling. Hence, P(Z̃π(1) = t1

∣∣(Z̃π(2), . . . , Z̃π(k)) = (t2, . . . , tk)) =

I(⊕ki=1ti = 1). Moreover, we demonstrated above that, for any set S not containing S∗, {Zi :

i ∈ S∩S∗−1}∪{Z̃1} have a product distribution of k−1 Bernoulli(1/2) random variables. In
our adjusted notation, this entails that P((Z̃π(2), . . . , Z̃π(k)) = t2, . . . , tk) = 2−(k−1). Putting
things together, we see that

P((Z̃π(1), . . . , Z̃π(k)) = t) = 2−(k−1)I(⊕iti = 1) (127)

which does not dependent on the permutation π.

Step 3: Computation of the Gap under ν

38



BEST-OF-K BANDITS

Note that if S 6= S∗ then

Eν [max
i∈S

Xi] = Eν [max
i∈S

ZiUi] = P (∪i∈S{Zi = 1, Ui = 1}) = 1− Pν(∩i∈S{Zi = 1, Ui = 1}c)

= 1−
∏
i∈S

Pν({Zi = 1, Ui = 1}c) = 1−
∏
i∈S

(1− Pν(Zi = 1, Ui = 1))

= 1−
∏
i∈S

(1− Pν(Zi = 1)P(Ui = 1)) = 1− (1− µ)k.

Otherwise,

Eν [max
i∈S∗

Xi] = Eν [max
i∈S∗

Xi|Y = 1] p+ Eν [max
i∈S∗

Xi|Y = 0] (1− p)

= Eν [max
i∈S∗

Xi|Y = 1] p+
[
1− (1− µ)k

]
(1− p)

where

Eν [max
i∈S∗

Xi|Y = 1] = 1− P(max
i≥1

UiZi = 0)

= 1− P(max
i≥1

UiZi = 0,⊕i>1Zi = 0)− P(max
i≥1

UiZi = 0,⊕i>1Zi = 1)

= 1− (1− 2µ)P(max
i>1

UiZi = 0,⊕i>1Zi = 0)− P(max
i>1

UiZi = 0,⊕i>1Zi = 1)

= 1− P(max
i>1

UiZi = 0) + 2µP(max
i>1

UiZi = 0,⊕i>1Zi = 0)

= 1− (1− µ)k−1 + 2µP(max
i>1

UiZi = 0,⊕i>1Zi = 0)

and

P(max
i>1

UiZi = 0,⊕i>1Zi = 0) =

bk−1
2 c∑
`=0

P

(
max
i>1

UiZi = 0,
∑
i>1

Zi = 2`

)

=

bk−1
2 c∑
`=0

P

(
max
i>1

UiZi = 0

∣∣∣∣∑
i>1

Zi = 2`

)(
k − 1

2`

)
2−k+1

=

bk−1
2 c∑
`=0

(1− 2µ)2`

(
k − 1

2`

)
2−k+1

=
2−(k−1)

2

(
((1− 2µ) + 1)k−1 + (−1)k−1((1− 2µ)− 1)k−1

)
=

1

2

(
(1− µ)k−1 + µk−1

)
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since

((1− 2µ) + 1)k−1 =
k−1∑
j=0

(1− 2µ)j
(
k − 1

j

)

=

bk−1
2 c∑
`=0

(1− 2µ)2`

(
k − 1

2`

)
+

bk−1
2 c∑
`=0

(1− 2µ)2`+1

(
k − 1

2`+ 1

)
and

((1− 2µ)− 1)k−1 =
k−1∑
j=0

(−1)j(1− 2µ)k−1−j
(
k − 1

j

)

=

bk−1
2 c∑
`=0

(1− 2µ)k−1−2`

(
k − 1

2`

)
−
bk−1

2 c∑
`=0

(1− 2µ)k−2−2`

(
k − 1

2`+ 1

)

= (−1)k−1

bk−1
2 c∑
`=0

(1− 2µ)2`

(
k − 1

2`

)
− (−1)k−1

bk−1
2 c∑
`=0

(1− 2µ)2`+1

(
k − 1

2`+ 1

)
.

Putting it all together we have

Eν [max
i∈S∗

Xi] = [1− (1− µ)k−1 + µ
(

(1− µ)k−1 + µk−1
)

] p+
[
1− (1− µ)k

]
(1− p)

= [1− (1− µ)k + µk] p+
[
1− (1− µ)k

]
(1− p)

=
[
1− (1− µ)k

]
+ µkp

(128)

Thus, ∆ = pµk which is maximized at µ = 1
2 achieving ∆ = p2−k.

Step 4: Change of measure: Consider the distribution ν that is constructed in Step 1 that is defined
with respect to S∗ = {1, . . . , k}. For all S ∈ S we will now construct a new distribution νS

such that EνS [maxi∈S Xi] > EνS [maxi∈S∗ Xi] = Eν [maxi∈S∗ Xi]. We begin constructing νS

identically to how we constructed ν but modify the distribution of XS` where S` = arg min{i :
Xi, i ∈ S}. In essenceXS` with respect to S ∈ S will be constructed identically to the construction
of X1 with respect to S∗ = {1, . . . , k} with the one exception that in place of Y we will use a new
random variable Y S that is Bernoulli(p′) where p′ > p (this is always possible as p < 1).

Let ν(S) describe the joint probability distribution of ν restricted to the set i ∈ S. And for any
S ∈ S let τ denote the projection of ν(S) down to some smaller event space. For example, τν(S)
can represent the Bernoulli probability distribution describing maxi∈S Xi under distribution ν. By
(k − 1)-wise independence we have

KL(ν(S′)|νS(S′)) = 0 ∀S′ ∈ S \ S

since S and S′ differ by at least one element and ν(S∗) = νS(S∗). Clearly,KL(τν(S′)|τνS(S′)) =
0 as well for all S′ ∈ S \ S. By assumption, any valid algorithm correctly identifies S∗ under ν,
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and S under νS , with probability at least 1 − δ. Thus, by Lemma 1 of Kaufmann et al. (2015), for
every S ∈ S \ S∗

log( 1
2δ ) ≤

∑
S′∈S

Eν [TS′ ]KL(τν(S′)|τνS(S′)) = KL(τν(S)|τνS(S))Eν [TS ] ,

where we recall that TS is the number of times the set S is pulled. Hence,

Eν

 ∑
S∈S\S∗

TS

 ≥ ∑
S∈S\S∗

log( 1
2δ )

KL(τν(S)|τνS(S))

=
log( 1

2δ )

KL(τν(S)|τνS(S))

[(
n

k

)
− 1

]
≥

2
3 log( 1

2δ )

KL(τν(S)|τνS(S))

(
n

k

)
where the equality holds for any fixed S ∈ S by the symmetry of the construction and the last
inequality holds since 2 ≤ k < n,

(
n
k

)
− 1 ≥ 2

3

(
n
k

)
. It just remains to upper bound the KL

divergence.
Bandit feedback: Let τν(S) represent the Bernoulli probability distribution describing maxi∈aXi

under distribution ν. Then by the above calculations of the gap we have

KL(τν(S)|τνS(S)) = KL(1− (1− µ)k|1− (1− µ)k + p′µk)

≤ p′2µ2k/2

(1− (1− µ)k)(1− µ)k − 2p′µk[1
2 − (1− µ)k]+

≤ p′2µ2k/2

(1− (1− µ)k)((1− µ)k − p′µk)

by applying Lemma E.1 and noting that

(1− (1− µ)k)(1− µ)k − 2p′µk[1
2 − (1− µ)k]+

≥ min{(1− (1− µ)k)(1− µ)k, (1− (1− µ)k)(1− µ)k − p′µk(1− 2(1− µ)k)}
≥ min{(1− (1− µ)k)(1− µ)k, (1− (1− µ)k)[(1− µ)k − p′µk]}
≥ (1− (1− µ)k)((1− µ)k − p′µk)

Finally, let p′ → p. Setting µ = 1− 2−1/k ≥ 1
2k we have (1−µ)k = 1/2 and ∆ ≥ p(2k)−k so that

Eν
[∑

S∈S\S∗ TS

]
≥ 1

3

(
n
k

)
∆−2 log( 1

2δ ).

Marked-Bandit feedback: Let τν(S) represent the distribution over ⊥ ∪S under ν such that if
W ∼ τν(S) then W is drawn uniformly at random from arg maxi∈S Xi if maxi∈S Xi = 1, and
W =⊥ otherwise. By the permutation invariance property of ν described in Step 2, we have for any
S ∈

([n]
k

)
− S∗ and i ∈ S

Pν(W = i|W 6=⊥) = PνS (W = i|W 6=⊥) =
1

k
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so that

KL(τν(S)|τνS(S)) =
∑

w∈⊥∪S
Pν(W = w) log(

Pν(W = w)

PνS (W = w)
)

= Pν(W =⊥) log(
Pν(W =⊥)

PνS (W =⊥)
) +

∑
i∈S

1

k
Pν(W 6=⊥) log(

Pν(W 6=⊥)

PνS (W 6=⊥)
)

= KL
(
Pν(max

i∈S
Xi = 1)

∣∣PνS (max
i∈S

Xi = 1)
)
.

Thus, KL divergence for marked-bandit feedback is equal to that of simple bandit feedback.
Semi-Bandit feedback:

Let P denote the law of the entire construction for independent distribution, and Q the law of
the construction for the distribution. The strategy is to upper bound the KL of X , together with the
additional information from the hidden variables Z2, . . . , Zk. In this section, given v ∈ {0, 1}k, we
use the compact notation v(2;k) to denote the vector v2, . . . , vk. We can upper bound the KL by

KL(p(X), Q(X)) ≤ KL(P (X,Z(2;k)), Q(X,Z(2;k)))

=
∑

x∈{0,1}k,z(2;k)∈{0,1}k−1

P
(
X = x, Z(2;k) = z(2;k)

)
log

(
P (X = x, Z(2;k) = z(2;k))

Q(X = x, Z(2;k) = z(2;k))

)

By the law of total probability, the above is just∑
x(2;k)∈{0,1}2;k,z(2;k)∈{0,1}k−1

P
(
X(2;k) = x(2;k), Z(2;k) = z(2;k)

)

×

 ∑
x1∈{0,1}

P
(
X1 = x1

∣∣X(2;k) = x(2;k), Z(2;k) = z(2;k)
)

log

(
P (X = x, Z(2;k) = z(2;k))

Q(X = x, Z(2;k) = z(2;k))

)
Again, by the law of total probability, we have

P (X = x, Z(2;k) = z(2;k))

Q(X = x, Z(2;k) = z(2;k)

=
P (X1 = x1

∣∣X(2;k) = x(2;k), Z(2;k) = z(2;k))

Q(X1 = x1

∣∣X(2;k) = x(2;k), Z(2;k) = z(2;k)))
× P (X(2;k) = x(2;k), Z(2;k) = z(2;k))

Q(X(2;k) = x(2;k), Z(2;k) = z(2;k)))

Under our construction, (X2, . . . , Xk, Z2, . . . , Zk) have the same joint distribution under either P
or Q, so the second multiplicand in the second line in the above display is just 1. Under the law P ,
X1 is independent of X2, . . . , Xk, Z2, . . . , Zk, so P (X1 = x1

∣∣X(2;k) = x(2;k), Z(2;k) = z(2;k)) =
P (X1 = x1). Under the dependent law Q, X1 only depends on X2, . . . , Xk, Z2, . . . , Zk through
W (Z(2;k)) := 1⊕ki=2 Zi ∈ {0, 1}. Hence, if we define the conditional KL’s:

KL1 := KL
(
P (X1), Q(X1)

∣∣W (z(2;k)) = 1
)

=
∑

x1∈{0,1}

p(X1 = x1) log

(
P (X1 = x1)

Q(X1 = x1

∣∣W (z(2;k)) = 1)

)
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and define KL0 := KL
(
P (X1), Q(X1)

∣∣W (z(2;k)) = 0
)

analogously, then∑
x1∈{0,1}

P (X1 = x1

∣∣X(2;k) = x(2;k), Z(2;k) = z(2;k)) log(
P (X = x, Z(2;k) = z(2;k))

Q(X = x, Z(2;k) = z(2;k))
)

= I
(
W (z(2;k)) = 1

)
KL1 + I

(
W (z(2;k)) = 0

)
KL0

Putting these pieces together,

KL(P (X,Z(2;k)), Q(X,Z(2lk))) =
∑

(x(2;k),z(2;k)∈{0,1}2(k−1)

I(W (Z(2;k)) = 1)KL1 + I(W (Z(2;k)) = 0)KL0

= P(W (Z(2;k)) = 1)KL1 + P(W (Z(2;k)) = 0)KL0

=
1

2
(KL1 + KL0)

where the last line follows the parity W (Z(2;k)) is Bernoulli 1/2. A straightforward computation
bounds KL1 and KL0.

Claim E.2 (Bound on KL1, KL0 ) Let KL0 and KL1 be defined as above. Then KL0 ≤ p2µ/2
(1−p)(1−µ(1−p))

and KL1 ≤ p2µ/2
1−µ(1+p) .

Proof Note P (X1 = 1) = µ,

Q(X1 = 1
∣∣W (z(2;k)) = 0) = Q(X1 = 1

∣∣W (z(2;k)) = 1, Y = 1)p+Q(X1 = 1
∣∣W (z(2;k)) = 1, Y = 0)(1− p)

= 0 · p+ µ(1− p) = µ(1− p)

and

Q(X1 = 1
∣∣W (z(2;k)) = 1) = Q(X1 = 1

∣∣W (z(2;k)) = 1, Y = 1)p+Q(X1 = 1
∣∣W (z(2;k)) = 1, Y = 0)(1− p)

= 2µp+ µ(1− p) = µ(1 + p).

Thus, by Lemma E.1 we have

KL0 =
∑

x1∈{0,1}

P (X1 = x1) log

(
P (X1 = x1)

Q(X1 = x1

∣∣W (z(2;k)) = 0)

)

= d(µ, µ(1− p)) ≤ (pµ)2/2

µ(1− p)(1− µ(1− p))
=

p2µ/2

(1− p)(1− µ(1− p))
.

and

KL1 =
∑

x1∈{0,1}

P (X1 = x1) log

(
P (X1 = x1)

Q(X1 = x1

∣∣W (z(2;k)) = 1)

)

= d(µ, µ(1 + p)) ≤ (pµ)2/2

min{µ(1− µ), µ(1 + p)(1− µ(1 + p))}
≤ p2µ/2

1− µ(1 + p)
.
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Remark E.1 Despite our seemingly arbitrary construction of random variables in Theorem 2.1 to
produce the resulting measure ν, Theorem 2.2 states that the joint distribution is unique and would
be arrived at using any other construction that satisfied the same properties.

Remark E.2 (An Upper Bound When µ = 1/2) Suppose that µ = 1/2. Then, our construction
implies Zi = Xi for i ≥ 2, and thus our bound on the KL is exact. In fact, we can use a simple
parity estimatorW (S) = ⊕i∈SXi to distinguish between a subset S of correlated and uncorrelated
arms. When S is an independent set, W (S) ∼ Bernoulli(1/2). However, a simple computation
reveals that W (S∗) ∼ Bernoulli(1/2 + p/2). Thus, using a parity estimator reduces our problem
to finding one coin with bias p/2 in a bag of

(
n
k

)
unbiased coins, whose difficulty exactly matches

our problem
Surprisingly, Theorem 2.2 tells us that the construction outlined in this lower bound is the

unique construction which yields k − 1-wise independent marginals of mean µ = 1/2, with gap
p2−k; in other words, in any k−1-wise independent construction with µ = 1/2, the parity estimator
is optimal.

E.1. Proof of Lemma E.1

Proof [Proof of Lemma E.1] If f(z) = d(z, y) then f ′(z) = log( z
1−z ) − log( y

1−y ), and f ′′(z) =
1

z(1−z) so

2(y − x)2 ≤ (y − x)2/2

supz∈[x,y] z(1− z)
≤ d(x, y) ≤ (y − x)2/2

infz∈[x,y] z(1− z)
.

If ε = y − x then

inf
z∈[x,y]

z(1− z) = inf
ε∈[0,y−x]

x(1− x) + ε(1− 2x) = x(1− x)− [(y − x)(2x− 1)]+

Appendix F. Proof of Lower Bound Converse

To prove the above proposition, we need a convenient way of describing all feasible probability
distributions over {0, 1}k which are specified on their k − 1 marginals. To this end, we introduce
the following notation: We shall find it convenient to index the entries of vectors w ∈ Rk−1 by
binary strings t ∈ {0, 1}k−1. At times, we shall need to “insert” indices into strings of length k− 2,
as follows: For u ∈ {0, 1}k−2 and j ∈ [k− 1], denote by u⊕j 0 the string in {0, 1}k−1 obtained by
inserting a 0 in the j-th position of u. We define u⊕j 1 similarly.

Lemma F.1 Let P0 be any distribution over {0, 1}k. Then, a probability distribution P agrees with
P0 on their k − 1 marginals if and only if, for all binary strings t ∈ {0, 1}k−1, P is given by

P(X−k = t,Xk = 0) = w(t) (129)
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where w ∈ R2k−1
satisfies the following linear constraints:

∀t ∈ {0, 1}k−1 : 0 ≤ w(t) ≤ P0(X−k = t)

∀j ∈ [k − 1], u ∈ {0, 1}k−2 w(u⊕j 0) + w(u⊕j 1) = P0(X−{j,k} = u−j , Xk = 0)

Remark F.1 Note that the above lemma makes no assumptions about k−1 independence, only that
the k − 1 marginals are constrained

Proof [Proof of Theorem 2.2] Let P0 denote the product measure on X1, . . . , Xk, and P denote our
coupled distribution. Fix µ ∈ [0, 1]. For p ∈ {0, 1, . . . , k− 1}, define the probability mass function

ψ(p) := µp(1− µ)k−1−p (130)

Further, for u and t in {0, 1}k−2 and {0, 1}k−1, respectively, define the hamming weights H(t) =∑
i ti and H(u) =

∑
i ui.

Since our distribution is k − 1 wise independent, and each entry Xi has mean µ, we have
P(X−k = t) = P0(X−k = t) = ψ(H(t)). Moreover,

P0(X−{j,k} = u−j , Xk = 0) = (1− µ)P0(X−{j,k} = u−j)

= (1− µ)µH(u)(1− µ)k−2−H(u)

= µH(u)(1− µ)k−1−H(u) = ψ(H(u))

Thus, our feasibility set is precisely

∀t ∈ {0, 1}k−1 : 0 ≤ w(t) ≤ ψ(H(t))

∀j ∈ [k − 1], u ∈ {0, 1}k−2 w(u⊕j 0) + w(u⊕j 1) = ψ(H(u))
(131)

The equality constraints show there is only one degree of freedom, which we encode into w(0):

Claim F.2 w satisfies the equality constraints of the LP if and only if, for all t ∈ {0, 1}k−1 of
weight H(t) = p,

w(t) = (−1)pw (0) + (−1)p−1 Φ (p) (132)

where Φ(p) =
∑p−1

i=0 (−1)iψ(i), so that Φ(0) = 0. Note that Φ satisfies the identity

Φ(p) = (−1)p−1 ψ (p− 1) + Φ (p− 1) (133)

Hence, we can replace the equality constraints by the explicit definitions of w(t) in terms of w(0)
and Φ(p). This leads to the next claim:

Claim F.3 w is feasible precisely when

max
0≤p≤k even

Φ(p) ≤ w(0) ≤ min
1≤p≤k odd

Φ(p) (134)

We now establish a closed form solution for Φ(p) when µ < 1/2, and parity-wise monotonicity
when µ ≥ 1/2:
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Claim F.4 If µ < 1/2, we have Φ(p) = (1 − µ)k
(

1− ( −µ1−µ)p
)

, so Φ(p) is decreasing for odd p
and increasing for even p. If µ ≥ 1/2, Φ(p) is nondecreasing for odd p and nonincreasing for even
p

To conclude, we note that when µ ≥ 1/2, the fact that Φ(p) is nondecreasing for odd p and
nonincreasing for even p implies that

max
0≤p≤k even

Φ(p) ≤ w(0) ≤ min
1≤p≤k odd

Φ(p) ⇐⇒ Φ(0) ≤ w(0) ≤ Φ(1)

⇐⇒ 0 ≤ w(0) ≤ ψ(0)

⇐⇒ 0 ≤ w(0) ≤ (1− µ)k−1

When µ < 1/2, the fact that Φ(p) is decreasing for odd p and increasing for even p implies that

max
0≤p≤k even

Φ(p) ≤ w(0) ≤ min
1≤p≤k odd

Φ(p) ⇐⇒ Φ(kodd) ≤ w(0) ≤ Φ(keven)

⇐⇒ (1− µ)k

(
1−

(
µ

1− µ

)keven)
≤ w(0) ≤ (1− µ)k

(
1 +

(
µ

1− µ

)kodd)

Since w(0) = P(X1, . . . , Xk = 0), we are done.

F.1. Proofs

Proof [Proof Of Lemma F.1] We can consider the joint distribution of (X1, . . . , Xk) as a vector
in the 2k simplex. However, there are many constraints: in particular, the joint distribution of
X1, . . . , Xk−1 is entirely determined by the k − 1-marginals of the distribution. In fact, if P is a
distribution over {0, 1}k, then it must satisfy

P(X−k = t−k, Xk = 1) + P(X−k = t−k, Xk = 0) = P(X−k = t−k).

Hence, without any loss of generality, we may encode any arbitrary probability distribution on
{0, 1}k by

P(X = t) :=

{
w(t−k) tk = 0

P0(X−k = t−k)− w(t−k) tk = 1
(135)

for a suitable w ∈ R2k−1
. This defines P on the atomic events {X = t}, and we extend P to all

further events by additivity. We now show that the constraints on the Lemma hold if and only if w
induces a proper probability distribution P whose k − 1 marginals coincide with P.

Recall that P is a proper distribution if and only if it is nonnegative, normalized to one, mono-
tonic, and additive4. P satisfies additivity by construction. Moreover, by definition

∑
t∈{0,1}k P(X =

t) =
∑

t−k∈{0,1}k−1 P0(X−k = t−k) = 1, so P is normalized. Finally, monotonicity will follow

4. As X has finite support, we don’t need to worry about such technical conditions as σ-additivity
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as long as we establish non-negativity of P on the atomic events {X = t}. But the constraint that
P(X = t) is nonnegative holds if and only if

0 ≤ w(t1, . . . , tk−1) ≤ P0(X−k = t−k). (136)

On the other hand, the constraint that P’s k − 1 marginals coincide with P0 is simply that

w(t1, . . . , tj−1, 0, tj+1, . . . , tk−1) + w(t1, . . . , tj−1, 1, tj+1, . . . , tk−1)

= P0(X1 = t1, . . . , Xj−1 = tj−1, Xj+1 = tj+1, . . . , Xk−1 = tk−1, Xk = 0)

which can be expressed more succinctly using the concatenation notation w(u⊕j 0) +w(u⊕j 1) =
P0(X−{j,k} = u−j , Xk = 0).

Proof [Proof of Claim F.2] First, we prove “only if” by induction on H(t). For H(t) = 0, the claim
holds since Φ(0) = 0. For a general t ∈ {0, 1}k−1 such that H(t) = p ≥ 1, we can construct a
sequence t0, . . . , tp ∈ {0, 1}k−1 such that t0 = 0, tp = t, and each string ts is obtained by “flipping
on” a zero in the string ts−1 to 1, that is, there is a string us ∈ {0, 1}k−2 such that ts = us ⊕js 1
and ts−1 = us ⊕js 0. Thus, our equality constraints imply that

w(tp−1) + w(t) = w(tp−1) + w(tp)

= w(us ⊕js 1) + w(us ⊕js 0)

= ψ(H(u)) = ψ(p− 1).

Hence, we get the recursion w(tp) = ψ(p − 1) − w(tp−1), which by the inductive hypothesis on
tp−1 and Equation 133 imply that

w(t) = ψ(p− 1)−
(
(−1)p−1w(0) + (−1)p−2Φ(p− 1)

)
= (−1)pw(0) + (−1)p−1Φ(p− 1) + ψ(p− 1)

= (−1)pw(0) + (−1)p−1(Φ(p− 1) + (−1)p−1ψ(p− 1))

= (−1)pw(0) + (−1)p−1Φ(p)

as needed. Next, we prove the “if” direction. Let u ∈ {0, 1}k−2 have weight p. Then

w(u⊕ 0) + w(u⊕ 1) = (−1)pw(0) + (−1)p−1Φ(p) + (−1)p+1w(0) + (−1)pΦ(p+ 1)

= (−1)p−1Φ(p) + (−1)pΦ(p+ 1)

= (−1)p−1Φ(p) + (−1)p (Φ(p+ 1− 1) + (−1)pψ(p+ 1− 1))

=
(
(−1)p−1 + (−1)p

)
Φ(p) + (−1)2pψ(p) = ψ(p)

as needed.

Proof [Proof of Claim F.3] Our feasibility set is precisely is the set of w(0) such that 0 ≤ w(0) ≤
ψ(0), and for all p ∈ {1, 2, . . . , k − 1}

0 ≤ (−1)pw(0) + (−1)p−1Φ(p) ≤ ψ(p). (137)
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Suppose first that p is even. If p is greater than 1, then the above constraint together with Claim F.2
imply

Φ(p) ≤ w(0) ≤ ψ(p) + Φ(p) = (−1)(p+1)−1ψ(p) + Φ(p) = Φ(p+ 1).

If p is 0, then Φ(0) = 0 and Φ(1) = ψ(0), so the constraint 0 ≤ w(0) ≤ ψ(0) is equivalent to
Φ(p) ≤ w(0) ≤ Φ(p+ 1) for p = 0.

On the other hand, when p is odd, we have w(0) ≤ Φ(p), whilst

w(0) ≥ Φ(p)− ψ(p) = Φ(p) + (−1)(p+1)−1ψ(p) = Φ(p+ 1). (138)

In other words, w(0) ≤ Φ(p) for all p which are either odd and between 1 and k − 1, or p of the
form p = q + 1 where q is even and between 1 and k − 1. This is precisely the set of all odd p in
1, . . . , k. By the same token, w(0) ≥ Φ(p) for all even p in {1, . . . , k}. Taking the intersection of
these lower and upper bounds on w(0) yields

max
0≤p≤k even

Φ(p) ≤ w(0) ≤ min
1≤p≤k odd

Φ(p). (139)

Proof [Proof of Claim F.4] Let ρ = µ
1−µ . We can write Φ yields as geometric series

Φ(p) =

p−1∑
i=0

(−1)iψ(i)

=

p−1∑
i=0

(−1)i · µi(1− µ)k−1−i

= (1− µ)k−1
p−1∑
i=0

(−1)i(
µ

1− µ
)i

= (1− µ)k−1
p−1∑
i=0

(−ρ)i

When µ ≥ 1/2, ρ ≥ 1, and thus this series is nondecreasing for odd p and nonincreasing for even
p. When ρ < 1/2, the series is decreasing for odd p and increasing for even p and in fact we have

Φ(p) = (1− µ)k−1 1− (−ρ)p

1 + ρ

Φ(p) = (1− µ)k−1
1− (− µ

1−µ)p

1 + µ
1−µ

= (1− µ)k
(

1− (
−µ

1− µ
)p
)
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Appendix G. Proof of Theorem 4.1: Lower Bound for Independent Arms

As in the proof of Theorem 2.1, let ν(a) describe the joint probability distribution of ν restricted
to the set i ∈ a. Note that ν(a) =

∏
i∈a νi. And for any a ∈ A let τν(a) represent the Bernoulli

probability distribution describing maxi∈aXi under distribution ν. Let ε > 0. For each j ∈ [n] let
νj be a product distirbution of Bernoullis fully defined by its marginals µji := E

νji
[Xi] and

µji =


µk + ε if i = j and i > k

µk+1 − ε if i = j and i ≤ k
µi if i 6= j.

By Lemma 1 of Kaufmann et al. (2015), for every j ∈ [n]∑
a∈([n]p )

Eν [Ta]KL(τν(a)|τνj(a)) ≥ log( 1
2δ ),

for arbitrarily small ε, so in what follows let ε = 0. Then

KL(τν(a)|τνj(a)) =


0 if j /∈ a
d
(

(1− µj)
∏
i∈a\j(1− µi)|(1− µj −∆j)

∏
i∈a\j(1− µi)

)
if j ∈ a and j > k

d
(

(1− µj)
∏
i∈a\j(1− µi)|(1− µj + ∆j)

∏
i∈a\j(1− µi)

)
if j ∈ a and j ≤ k

where for j > k, by invoking Lemma E.1,

d

(1− µj)
∏
i∈a\j

(1− µi)|(1− µj −∆j)
∏
i∈a\j

(1− µi)


≤

∆2
j

(∏
i∈a\j(1− µi)

)2

2
(

1− (1− µj)
∏
i∈a\j(1− µi)

)(
(1− µj −∆j)

∏
i∈a\j(1− µi)

)
≤

∆2
j

(∏
i∈a\j(1− µi)

)
2
(

1− (1− µj)
∏
i∈a\j(1− µi)

)
(1− µj −∆j)

and a similar bounds holds for j ≤ k. If hj = max
a∈([n]−jp−1 )

∏
i∈a(1− µi) and

τj =


(1−µj−∆j)

∆2
j

1−(1−µj)hj
hj

if j > k

(1−µj)
∆2
j

1−(1−µj+∆j)hj
hj

if j ≤ k

∀j ∈ [n] then ∑
a∈([n]p ):j∈a

Eν [Ta] ≥ 2τj log( 1
2δ ) (140)
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or, in words, arm j must be included in a number of bandit observations that is at least the right-hand-

side of (140). Note that
∑

a∈([n]p ) Eν [Ta] ≥ max

{
maxj=1,...,n

∑
a∈([n]p ):j∈a Eν [Ta],

1
p

∑n
j=1

∑
a∈([n]p ):j∈a Eν [Ta]

}
where the first argument of the max follows from the fact that the number of rounds must exceed
the number of bandit evaluations each arm must be included in, and the second term sums over all
arms j and accounts for the fact that each p-set a appears p times. We conclude that

∑
a∈([n]p )

Eν [Ta] ≥ 2 log( 1
2δ ) max

 max
j=1,...,n

τj ,
1

p

n∑
j=1

τj

 ≥ log( 1
2δ )

 max
j=1,...,n

τj +
1

p

n∑
j=1

τj

 .

(141)

For semi-bandit feedback, we use the same νj construction but now realize that

KL(ν(a)|νj(a)) =


0 if j /∈ a
d (1− µj |1− µj −∆j) if j ∈ a and j > k

d (1− µj |1− µj + ∆j) if j ∈ a and j ≤ k.

Using the same series of steps as above, we find that if

τj =


µj(1−µj−∆j)

∆2
j

if j > k

(µj−∆j)(1−µj)
∆2
j

if j ≤ k

then (141) holds with these defined values of τj for the semi-bandit case.
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