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Motivated by online advertising auctions, we consider repeated Vickrey auctions where goods of
unknown value are sold sequentially and bidders only learn (potentially noisy) information about
a good’s value once it is purchased. We adopt an online learning approach with bandit feedback
to model this problem and derive bidding strategies for two models: stochastic and adversarial.
In the stochastic model, the observed values of the goods are random variables centered around
the true value of the good. In this case, logarithmic regret is achievable when competing against
well behaved adversaries. In the adversarial model, the goods need not be identical. Comparing
our performance against that of the best fixed bid in hindsight, we show that sublinear regret is also
achievable in this case. For both the stochastic and adversarial models, we prove matching minimax
lower bounds showing our strategies to be optimal up to lower-order terms. To our knowledge, this
is the first complete set of strategies for bidders participating in auctions of this type.
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1. Introduction

Online advertising has been a driving force behind most of the recent work on online learning,
particularly in the realm of bandit problems. During the first half of 2015 alone, internet advertising
generated $27.5 billion in revenue, according to the Interactive Advertising Bureau. A large fraction
of advertising space is sold on platforms known as ad exchanges such as Google’s DoubleClick and
AppNexus, which facilitate transactions between the owner of advertising space and advertisers.
These transactions occur within a fraction of a second using auctions (Muthukrishnan, 2009), thus
placing the actors squarely within the framework of game-theoretic auctions with a single item and
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multiple bidders. In this context, we refer to the advertising space as the good, its owner as the seller
and the advertisers as bidders, respectively. From the seller’s perspective, this is a well understood
problem in mechanism design: the Vickrey (a.k.a. second price) auction is optimal in the sense that
each bidder bidding their private value constitutes an equilibrium. Because of this property, the
Vickrey auction is said to be truthful.

The seller may also maximize her revenue while maintaining truthfulness of the auction by
optimizing a reserve price below which no transaction occur. For example, when the bidders’ values
are drawn independently from known distributions, the optimal reserve price may be computed in
closed form (Myerson, 1981; Riley and Samuelson, 1981). The independence assumption was
questioned already by Myerson (Myerson, 1981) and it was shown later (Crémer and McLean,
1988) that when the assumption is violated, the seller can take advantage of the situation to extract
more revenue at the cost of a more complicated auction mechanism. In particular, this mechanism
allows bidders to be charged even if they do not win the auction, which is arguably undesirable.

In short, the Vickrey auction is a reasonable compromise between simplicity and optimality,
which likely explains its prevalence on ad exchanges. Nevertheless, it suffers from a major limita-
tion: it relies on knowledge of the bidders’ value distributions, which are unlikely to be known to
the seller in practice (Wilson, 1987). This limitation has driven a recent line of work on approx-
imately optimal auctions (Roughgarden et al., 2012; Hartline and Roughgarden, 2009; Fu et al.,
2013) that are robust to misspecification of these distributions. In recent years the ubiquitous col-
lection of data has presented new opportunities, insofar as unknown quantities, such as the bidders’
value distributions or relevant functionals, may potentially be learned from past observations. This
new paradigm was perhaps initiated by Kleinberg and Leighton (2003) and Blum et al. (2003) and
has been investigated in several recent papers (Cesa-Bianchi et al., 2013; Chawla et al., 2014; Fu
et al., 2014; Ostrovsky and Schwarz, 2011; Cole and Roughgarden, 2014; Amin et al., 2015; Kano-
ria and Nazerzadeh, 2014; Dhangwatnotai et al., 2015; Blum et al., 2015; Mohri and Medina, 2014;
Amin et al., 2014). One of the take-home messages of this literature is that a few observations are
sufficient to maximize the seller’s revenue in the Vickrey auction.

Like the bulk of the literature on auctions, the aforementioned work adopts the seller’s perspec-
tive. It focuses on designing mechanisms to maximize the seller’s revenue. In this work, we instead
take the perspective of a bidder engaged in repeated Vickrey auctions. Practical questions about on-
line advertising have motivated many proposed bidding strategies in the literature, starting with an
empirical study of Kitts and Leblanc (2004). However, prior work has largely focused on the case
where the bidder has a fixed budget and is trying to maximize clicks under this budget. Notable
recent examples include Gummadi et al. (2011) and Balseiro et al. (2015), where optimal strategies
are derived when all parameters of the problem are known. More recently, McAfee (2011) raised the
question of learning unknown parameters and studying the auction problem from an online learning
perspective. This idea was successfully applied to the fixed budget case mentioned above (Amin
et al., 2012; Badanidiyuru et al., 2013; Tran-Thanh et al., 2014).

Our work departs from these lines of research by considering a different notion of performance
based on the net (expected) revenue generated by an ad rather than the number of purchased ads.
In turn, our work ignores budget constraints, but we acknowledge that combining the two lines of
research could be a fruitful research direction. In this framework, we identify and analyze several
strategies that can be employed by a bidder in order to maximize his reward while simultaneously
learning the value of a good sold repeatedly. This paradigm can be expressed as a learning problem
with partial feedback, or bandit problem (Bubeck and Cesa-Bianchi, 2012).
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Repeated auctions have been studied in the bandit framework, primarily in the context of truth-
ful bandits (Devanur and Kakade, 2009; Babaioff et al., 2010, 2009). However, this line of literature
also takes the seller’s point of view and aims at designing an auction mechanism rather than de-
signing an optimal bidding strategy under the constraint of a simple mechanism such as the Vickrey
auction.

More generally, the problem we describe falls into the category of partial monitoring games,
in which the learner receives only limited feedback about the loss associated with a given action.
By analyzing the feedback structure of such games, it is possible to develop essentially optimal
algorithms for many games in this class (Bartdk et al., 2014). However, the performance guarantees
of these algorithms degrade drastically as the number of actions increases. This renders these results
unusable in our context, where the bidder’s number of moves at each stage is essentially unbounded.

Our contribution. We present optimal strategies for a revenue-maximizing bidder engaged in a
repeated auction game, under both stochastic and adversarial assumptions. In addition, this paper
makes several technical contributions to the partial monitoring literature. We present a novel anal-
ysis of a UCB-type algorithm for the stochastic setting, showing that such a strategy can work here
even though the payoff and information structures are very different from those of the bandit case.
In the adversarial setting, we overcome a key challenge: in sharp contrast to other partial monitor-
ing games, where it is possible to discretize the strategy space and play the game on only a finite
number of “arms,” discretization cannot achieve sublinear regret in our setup. (See Appendix B.)
Our algorithm is notable for nevertheless achieving optimal regret in this setting.

2. Sequential Vickrey auctions

We restrict our attention to bounded values and bids in the interval [0, 1].

Let us first recall the mechanism of a Vickrey auction for a single good. Each bidder £ &
[K+1] :={1,..., K+1} submits a written bid b[k] € [0, 1]. The highest bidder k* € argmax;, b[k]
wins the auction and pays the second highest bid m* = max;,,~ b[k]. In case of ties, the winner is
chosen uniformly at random among the highest bidders.

Each bidder & € [K + 1] has a private but unknown individual value v[k] € [0, 1], which
represents the utility of the good. Note that this value is independent of the auction itself and
is only measured by the bidder once the good is delivered to him. For example, in the case of
advertising space, this value may be measured by the expected profit generated from this ad or the
probability that it generates a click (McAfee, 2011). The reward of the winner is given by his net
utility v[k*] — m*, while the reward of a losing bidder is 0.

Perhaps the most salient feature of the Vickrey auction is that it is optimal for bidder k to be
truthful, that is to bid b[k] = v[k] (assuming that the bidder knows this value). Here optimality is
understood in the equilibrium sense: any other bid b[k] # v[k], even random, could never lead to
a strict improvement in expected utility and might lead to a net loss for that bidder. An implicit
crucial assumption for the implementability of this bidding strategy is that each bidder must know
his own value, a hypothesis that is not necessarily met in online repeated auctions. Nevertheless,
a bidder may learn the value v[k] from past observations. Like bandit problems, this problem
exhibits an exploration-exploitation tradeoff: Higher bids increase the number of observations and
thus give the bidder a more accurate estimate of the value v[k] (exploration) while bids closer to
the best estimate of the value at time ¢ are more likely to be optimal in the sense described above
(exploitation). We will see that auctions when viewed as bandit problems possess an idiosyncratic
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information feedback structure: information is collected only for higher bids, but these should be
avoided due to the phenomenon known as the winner’s curse (Wilson, 1969).

We consider a set of 7' > 2 goods t € [T] := {1,...,T} that are sold sequentially in a Vickrey
auction. Using a slight abuse of terminology, we will also call the auction at which good ¢ is sold
auction . We take the point of view of bidder 1, hereafter referred to as the bidder, and denote
respectively by vy, bs, m; € [0, 1] the unknown private value of the bidder for the " good, his bid,
and the maximum bid of all other bidders for this good. Without loss of generality!, we assume
that bids are never equal. At time ¢ > 2, the bidder is aware of the outcomes of past auctions?
{(bs, ms), s € [t — 1]} as well as a (potentially noisy) measurement of the values of goods [t — 1]
at times when the bidder won the auction. Our goal is to construct bidding strategies that mitigate
potential losses (overbidding) and opportunity cost (underbidding) for the bidder.

We consider two generating processes for the sequence of values {v; };: stochastic and adver-
sarial. The stochastic setup is the most benign one: consecutive values {v; }; are independent and
identically distributed (i.i.d.) random variables in the unit interval [0, 1]. On the other side of the sta-
tionarity spectrum is the adversarial setup, where the sequence {v; }; may be any sequence in [0, 1].
This framework has become quite standard in the online learning literature (Cesa-Bianchi and Lu-
gosi, 2006; Bubeck and Cesa-Bianchi, 2012) where a game-theoretic setup prevails and arbitrary
dependencies between rounds occur.

3. The stochastic setup

Recall that consecutive values {v; }; are independent and identically distributed (i.i.d.) random vari-
ables in the unit interval [0, 1]. This assumption is appropriate when the goods to be sold are identi-
cal but for small independent variations or when the values v; represent noisy realizations of some
underlying value. Let v = E[v;] denote the common expected value of these random variables. We
also assume that the value v; is independent of m,, though we allow m, to depend on v and on v, for
s < t—1. Itis easy to see that the expected net utility of the bidder at time ¢, E(v; —my)1{b; > m.},
is maximized at by = v. Therefore, a constant bid equal to v is optimal among all sequences of
deterministic bids. This implies that the Vickrey auction is truthful in expectation. Since v is un-
known, the bidder may not be able to achieve the best net utility over ¢ rounds, so his performance
is measured by his (cumulative) pseudo-regret® Rt defined by

T T

Rp = max E(vr — mo)1{b > my} — > E(v; — me)1{b; > m}, (3.1)
=1 t=1

where the expectations are taken with respect to the randomness in vy and possibly in mg, if the other
bidders are playing randomly. Regret and pseudo-regret as measures of performance are studied
primarily in the bandit literature but rarely in the context of auctions. One benefit of adopting regret
as a measure of performance in an auction is that regret automatically takes opportunity cost into
account. Indeed, a net utility of zero can be obtained trivially at any round by bidding zero, but if
the other bidders tend to bid below the value of the good, the regret will still scale linearly in 7.

1. This can been achieved at an arbitrarily small cost by slightly perturbing original bids randomly.

2. The bidder knows m; for auctions that he won since it is the paid price, and we assume that the winning bid m, at
times when he lost is made available publicly after each auction in order to incentivize higher future bids.

3. The benchmark in the (true) regret is the random bid that maximizes b — Zthl (ve —my)1{b > m,}. This quantity
is more difficult to control and yields worse bounds, as detailed in Section 4.
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Algorithm 1: UCBID
input: b)) =1, w=1,0v=1v
fort=2,...,T do

Bid by = min (o + /25, 1)
Observe my
if by > my (win auction) then

Observe v,
U (wo+v)/(w+1), ww+l

end

end

We introduce a bidding strategy called UCBID because it is inspired by the UCB algorithm
(Lai and Robbins, 1985; Auer et al., 2002) but tailored to the auction setup under investigation (see
Algorithm 1). For the first auction, it prescribes to place the bid by = 1 and thus win the auction.
Atauction ¢t + 1, ¢ > 1, this strategy prescribes to place the bid b+ defined by

3logt
Sloet ),

b o (,
t+1 = min | Uy, + 20,

where w; is the number of auctions won up to stage ¢ and v,,, = Z‘:;l vr, /w with 75 being the
stage of the s™ won auction. Unlike the UCB strategy, which computes such estimates for each
possible action, the UCBID strategy uses the specific feedback structure of the auction problem to
handle an infinite number of actions simultaneously.

Interestingly, the UCBID strategy does not require the knowledge of past bids of other bidders
{mi,...,my_1}. This feature is particularly attractive in the setup of ad exchanges, where the
process takes place so fast that it may be useful for the platform to not communicate the cost of an
auction to bidders until the end of the day, for example.

While the implementation of the UCBID strategy does not require the knowledge of {m;},
its performance is affected by other bids that are larger but close to the optimal bid v. This is not
surprising as such bids force the bidder to overpay in order to collect information about the unknown
v. However, sub-linear regret of order /7 is achievable regardless of the sequence {mi}+. We prove
two results that show that this strategy automatically adapts to more favorable sequences {m;};.
Both proofs are deferred to Appendix A.

3.1. Pseudo-regret bounds

Theorem 1 Consider the stochastic setup where the values vy, ...,vp € [0,1] are independent
such that Elv;] = v. For any sequence my, ..., mp € [0, 1] such that my is independent of vy, the
UCBID strategy yields pseudo-regret bounded as follows:

_ 1210g T
Rr <3+ zg A2y/6T1ogT,

where x Ay = min(z,y) and A € [0, 1] is the largest number such that no bid my is the interval
(v,v+ A).
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We note that the dependence on the parameter A in Theorem 1 cannot be improved. This
follows from a reduction to a bandit problem: if m; = 1/2 for all values of m,, then the auction
problem is equivalent to a two-armed stochastic bandit game, where the arms have expectation 0
and —A = v — 1/2. (Bidding below 1/2 corresponds to pulling the first arm, and bidding above
corresponds to pulling the second.) It is known (Bubeck et al., 2013) that for any policy, there is a
choice of A and sequence of outcomes such that the regret is of order log(7")/A.

Theorem 1 shows an interesting phenomenon: While UCB type strategies are usually very
sensitive to the assumption that the rewards are stochastic, this strategy is actually robust to any
sequence {my}; that may be generated by other bidders, including malicious ones, as long as my
is independent of the stochastic value v; at each time step ¢. Indeed, in this hybrid setup, where
the v¢’s are random but the m;’s may not be, the UCBID strategy exhibits a sublinear regret that
can even be logarithmic in the favorable case where no bid m; is the interval (v, v + A) for some
A > 0. It turns out that this condition can be softened and can be well captured by a simple margin
condition under the assumption that the m;’s are also stochastic.

3.2. Margin condition

Assume in the rest of this section that my,...,mr S w for some unknown probability measure
. Borrowing terminology from binary classification (Mammen and Tsybakov, 1999; Tsybakov,
2006), we define the margin condition as follows.

Definition 2 A probability measure p on [0, 1] satisfies the margin condition with parameter o > 0
around v € (0,1) if there exists a constant C,, > 0 such that

p{(v,v+ul} <Cuu® Vu>0.

The parameter « is an indication of the difficulty of the problem—the larger the «, the easier
the problem. Under the margin condition, we can interpolate between between the two bounds for
the regret—O (log T') and O(+/T log T')—that arise in Theorem 1.

Theorem 3 Fix T' > 2 and consider the stochastic setup where the values v1, ...,vp € [0,1] are

independent such that Elv;] = v. For any random sequence my, ..., mrp iiﬁl i, where 1 on [0, 1]
satisfies the margin condition with parameter o > 0 around v € (0, 1), the UCBID strategy yields
pseudo-regret bounded as follows:

11—« 14+a
~ alT 2 log2 (T) ifa<l
Rp < ¢ colog?(T) fa=1
c3log(T) ifoao>1

where c1, ca and c3 are positive constants that depend on o, v and C\,.

As we can see from Theorem 3, the margin parameter o allows us to interpolate between
O(log T) and O(\/T) regret bounds. Since UCBID does not require the knowledge of «, we say
that it is adaptive to the margin parameter .

In fact, the above result holds, with the exact same proof, under a weaker assumption. Denote
by p: the law of m; conditional on the past history {bs,vs,ms}s<¢—1. Then the conclusions of
Theorem 6 remain true if all u,; satisfy the margin condition with respect to the same parameters o
and C,.
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Figure 1: Representation of the density g g5 of bids m.

3.3. Lower bound

We now show that the family of rates obtained in Theorem 3—indexed by a—is optimal up to
logarithmic terms. As we shall see, the upper bound is tight already in the case where the bids
{m;} are i.i.d., independent of {v, }s<¢—1. The proof that the construction below gives the claimed
lower bound appears in Appendix B

We first consider the case where @ € (0,1). For any « in this interval, let u, denote the
distribution on [0, 1] with density g, with respect to the Lebesgue measure, where g, is defined by

ga(z) = Ca [(x - %)"“111{3; € (1/2,1/2 4 2¢]} + (2 — % —20)* Mz € (1/2 + 22, 1]}} ,

where C,, is an appropriate normalizing constant. See Figure 1 for a representation of this density.
Observe that ju,, satisfies the margin condition with parameter « > 0 around both 1/2 and 1/2 + 2¢.
For a > 1, define the distribution y, to be the point mass at 1/2 + . This distribution also
satisfies the margin condition with parameter o around both values.
Let v denote the joint distribution of (v, m;) and denote by Ry (v) the pseudo-regret associated
to a strategy when the expectation in (3.1) is taken with respect to v.

Theorem 4 Fix o > 0. Let v = Bern(1/2)®puq and v = Bern(1/2+2¢)® i, wheree = T71/2
ifa<lande = % if > 1. Then, for any strategy, it holds

11—«
= - CIT 2 ifa<l
R vV Rp(V) > @
r(v) T(”)—{ CologT ifa>1

4. The adversarial setup

In this section, unlike the stochastic case, we make no assumptions on the sequences {v;}; and
{my}+, even allowing the seller and other bidders to coordinate their plays according to a non-
stationary process. As in the stochastic case, we compare the performance of a sequence {b;}; of
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bids generated by a data-driven strategy to the best fixed bid in hindsight. As a consequence the
(cumulative) regret R of the bidder for not knowing his own sequence of values is defined as

T T
Ry = max (v —my)1{b > my} — Z(vt —my)1{b; > my} . 4.2)
t=1 t=1

As in the stochastic case, we will also consider the pseudo-regret Ry, defined in (3.1), which is
easier to handle and will serve as an illustration of the techniques used in our proofs.

Clearly, Ry < E[R7] and it is well known that Ry = E[Rr] when the adversary is oblivious
(Cesa-Bianchi and Lugosi, 2006; Bubeck and Cesa-Bianchi, 2012), that is, when it generates its
sequence of moves independently of the past actions of the bidder. In the sequel, we study both
oblivious and non-oblivious (a.k.a. adaptive) adversaries.

For notational convenience, assume hereafter that m; € (0, 1] and that v; € [0, 1]. Precluding
my = 0 has no effect on the problem if we replace m; = 0 by an arbitrarily small value.

4.1. Oblivious adversaries

Algorithm 2: EXPTREE
input: YRS (0, 1), L= {(0, 1]}, w(071] =1, p(O,l} =1.
fort=1,...,7T do
Select ¢ € L with probability p, and b ~ Unif (¢)
Bidby=b
Observe m¢ € £ = (z,y] € L
b (LL‘, mj]a £r7<_ gmty y]
L+ (L\OULUL,
(.L)gl < wy, WET < wy
for / € L do
3(0) (1= g 1 by > mi}) L{m, = €}
we = weexp(ng(¢))
P+ v [€lwe

end

KEL |K|w"

end

One popular strategy for adversarial partial-information problems of this kind is the celebrated
ExP3 algorithm (Auer et al., 2002/03). However, EXP3 and similar approaches are tailored to
problems with a fixed number of actions. In the auction setup, by contrast, the number of actions is
a priori unbounded, and even the number of actions up to equivalence grows with 7.

Moreover, since the payoff associated with a bid is sharply discontinuous, discretizing the in-
terval and playing a standard bandit strategy on a finite set of arms fails to achieve sublinear regret,
even when the discretization is exponentially fine. (A proof of this fact appears in Appendix B.)

Standard tools are therefore unusable in this regime. In Algorithm 2, we present a novel strategy
for bandit games of this type that allows the number of actions to grow over time.



LEARNING IN AUCTIONS

The algorithm maintains a sequence of nested partitions £;,¢t > 1 of (0, 1] into ¢ intervals of
the form (z,y] for 0 < z < y < 1. We set £; = {(0, 1]} and the refinement of the partition L; is
done as follows. Let £ = (x,%y] € L; be the unique interval in £; such that m; € £. Then £ is split
into two subintervals ; = (z,my] and £, = (my¢, y]: Li11 = (L¢ \ £) U £, U £,.. This procedure is
illustrated in Figure 2.

my mi ms mog
| ] ] M ] ] 1 L
[ T T X 7 T 1 t
0 N 1
L
mi 4 %& ms
— —
hg DY
4 Ly
my m1\‘ m / ms my
} % 7 : } t—7—1 | Lipa
0 1

Figure 2: Tllustration of the splitting procedure for constructing £, from £,

Each element ¢ € L; is assigned a probability py; defined in (4.5) below and such that p;; > 0
and ), ¢z, ey = 1. Atround ¢, the EXPTREE strategy prescribes to bid randomly as follows. First
draw ¢ € L; with probability p,; and then draw a bid b; ~ Unif(¢) uniformly over the interval £.
We denote the resulting distribution of b; by B; and by P, the associated probability. Note that B;
is a mixture of uniform distributions that can be computed explicitly given py;, ¢ € L;:

PBt(A) = Z Pet

LELy

ANY|, VA C (0,1) measurable, 4.3)

where here and in what follows, | A| denotes the Lebesgue measure of A C [0, 1]. It remains only
to specify the distribution py;,¢ € L;. Intuitively, we hope to construct this distribution based on
the intervals’ past performance, but since the player only observes the value v; when b; > m;, we
cannot evaluate the gain g(b,t) of an arbitrary bid b at round ¢. Instead, we compute an unbiased
estimate §(b, t) of g(b,t) by

1— (Ut —mt)

By (b S ) 1{b; > mt})]l{b >y}

a.t) = (1

It is not hard to check that Ey,p,[g(b,t)] = ¢(b,t). Moreover, this estimate is constant on each

interval £ € £, and depends only on whether m; < ¢ (i.e., m; < xforallz € /) orm; = . Asa

result, overloading the notation, we define the following estimate for the gain of a bid in the interval
l:

B 1-— (’Ut — mt)

Pgt(bt > mt)

g(e,t) = (1 1{b; > mt})]l{mt =<1}, (4.4)
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With this estimate, we can compute py 11, € L;41 using exponential weights:

t

WW t+1 A

Dol = : ,  Wepy1 = €XP (77 (¢, 3)> A€ Lia (4.5)
D U (TP ;

for some tuning parameter 7 > 0 to be chosen carefully. The reweighing by the length |¢| of the
interval £ in (4.5) is one the main novelties of our algorithm.

The performance of the EXPTREE algorithm depends to some extent on the behavior of the
adversary, in the following way. After 1" auctions, the best fixed bid in hindsight will lie in some
interval /° € L of width A° = [¢°|. (If more than one interval contains an optimal bid, ¢° can
denote the widest such interval.) We obtain the following theorem.

Theorem 5 Let vy,...,vr € [0,1] and my,...,mp € [0,1] be arbitrary sequences, and let A°
be defined as above. The strategy EXPTREE run with parameter n = +/log(1/A°) /AT A1 achieves

the pseudo-regret bound
Ry < 44/Tlog(1/A°). (4.6)

The proof appears in Appendix A.

Note that choosing a value of 7 appears to require knowledge of A° and 7" in advance. However,
the so-called “generic doubling trick” allows the bidder to learn these values adaptively at the price
of a constant factor (Hazan and Kale, 2010). (This change also requires replacing the width of the
interval containing £° by the width of the narrowest interval in L7.) Since this technique is standard,
we relegate the details to Appendix A.

It is tempting to assert that a O(,/7 log(1/A°)) rate of convergence could also be achieved by
constructing a A°-discretization of the interval and optimizing over this finite set of actions with a
standard bandit algorithm. This line of reasoning is incorrect for two reasons. First, the logarith-
mic dependence on the number of actions (1/A°) is generally only achievable in full-information
settings and not in those with partial feedback. Moreover, even with full information, a fixed dis-
cretization is doomed to incur linear regret, as shown in Appendix B.2.1.

4.2. Adaptive adversaries—Regret bound in high probability

Theorem 5 establishes an upper bound on the pseudo-regret against any adversary. Moreover, when
the adversary is oblivious, the same bound holds for the expected regret. When the adversary is
adaptive, however, achieving a bound on the expected regret requires a slightly modified algorithm,
Algorithm 3. Actually, this algorithm achieves regret bound not only in expectation but also with
high probability. We henceforth consider a shifted version of the auction described above where the
reward associated to bid b at time ¢ is given by

g(b,t) = (v — my)1{b > my} + my.

Shifting the reward of the game in this way does not affect the regret, but it has the convenient effect
that the bidder’s net utility at each round is positive.

Algorithm 3 differs from Algorithm 2 chiefly in the method of calculating the estimated gain
in (4.4). In place of §(¢,t), EXPTREE.P employs a biased estimate §(¢, t) defined by

vl{by > m} + B mil{by < mi}+
]P)Bt (bt > ’I’)’Lt) 1- PBt (bt > mt)

git,t) = L{m; = 0} + 1{m; = 0} 4.7

10
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Algorithm 3: EXPTREE.P

input: n € (0, 1/8), A (0, 1/4), XS (0, 1), L= {(0, 1]}, W1 = 1,p(071] =1.

fort=1,...,7T do

Select ¢ € L with probability p, and b ~ Unif(¢)
1 with probability v

Bid by = ¢ 0 with probability
b with probability 1 — 2~

Observe my € £ = (x,]

Zl = (xamt]’ ZT = (mt,y]

w[l < Wy, wgr < Wy

L+ (L\OULUL,

for / € L do
if b; > m; then
Observe v,
~ +8 8
g(0) + Pgtl(%pmt)]l{mt <0} + 171P5t(bt>mt)]l{mt =0}
else

\ R e By Ume < 0} + ilfpgaimt)n{mt = 0}

end

. ¢
wy < weexp(ng(€)), pe %

end

end

The following theorem holds.

Theorem 6 Letvy,...,vp € [0,1] and my, ..., mp € [0, 1] be arbitrary sequences. Let {° € Lp
denote the narrowest interval in the finest partition L1 and let A° = |(°| denote its width. The
strategy EXPTREE.P run with parameters

log(1/A°) 1
= _— — = 2 =
n st Ny Y= and f3

logT
2T

vields

Ry < 24/8Tlog(1/A°) + 3+/2T log T log(1/6) ,

with probability at least 1 — . Moreover,

E[R7] < 24/8Tlog(1/A°) +31/2T log T .
The proof of Theorem 5 appears in Appendix A.

4.3. Lower bound

The dependence on A° in Theorems 5 and 6 is unfortunate, since the resulting bounds become
vacuous when A° is exponentially small. However, it turns out that this dependence is unavoidable.
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We prove in this section a lower bound on the pseudo-regret Rr. Since Ry < ERr, this bound will
also hold for expected regret.

We begin with a lemma establishing that the rate /7 is optimal, using standard information
theoretic techniques for lower bounds (see, e.g., (Tsybakov, 2009)). The proof is standard and is
deferred to Appendix B.

Lemma 7 Fixanm € [1/4,3/4]. There exist a pair of adversaries U and L such that m; = m for
all t and the sequence vy, ..., vr is i.i.d. conditional on the choice of adversary and such that

T
max max EA[Zg(b t) Zg b, t) if
t=1

Ae{U,L} be[0,1] - 32

Moreover, under adversary U any bet b > m is optimal, and under adversary L any bet b < m is
optimal.

We are now in a position to prove a tight minimax lower bound.

Theorem 8 For any strategy and any value of A° € (0,1/4), there exists sequences vy, . ..,vr €
[0,1] and my,...,mp € [0,1] such that A° is the smallest positive gap between the adversary’s
bids and
T T
max EY g(b,t) —E  g(be,t) > —+/T|logy(1/2A°)]
’ =1 t=1

The proof appears in Appendix B.

5. Conclusion and open questions

Building on established strategies for the bandit problem, we propose a first set of strategies tailored
to online learning in repeated auctions. Depending on the model, stochastic or adversarial, we obtain
several regret bounds ranging from O(log T') to O(+/T') and exhibit a reasonable family of models
where regret bounds O(7"%/?) are achievable for all 5 € (0,1).

In both setups, several questions are beyond the scope of this paper and are left open.

1. As illustrated by the bulk of the recent research on online auctions, budget constraints are
inherent to how online auctions are managed (see Tran-Thanh et al., 2014, and references
therein). Devising strategies under such constraints that lead to good bounds on the pseudo-
regret (3.1) is perhaps the most intriguing line of research following this work.

2. What is the effect of covariates on this problem? In practice, potentially relevant informa-
tion about the value of the good is available before bidding (Mohri and Medina, 2014) and
incorporating such covariates can allow for a better model. This question falls into the realm
of contextual bandits that has been studied both in the stochastic and the adversarial frame-
work (Wang et al., 2003; Kakade et al., 2008; Bubeck and Cesa-Bianchi, 2012; Perchet and
Rigollet, 2013; Slivkins, 2014).

3. In the adversarial case, our benchmark is the best fixed bid in hindsight. While this is rather
standard in the online learning literature, recent developments have allowed for more compli-
cated benchmarks, namely sophisticated but fixed strategies (Han et al., 2013). Such devel-
opments are available only for the full information case, however.

12
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4. Our results indicate that when facing well behaved bidders, better regret bounds are achiev-
able in the stochastic case. Similar results are of interest in the adversarial case too (Hazan
and Kale, 2010; Rakhlin and Sridharan, 2013; Foster et al., 2015). Here too, unfortunately,
existing results are limited to the full information case.

5. The proof of Theorem 6 involves a union bound which leads to a O(+/T log(T') log(1/4))
regret upper bound. The result is a gap of order /log(T") between the upper and lower bound.
Is this term really present?
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Appendix A. Proofs of upper bounds
A.1. The stochastic case
A.1.1. PROOF OF THEOREM 1

Since v, is independent of (my, b;) and E[v;] = v, we have

T T
Ry = bm{g)ﬁEZ(v —m)1{b > my} —E (v — m)1{b, > my}
€9, t=1 t=1

T T
= EZ(’U —my)1{v > m;} — EZ(U —my)1{by > my}

t=1 t=1
where in the second equality we used the fact that the supremum is attained at b = v because
(v —m)1{b > m} < (v—my)y = (v —my)1{v > my}, where z, = max(z,0).
Next, decomposing the regret on the the events {b; < m;} and {b; > m;}, on which the bidder
lost and won auction ¢ respectively, we get

(v —=me)T{v > ms} < (v —mp)L{v >my > b} + (v —my) L{bs > my}.

This yields

T

T
Rp <EY (v—m)l{v>my > b} +EY (my —v).1{b > my}
t=1 t=1
T

T
<Y P{b < v} +E (my —v)L{v <my < by}
t=1

t=1

To control the first sum, using a union bound and Hoeffding’s inequality, we get

t
_ 3logt _9
]P’{bt<v}gszlP{vs—v<— 55 <.
so that
— 7"'2 T
Rr < +ED (my —v)L{v < my < bi}. (A.8)

t=1

Denote by w; the value of w during the ¢th round. To control the second sum in (A.8), observe
that, since b; > m; implies that the bidder won auction ¢, we have w;1; = wy + 1. Denote by
W = {t €[T] : by > my} the set of auctions that the bidder has won. If m; > v + A, we have

T
S = EZ(mt — ’U)]l{l) <my < bt}

t=1

_ 3logt
gEZ(mt—v)]l{A<mt—v<th—v+ o }
tew
S 3(logT)
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Using Hoeffding’s inequality, we get

3logT
2t

P{ﬁt —v > u} < T3e/2

It yields, on the one hand, that for any ¢ € [T,

e 3logT [6logT ee 3logT
/ IP’{TJH— 8 —U>u+A}du§ 06 +/ P{@t—v> o8 +u}du
0 2t t 0 2t
6logT 3 |
< T —
=Vt \/;
On the other hand, if t > ta := 6(log T') /A2, we have

- log T > log T
/OP{thr 33% —v>u—|—A}du§/0 P{%; — v > 3;’% +u}dugT3\/§

It yields

AT 6 l0g T T 12logT -
S< > +\/>§ & /\2\/6T10gT+\/>.
£ ¢ A 2

A.1.2. PROOF OF THEOREM 3
We will prove the following bound:
Cu( 275" 108" T+ 1) ifa<1
_ 2
Rr < GCH(Iog(T) n 1) ifa=1

6log(T) (1+ 255 ) + moig +1 ifa>1

Recall from the proof of Theorem 1 that

S = EZ(mt —v)I{v < my < b}

3logt
<EDY (my—0)1{0<my—v <y, —v+4/ 2'[01}g}
t

teW
3logT 3logT
<E (@wt—v+ 8 )]I{O<mt—v<17wt—v+ o8 bal
2wt Wi
tew
T
_ 3logT _ 3logT
§E2(vt—v—|— o )]1{O<mt—v<vt—v~|— ot }/\1,
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where we used the fact that bids always belong to [0, 1]. Using the margin condition, we get that for
a>0

+

T
3loe T 1+«
SgCuEZ(ﬁt—er ;f) Al
t=1

Hoeffding’s inequality yields that P{v; —v > ¢} < e~ thus we get that

3log T\ 1+ logT
E(T)t —v+ o8 ) ¢ <1+« / +4/ s og )ae*%t‘zda
2t + /310gT
1+« /310gT _9g2
S 1+a / ,TogT ) (& ds

(610gT> 5 1+a/
t 2tl+Ta \V6logT

)
u®e " 2y, .

As a consequence, if o < 1, we obtain

T 1ta
S<C.Y (61°th)1; +%.
t=1

and for o < 1, this yields that

12 —a a

S < M(—TlT log 5 T + 1) ,
11—«

while, for ¢ = 1, we get

S <6C (log(T) + 1)2.

When o < 2, it holds that

o0 oo
/ ue~ 2 dy < / wle 2 qy, <2
V6logT V6logT

hence

SSGlogT+1+CH( ET: (610gT>1§ 1—|—a>

14+a
t=[6log T]+1 t2
C 4C
< 6log(T)(1+21) 4 1 41,
a—1 a—1

For bigger values of «, we shall use the fact that if the margin condition is satisfied for a > 2, then
it is also satisfied for the value @ = 2. As a consequence, plugging the value @ = 2 in the above
equation, we obtain that

S <6log(T)(1+2C,) +4C, +1.
7 7
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A.2. The adversarial case
A.2.1. PROOF OF THEOREM 5

When +/log(1/A°)/4T > 1, the claimed bound is vacuous, so we assume in what follows that

n = +/log(1/A°)/AT.
Define Wy = »_, . |k|wy . By extending the definition (4.5) of py; to all £ € Ly41, we can
write

Wit [jwe ¢ exp(ng(4,t)) .
log—— =1o : =lo ex £,1)).
S W, g ) W, g Y preexp(ng(t,t))

LeLit1 LeLyyr

By construction, §(¢,t) < 1. Since e* < 1+ z + 22 for z < 1 and n < 1, this implies

W, . .
log VE/H <log Y pea(1+ng(l,t) +n°(L, 1)) (A.9)
t £E£t+1
=log (1+n > pead.t) +n0> Y peag(t,t)?)
LeLiy1 LeLiqtq
<n Y pedGt) +0* Y pead(et).
LeLyt LeLiyn

It follows from (4.4) and the fact that Z€€£t+1,mtje pet = Pp,(by > my) that

> et = Y pe(l- g > )

by >m
leLyt eLyyq ( t t)
me =~

= ]P)Bt(bt > mt) — (]. — (Ut — mt)>]l{bt > mt}
= g(bt,t) + PBt(bt > mt) — ]l{bt > mt} .

As a consequence, we obtain

E > peg(l,t) =Eg(bt)
Zeﬁt“

We also have

Z pﬁ,tg(gvt)Q = Z Dot (1 - Wﬂ{bt > mt})2

LeLiy LELY
me jé

1—
= ]P)Bt(bt > mt) (1 - =

=Pgp, (bt > my) + (
Thus we obtain, since 0 < 1 — (v; — my) < 2, that

E Y pragt,t)’ <4
f€£z+1
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Combining the above displays with (A.9) yields

W,
Elog T/;/—'H < nEg(bs,t) + 4n? .
t

Let G(b) = .1 §(b,t) and G = 3/, g(bs, t). Summing on T, we obtain

E[log gffz] < nEG + 4n*T .

Let b° € argmaxycg ) ZthlE(vt — my)1{b > my}, and suppose b° € ¢° € Lp. We can
bound W by writing

T T
Ellog Wr] = E[log Y |lexp (1) §(¢,1))] > E[log |¢°[exp (1) a(b°,1))]
LeLp t=1 t=1

= log A° + nG(b°).

Rearranging and noting that Wy = 1, we obtain

_ - log(1/A°
Ri = max EG(b) — EG < 4T + 2827
be(0,1] n
Plugging in the given value of 7 yields the claim. |

A.2.2. THE GENERIC DOUBLING TRICK

Even though the statement of Theorem 5 appears to require knowledge of several parameters in
advance, it is possible to turn EXPTREE into a fully online algorithm at the cost of only slightly
worse performance.

We initialize two bounds, By = 1 and Bo = 1, and run EXPTREE with parameter =
(1/2)y/Ba/Br A 1 until either t < Br orlog 1/A < B fails to hold. When one of these bounds
is breached, we double the bound and restart the algorithm, maintaining the partition £; but setting
wyp = 1 for all ¢ € £;. This modified strategy yields the following theorem.

Theorem 9 The strategy EXPTREE run with the above doubling procedure yields an expected

regret bound
Ry < 484/2Tlog(1/A).

Proof Divide the algorithm into stages on which By and B are constant, and denote by B7. and
B the values of By and Ba when the algorithm terminates. The proof of Theorem 5 implies that
the expected regret incurred during any given stage is at most

AnT + log(1/4) < 4nBr + Ba <44/Tlog(1/A).
n n

It remains to sum these regrets over each stage, since the actual expected regret (which requires a
fixed bid across all stages) can only be smaller.
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Suppose that the algorithm lasted a total of £ + m + 1 stages, £ of which were ended because
the bound ¢t < By was violated and m of which were ended because the bound log(1/A) < Ba
was violated. The total regret across all £ + m + 1 stages is bounded by

L m 4

224./2i L) = 72(2(“1)/2 —1)(2U*D/2 1) < 48 /B:Bx -
i=0 j=0 (V2-1)

Moreover, when the algorithm terminates, we have the bounds B} < T and By < 2log(1/A).
The result follows. |

A.2.3. PROOF OF THEOREM 6

Denote by G(b) = Zle G(b,t) and G(b) = Zthl (b, t) the cumulative true and estimated gains
for a bet b. Before proving Theorem 6, we establish the following lemma, which shows that G can
be viewed as an upper bound on G.

Lemma 10 With probability at least 1 — & the bound G(b,T) < G(b,T) + % holds for all
be[0,1].

Proof Denote by E; expectation with respect to the random choice of b;, conditioned on the out-
comes of rounds 1,...,¢ — 1. Fix b € [0, 1] and define d(b,t) = ¢(b,t) — §(b,t). Note that

E[d(b,t)] = Py, (b > my) 11— Pg, (b > my)
so that
d(b,t) := d(b,t) — Eed(b, )] = vL{b > me} (1 m)
]l{bt < mt}

+ meL{b < my}(1 ) (A.10)

B IP)Bt (bt < mt)

This immediately immediately yields d(b,t) < g(b,t) < 1. Since 8 < 1, and € < 1 + z + 22 for
xr < 1, we have

E; [f400)] = PEldbNIR, [eﬁi(b,t)] < PEMOII (1 4 2R, [d2 (b, 1)]).

It follows from (A.10) that
2 2

= v m
1
< ———WU{b>m} + {b<m
Pgt(bt > mt) { t} 1- ]P)Bt(bt > mt) { t}
1
= _E]Et[d(bvt)}

Combining this with the preceding inequality and the fact that SE;[d(b, t)] < 1 yields
E, [eﬁd(b,t)] < ePEd(b,1)] (1 _ BEt[d(b,t)]) <1.
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Let Z; = exp(Bd(b,t)). Then

T T
E[e5CO-CO)] < E[exp (83 d(b,1))] =E[[] 2] < 1,

t=1

where the last step follows by conditioning on each stage in turn and applying the above bound.

To obtain a uniform bound, we note that the function b — G(b) — G(b) takes at most T
random values G, ..., Gy as b varies across [0, 1]. Moreover, the proof above establishes that
max; Elexp(8G;)] < 1. Hence

T
-G - . BG;
E[exp (B[brél[g,)l(] G(b) —G(b)])] =E[exp (6;161%(;])] < ;E[e 1 <T.
Applying the Markov bound yields the claim. |

We are now in a position to prove Theorem 6.
Proof [Proof of Theorem 6] We proceed as in the proof of Theorem 5. Note that the choice of n
guarantees that B; is a valid probability distribution.

As above, define Wy = 3, L |k|wy ¢+ We have

W, Llwe s exp(ng(l,t -

LeLitq LeLiqq

Since ng(¢,t) < 77# < 1, the inequality e® < 1 + x + 22 for 2 < 1 implies

W, . _
log V;/“ <log Y pra(l+ng(l,t) +1°G(L, 1))
t é€£t+1

=log (L+n > peadt) +0° Y peeg(tt)?).

LeLit LeLitn
By the same reasoning as in the proof of Theorem 5, we have

1
1—2v

1
1— 2y

Z pé7t§(£,t) =

LeLipq

> Pa (b€ O)G(L,t) <

fEﬁt.H

(g(bt,t) +28)

and similarly
1

1—2v

Z pZ,t§(£> t)2 =

f€£t+1

> Pp, (b € 0L, 1),

£€£t+1
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To compute this last quantity, note that (4.7) implies

Pg, (b € 0) -
E PBt bt € f E P Btb L ( tﬂ{bt > mt} +5)g(£7t)
Bz t > m
el beLyy
mt-<€

]P)Bt bt EE) ~
E 1{b; < l,t

+ 1_PB,§ bt>m)(mt {t—mt}+5)g(7>
LeLyyq
mt>f

vul{by >m+8  ml{b <m}+p
< g(be, t)g(b
< g(bs,t tst ( Pg, (b € ) + 1—Pg, (b €74) )

= g(be, 1)g(bs, t) + B(9(1, 1) + g(0, 1))
< (1 +8)(g(1,t) + (0, ))
t) <

where in the last inequality, we used the fact g(b;,
the above bounds yields
2

log V[;tv:l < 1 (o(bot) +28) + 1705 (L4 A)(E(1,0) +3(0.0).

Defining G = Zthl g(bt, t) and summing on 7" yields

2
log VT < My 2T05 044 gyG1,T) + G0, 1)

Wo S 1—2v "1-2vy 1-2y
] 2TnB | 2np° .

< G 1 G(b).

ST 0T, Ty A max G)

nd §(bs, t) < g(1,t)+g(0,¢). Combining

We bound Wr by writing

log Wr > log A° +n max G(b).
be(0,1]

Rearranging yields
(1= 29)1og(1/A%) _ o lox(1/A%)
n

(1—2v—2n(1+ B)) max G(b) — G <276 +
be[0,1]

Applying Lemma 10, with probability 1 — J we have

~1
max G(b) < max G(b) + log(T4 ")
be(0,1] be(0,1] B
which implies
-1 °
(1 =2y = 29(1 + §)) pmax G(,T) = G < T5 + 1°g<fg5 ) . log(ln/A )

since 27y + 2n(2 + B) < 8n < 1. We obtain

—1 o
mx G(0) - G < 21+ BT 4 BECIED) oy a1+ )T

—1 o
< 9TB + 84T + Og(? ) | log(ln/A ).
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Plugging in the given parameters then yields the claim.
The bound in expectation follows upon integrating the first result. |

Appendix B. Proofs of lower bounds

B.1. The stochastic case
B.1.1. PROOF OF THEOREM 4

Recall that for « € (0, 1), we let pu,, be the distribution on [0, 1] with density

ga(z) = Ca [(m - %)“‘111{x € (1/2,1/2 4 2¢]} + (2 — % —2)* M {w € (1/2 4 2¢, 1]}} ,

where C,, is a normalizing constant. (In what follows, C',, > 0 is a constant that may change from
line to line but depends on « only.) When «v > 1, we define p,, to be the point mass at 1/2+¢. With
these definitions, p, satisfies the margin condition with parameter o around both 1/2 and 1/2 + 2¢.

We first consider the case where o < 1. Recall from (3.1) that the pseudo-regret is given by
Rr = Zle ry where r; denotes the instantaneous regret, defined by

re(v) = Ey(v —my)1{v > my} — E, (v — my)1{b > my}.

Note first that under v or v/ we can restrict our attention to strategies that bid b; > 1/2. Observe
first that since v = 1/2 under v, the definition of the pseudo-regret (3.1) simplifies to

T
= Ey(mi —v)1{b > my} =E, Z/ (x —1/2)ga(z)dx (B.11)
t=1

Moreover,

/bt (z — 1/2)ga(x)dx > Co[b] T 1{by < 2e} + ((26)*T + (b — 26)* 1) 1{b; > 2¢}]
1/2

where b; = by — 1/2 > 0. Therefore
Rr(v) > CoE,Saq1, (B.12)

where

Mﬂ

Sa =Y bP1{b < 2e}+ ((26)* + (by — 2¢)*)1{by > 2¢}.

1
We will use the fact that E,Sq41 > (26)*F1S(e) and E, S, < (2¢)°T + S(¢), where

~+
I

T
=> P, {b > 2}
t=1
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Assume first that the bidder uses a deterministic strategy. For any such strategy, define the
associated test ¢, € {v,V'} by = vif by < eand v = v/ if by > . One the one hand, under v,
the instantaneous regret r; satisfies

r(v) > By (my — 1/2)1{1/2 + & > m}1{b; > 1/2 + €} > Coe® P, (¢ = /).
On the other hand, under ¢/, the instantaneous regret r; satisfies

r(V) > By [1{b, < 1/2 4 e}(1/2 + 26 — my) (L1{1/2 + 2e > my} — 1{b; > m})]
>E, [1{b; < 1/24¢€}(1/2 — 26 — my) (1{1/2 + 26 > my} — 1{1/2 + & > m;})]
=E, [1{b; <1/2+¢e}(1/2 — 2 — my)1{1/2 + & < my < 1/2 + 2¢]

2¢e
= CoP, (¢ = v) / 1%(26 — x)dx > CoPy (Y = )T,
€

The last two displays yield
re(v) +r (V) > Che®tt [P,,(i/}t =)+ P, (Y = V)] . (B.13)

Denote by 7 and 7| the distribution of values observed by the bidder during the first ¢ — 1 rounds
under v and v/, respectively. Since the bidder’s strategy is deterministic, the bidder’s action at time
t and hence the test v; depend only on the observed values for the first ¢ — 1 rounds. Equation B.13
can therefore be rewritten as

Tt(l/) + Tt(l//) 2 CaEaJrl []P)f,t (wt = I//) + ]P)ﬁ; (th = I/)] .
It follows from Sanov’s inequality (see, e.g., (Bubeck et al., 2013, Lemma 4)) that
1 SN
Py, (1hr = V') + Py (3P = v) > 5 &XP [ — KL(21, 27)] -

Moreover, since (i) m; has the same distribution under both v and v/ and (ii), v; is observed only
when by > my, we get

t—1
KL(2y, ;) = E, Z 1(by > my)KL(Bern(1/2), Bern(1/2 + 2¢))
s=1
t
S 462 ZIP’,,(mt S bt)
s=1
< Che’E, S,

< Co(26)T0T + £2S(e)
where we used the fact that ¢ < (2v/2)~! in the first inequality. The above display yields the bound
Rr(v) + Rr(V') > CoTe" exp [ — Cu((26)*TT + £2S(e))],
and combining with (B.12) yields

Rr(v) + Rr(V') > Co (T exp [ — Cu ((26)*TT + £2S(e))]| + (22)*MS(e))
> Co(Te* M exp [ — £7S(e)] + (26)*7!S(e))
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for ¢ such that (2¢)2T*T = O(1). We obtain

RT(V) + RT(I//) > Ca Sen[,%)f’-T} {T&‘a+l exp(—52S) +€O¢+ls}

The infimum is achieved when
B log(Te?)

S 2

Vo,
9

so in particular ) )
Ry(v) + Rp(V) > CoTe* ™!

for all ¢ = O(T~1/2). Choosing e = $7~1/? yields

Rr(v) + Rp(V') > CoT 2",

as desired.
When a > 1, we obtain the following analogue to (B.11):

T
Ri(v) =Y E,el{b >1/2+¢} =eS(e)
t=1

where .
S'e)=> Pu{by>1/2+¢}.
t=1

The rest of the proof is the same apart from some small changes. Since v; is only observed when
by > 1/2 + €, we obtain the bound

KL(2y, 7)) < Coe?S'(e) .

This yields B B
Rr(v) + Rp(V') > C, . EiﬁfT] {Teexp(—®S) +e5}.

The infimum is again attained at
_ log(Te?)

S =

VO,
which implies
Rr(v) + Ry(V') > Cy (1 + log(T<?))

for all e < 1/4. Choosing ¢ = O(1) yields the claim.
The same claims hold for randomized strategies upon averaging over the internal randomness
of the strategy. |
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B.2. The adversarial case
B.2.1. DISCRETIZATION CANNOT ACHIEVE SUBLINEAR REGRET

A player in the auction game we describe has an uncountable number of actions available at each
step. Unlike other settings, naively discretizing the interval and playing on only a finite subset of
[0, 1] cannot achieve sublinear regret in this context. To make the following bound comparable to
the bounds we achieve in Theorems 5 and 6, we define A° to be the smallest positive gap between
the opponent’s bids over the course of the auctions. We obtain the following.

Proposition 11 Let S C [0, 1] be finite. Let S be a (possibly randomized) strategy supported only
on S. Then there is a sequence of values {v;} and opponent bids {m} with A° = Q(1/|S|) such
that the pseudo-regret satisfies

T T

Ry = brél[%)l(] ZE(vt —m)1{b > m} — ZE(% —my)1{b; > my} >
) t=1

oo |~

Proof We will show that there is a distribution over sequences {v; } and {m;} such that the claimed
bound holds in expectation. The existence of specific sequence satisfying the bound immediately
follows.

There must exist a pair of points s1, sy € [1/4,3/4] such that sy — 51 > m and no point
in S lies in the interval (sq, s2). Choose ¢ = I(sa — s1). Generate the sequences {v;} and {m,}
randomly by setting (v, m;) = (0, so—¢) with probability 1/2 and (v¢, m;) = (1, s1+¢€) otherwise,
independently for each ¢t € {1,...,T}.

The optimal bid against this sequence is any point in the interval (s; + €, so — €). On the other
hand, any bid outside this interval incurs pseudo-regret of at least 1/8 at each round. By assumption,
no point in S lies in the interval (s + €, s9 — €), so the strategy S incurs pseudo-regret of at least
T/8. |

B.2.2. PROOF OF LEMMA 7

We first consider deterministic strategies. Fix an €. Denote by U the adversary under which v; ~
Bern(m + ¢) and by L the adversary under which v; ~ Bern(m — ¢).

Given a sequence of bids by, ..., b, let T. and T}, be the number of times ¢ for which b, < m
and b; > m, respectively. Denoting the regret after 7" rounds by Ry, it is easy to show that

Ey[Rr] > eEy[T'] Ep[Rr] > eEL[T4].

Write Py and Py, for the law of 77 under adversary U and L, respectively, and denote by P, the
distribution of 7" when v; ~ Bern(m). Then Pinsker’s inequality implies

Ey[T] > Euo(T2) — TV/KL(Py, Pay) /2, EL[TL] > Eu(Ty) — Tv/KL(PL, Pay) /2.

By the data processing inequality,

2

KL(Py, Pay) < T - KL(Bern(m +¢),Bern(m)) <T < 8Te?,

m(1 —m)
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and likewise for KL(IP, P,y ). We therefore obtain

S (BulRe] + Ex[Re]) > =(5 — 2T=VT).

1

Setting € = ST

and bounding the average by a maximum yields

T
max Imax EA[Zg(b7t> _Zg(bt’t)] = g

A€{U,L} be[0,1] — —

for any deterministic strategy. The claim follows for general strategies by averaging over the bid-
der’s internal randomness and applying Fubini’s theorem. |

B.2.3. PROOF OF THEOREM &

We can assume without loss of generality that A is a power of 2, since this can change the regret by
at most a constant.
Set n = logy(1/2A). We divide the game into n stages of Z rounds each and will show that

any bidder incurs regret of at least 3% \/% during each stage by repeatedly applying Lemma 7.
During the first stage, apply Lemma 7 with m = 1/2. One of the two adversaries will incur

regret in expectation of at least 3% \/g . If that adversary is U, the next stage will use Lemma 7 with
m = 5/8; if it is L, then the next stage will use m = 3/8.

In general, for the ith stage we will apply Lemma 7 with m = 1/4 + ¢;27*~! for some c;.
If the U adversary has higher regret in expectation at that stage, then c;11 = 2¢; + 1; otherwise
ci+1 = 2¢; — 1. Note that during the ¢th stage, the smallest gap between two of the adversary’s bids
is 271,

The structure of the optimum bids for the adversaries U and L guarantees that during each stage,
there is an interval within which a fixed bid would be optimal for all previous stages. So after n
stages there is a fixed bid that is optimal for all n adversaries. Therefore the regret across the n
stages is equal to the sum of the regrets for each stage, and we obtain

T T

1 /T 1 1
E bt) — E be,t) >n—r\— = —VTn=—+/T]|l 1/2A
belo1) ;g( K ;g( nll 2y 32\/71 33 V Tllog2(1/24)],
as desired. [ |
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