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Abstract

Purely data driven approaches for machine
learning present difficulties when data is
scarce relative to the complexity of the model
or when the model is forced to extrapolate.
On the other hand, purely mechanistic ap-
proaches need to identify and specify all the
interactions in the problem at hand (which
may not be feasible) and still leave the is-
sue of how to parameterize the system. In
this paper, we present a hybrid approach us-
ing Gaussian processes and differential equa-
tions to combine data driven modelling with
a physical model of the system. We show how
different, physically-inspired, kernel func-
tions can be developed through sensible, sim-
ple, mechanistic assumptions about the un-
derlying system. The versatility of our ap-
proach is illustrated with three case studies
from computational biology, motion capture
and geostatistics.

1 Introduction

Traditionally, the main focus in machine learning
has been model generation through a data driven
paradigm. The usual approach is to combine a data
set with a (typically fairly flexible) class of models
and, through judicious use of regularization, make use-
ful predictions on previously unseen data. There are
two key problems with purely data driven approaches.
Firstly, if data is scarce relative to the complexity of
the system we may be unable to make accurate predic-
tions on test data. Secondly, if the model is forced to
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extrapolate, i.e. make predictions in a regime in which
data has not been seen yet, performance can be poor.

Purely mechanistic models, i.e. models which are in-
spired by the underlying physical knowledge of the
system, are common in many areas such as chem-
istry, systems biology, climate modelling and geophys-
ical sciences, etc. They normally make use of a fairly
well characterized physical process that underpins the
system, typically represented with a set of differential
equations. The purely mechanistic approach leaves us
with a different set of problems to those from the data
driven approach. In particular, accurate description
of a complex system through a mechanistic modelling
paradigm may not be possible: even if all the physical
processes can be adequately described, the resulting
model could become extremely complex. Identifying
and specifying all the interactions might not be feasi-
ble, and we would still be faced with the problem of
identifying the parameters of the system.

Despite these problems, physically well characterized
models retain a major advantage over purely data
driven models. A mechanistic model can enable ac-
curate prediction even in regions where there may be
no available training data. For example, Pioneer space
probes have been able to enter different extra terres-
trial orbits despite the absence of data for these orbits.

In this paper we advocate an alternative approach.
Rather than relying on an exclusively mechanistic
or data driven approach we suggest a hybrid system
which involves a (typically overly simplistic) mechanis-
tic model of the system which can easily be augmented
through machine learning techniques. We will start by
considering two dynamical systems, both simple latent
variable models, which incorporate first and second or-
der differential equations. Our inspiration is the work
of (Lawrence et al., 2007; Gao et al., 2008) who en-
coded a first order differential equation in a Gaussian
process (GP). However, their aim was to construct an
accurate model of transcriptional regulation, whereas
ours is to make use of the mechanistic model to in-
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corporate salient characteristics of the data (e.g. in a
mechanical system inertia) without necessarily associ-
ating the components of our mechanistic model with
actual physical components of the system. For exam-
ple, for a human motion capture dataset we develop
a mechanistic model of motion capture that does not
exactly replicate the physics of human movement, but
nevertheless captures salient features of the movement.
Having shown how first and second order dynamical
systems can be incorporated in a GP, we finally show
how partial differential equations can also be incorpo-
rated for modelling systems with multiple inputs.

2 Latent Variables and Physical
Systems

From the perspective of machine learning our approach
can be seen as a type of latent variable model. In a
latent variable model we may summarize a high dimen-
sional data set with a reduced dimensional represen-
tation. For example, if our data consists of N points
in a Q dimensional space we might seek a linear rela-
tionship between the data, Y ∈ RN×Q, and a reduced
dimensional representation, F ∈ RN×R, where R < Q.
From a probabilistic perspective this involves an as-
sumption that we can represent the data as

Y = FW + E, (1)

where E is a matrix-variate Gaussian noise: each col-
umn, ε:,q (1 ≤ q ≤ Q), is a multi-variate Gaussian
with zero mean and covariance Σ, i.e. ε:,q ∼ N (0,Σ).
The usual approach, as undertaken in factor analysis
and principal component analysis (PCA), to dealing
with the unknowns in this model is to integrate out F
under a Gaussian prior and optimize with respect to
W ∈ RR×Q (although it turns out that for a non-linear
variant of the model it can be convenient to do this the
other way around, see e.g. (Lawrence, 2005)). If the
data has a temporal nature, then the Gaussian prior in
the latent space could express a relationship between
the rows of F, ftn = ftn−1 + η, where η ∼ N (0,C)
and ftn is the n-th row of F, which we associate with
time tn. This is known as the Kalman filter/smoother.
Normally the times, tn, are taken to be equally spaced,
but more generally we can consider a joint distribution
for p (F|t), t = [t1 . . . tN ]>, which has the form of a
Gaussian process (GP),

p (F|t) =
R∏
r=1

N
(
f:,r|0,Kf:,r,f:,r

)
,

where we have assumed zero mean and independence
across the R dimensions of the latent space. The GP
makes explicit the fact that the latent variables are
functions, {fr(t)}Rr=1, and we have now described them

with a process prior. The notation used, f:,r, indicates
the r-th column of F, and represents the values of
that function for the r-th dimension at the times given
by t. The matrix Kf:,r,f:,r is the covariance function
associated to fr(t) computed at the times given in t.

Such a GP can be readily implemented. Given the co-
variance functions for {fr(t)} the implied covariance
functions for {yq(t)} are straightforward to derive. In
(Teh et al., 2005) this is known as a semi-parametric
latent factor model (SLFM), although their main fo-
cus is not the temporal case. Historically the Kalman
filter approach has been preferred, perhaps because of
its linear computational complexity in N . However,
recent advances in sparse approximations have made
the general GP framework practical (see (Quiñonero
Candela and Rasmussen, 2005) for a review).

So far the model described relies on the latent variables
to provide the dynamic information. Our main contri-
bution is to include a further dynamical system with
a mechanistic inspiration. We now use a mechanical
analogy to introduce it. Consider the following phys-
ical interpretation of (1): the latent functions, fr(t),
are R forces and we observe the displacement of Q
springs, yq(t), to the forces. Then we can reinterpret
(1) as the force balance equation, YD = FS+Ẽ. Here
we have assumed that the forces are acting, for exam-
ple, through levers, so that we have a matrix of sen-
sitivities, S ∈ RR×Q, and a diagonal matrix of spring
constants, D ∈ RQ×Q. The original model is recovered
by setting W = SD−1 and ε̃:,q ∼ N

(
0,D>ΣD

)
. The

model can be extended by assuming that the spring is
acting in parallel with a damper and that the system
has mass, allowing us to write,

FS = ŸM + ẎC + YD + ε, (2)

where M and C are diagonal matrices of masses and
damping coefficients respectively, Ẏ ∈ RN×Q is the
first derivative of Y w.r.t. time and Ÿ is the second
derivative. The second order mechanical system that
this model describes will exhibit several characteris-
tics which are impossible to represent in the simpler
latent variable model given by (1), such as inertia and
resonance. This model is not only appropriate for
data from mechanical systems. There are many analo-
gous systems which can also be represented by second
order differential equations, e.g. Resistor-Inductor-
Capacitor circuits. A unifying characteristic for all
these models is that the system is beign forced by la-
tent functions, {fr(t)}Rr=1. Hence, we refer to them as
latent force models (LFMs).

One way of thinking of our model is to consider pup-
petry. A marionette is a representation of a human
(or animal) controlled by a limited number of inputs
through strings (or rods) attached to the character.
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This limited number of inputs can lead to a wide range
of character movements. In our model, the data is the
movements of the marionette, and the latent forces are
the inputs to the system from the puppeteer.

Finally, note that it is of little use to include dynam-
ical models of the type specified in (2) if their effects
cannot be efficiently incorporated into the inference
process. Fortunately, as we will see in the case studies,
for an important class of covariance functions it is an-
alytically tractable to compute the implied covariance
functions for {yq(t)}Qq=1. Then, given the data a conju-
gate gradient descent algorithm can be used to obtain
the hyperparameters of the model which minimize the
minus log-likelihood, and inference is performed based
on standard GP regression techniques.

3 First Order Dynamical System

A single input module is a biological network motif
where the transcription of a number of genes is driven
by a single transcription factor. In (Barenco et al.,
2006) a simple first order differential equation was
proposed to model this situation. Then (Lawrence et
al., 2007; Gao et al., 2008) suggested that inference of
the latent transcription factor concentration should be
handled using GPs. In effect their model can be seen as
a latent force model based on a first order differential
equation with a single latent force. Here we consider
the extension of this model to multiple latent forces.
As a mechanistic model, this is a severe over simpli-
fication of the physical system: transcription factors
are known to interact in a non linear manner. Despite
this we will be able to uncover useful information. Our
model is based on the following differential equation,

dyq(t)
dt

+Dqyq(t) = Bq +
R∑
r=1

Srqfr(t). (3)

Here the latent forces, fr(t), represent protein con-
centration (which is difficult to observe directly), the
outputs, yq(t), are the mRNA abundance levels for
different genes, Bq and Dq are respectively the basal
transcription and the decay rates of the q-th gene, and
Srq are coupling constants that quantify the influence
of the r-th input on the q-th output (i.e. the sensitiv-
ity of gene q to the concentration of protein r). Solving
(3) for yq(t), we obtain

yq(t) =
Bq
Dq

+
R∑
r=1

Lrq[fr](t),

where we have ignored transient terms, which are eas-
ily included, and the linear operator is given by the
following linear convolution operator,

Lrq[fr](t) = Srq exp(−Dqt)
∫ t

0

fr(τ) exp(Dqτ)dτ .

If each latent force is taken to be independent with a
covariance function given by

kfr,fr
(t, t′) = exp

(
− (t− t′)2

`2r

)
,

then we can compute the covariance of the outputs
analytically, obtaining (Lawrence et al., 2007)

kypyq (t, t′) =
R∑
r=1

SrpSrq
√
π`r

2
[hqp(t′, t) + hpq(t, t′)],

where

hqp(t′, t) =
exp(ν2

rq)
Dp +Dq

exp(−Dqt
′)

{
exp(Dqt)

×
[
erf
(
t′ − t
`r
− νrq

)
+ erf

(
t

`r
+ νrq

)]
− exp(−Dpt)

[
erf
(
t′

`r
− νrq

)
+ erf(νrq)

]}
,

here erf(x) is the real valued error function, erf(x) =
2√
π

∫ x
0

exp(−y2)dy, and νrq = `rDq/2.

Additionally, we can compute the cross-covariance be-
tween the inputs and outputs,

kyqfr
(t, t′) =

Srq
√
π`r

2
exp(ν2

rq) exp(−Dq(t− t′))

×
[
erf
(
t′ − t
`r
− νrq

)
+ erf

(
t′

`r
+ νrq

)]
.

3.1 p53 Data

Our data is from (Barenco et al., 2006), where
leukemia cell lines were bombarded with radiation to
induce activity of the transcription factor p53. This
transcription factor repairs DNA damage and triggers
a mechanism which pauses the cell-cycle and poten-
tially terminates the cell. In (Barenco et al., 2006)
microarray gene expression levels of known targets of
p53 were used to fit a first order differential equation
model to the data. The model was then used to pro-
vide a ranked list of 50 genes identified as regulated
by p53.

Our aim is to determine if there are additional “la-
tent forces” which could better explain the activity of
some of these genes. The experimental data consists of
measurements of expression levels of 50 genes for three
different replicas. Within each replica, there are mea-
surements at seven different time instants. We con-
structed a latent force model with six latent forces, as-
suming that each replica was independently produced
but fixing the hyperparameters of the kernel across the
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replicas1. We employed a sparse approximation, as
proposed in (Alvarez and Lawrence, 2009), with ten
inducing points for speeding up computation.

Of the six latent functions, two were automatically
switched off by the model. Two further latent func-
tions, shown in Figure 1 as latent forces 1 & 2, were
consistent across all replicas: their shapes were time
translated versions of the p53 profile as identified by
(Barenco et al., 2006; Lawrence et al., 2007; Gao et
al., 2008). This time translation allows genes to ex-
perience different transcriptional delays, a mechanism
not included explicitly in our model, but mimicked by
linear mixing of an early and a late signal. The re-
maining two latent functions were inconsistent across
the replicas (see e.g. latent force 3 in Figure 1). They
appear to represent processes not directly related to
p53. This was backed up by the sensitivity parameters
found in the model. The known p53 targets DDB2,
p21, SESN1/hPA26, BIK and TNFRSF10b were found
to respond to latent forces 1 & 2. Conversely, the
genes that were most responsive to latent force 3 were
MAP4K4, a gene involved in environmental stress sig-
nalling, and FDXR, an electron transfer protein.

4 Second Order Dynamical System

In Section 1 we introduced the analogy of a mari-
onette’s motion being controlled by a reduced number
of forces. Human motion capture data consists of a
skeleton and multivariate time courses of angles which
summarize the motion. This motion can be modelled
with a set of second order differential equations which,
due to variations in the centers of mass induced by
the movement, are non-linear. The simplification we
consider for the latent force model is to linearize these
differential equations, resulting in the following second
order dynamical system,

d2yq(t)
dt2

+Cq
dyq(t)

dt
+Dqyq(t) = Bq+

R∑
r=1

Srqfr(t), (4)

where the mass of the system, without loss of gener-
ality, is normalized to 1. Whilst (4) is not the correct
physical model for our system, it will still be help-
ful when extrapolating predictions across different mo-
tions, as we shall see in the next section. Note also
that, although similar to (3), the dynamic behavior of
this system is much richer than that of the first order
system, since it can exhibit inertia and resonance.

1The decay rates were asssumed equal within replicas.
Although this might be an important restriction for this
experiment, our purpose in this paper is to expose a gen-
eral methodology without delving into the details of each
experimental setup.

For the motion capture data yq(t) corresponds to a
given observed angle over time, and its derivatives rep-
resent angular velocity and acceleration. The system
is summarized by the undamped natural frequency,
ω0q =

√
Dq, and the damping ratio, ζq = 1

2Cq/
√
Dq.

Systems with a damping ratio greater than one are
said to be overdamped, whereas underdamped systems
exhibit resonance and have a damping ratio less than
one. For critically damped systems ζq = 1, and finally,
for undamped systems (i.e. no friction) ζq = 0.

Ignoring the initial conditions once more, the solution
of (4) is again given by a convolution, with the linear
operator now being

Lrq[fr](t) =
Srq
ωq

exp(−αqt)

×
∫ t

0

fr(τ) exp(αqτ) sin(ωq(t− τ))dτ ,

(5)

where ωq =
√

4Dq − C2
q /2 and αq = Cq/2.

Once again, if we consider a latent force governed by
a GP with the RBF covariance function we can solve
(5) analytically, obtaining a closed-form expression for
the covariance matrix of the outputs,

kypyq (t, t′) =
R∑
r=1

SrpSrq
√
π`2r

8ωpωq
k(r)
ypyq

(t, t′).

Here k(r)
ypyq (t, t′) can be considered the cross-covariance

between the p-th and q-th outputs under the effect of
the r-th latent force, and is given by

k(r)
ypyq

(t, t′) = hr(γ̃q, γp, t, t′) + hr(γp, γ̃q, t′, t)

+ hr(γq, γ̃p, t, t′) + hr(γ̃p, γq, t′, t)
− hr(γ̃q, γ̃p, t, t′)− hr(γ̃p, γ̃q, t′, t)
− hr(γq, γp, t, t′)− hr(γp, γq, t′, t),

where γp = αp + jωp, γ̃p = αp − jωp, and

hr(γq, γp, t, t′) =
Υr(γq, t′, t)− exp(−γpt)Υr(γq, t′, 0)

γp + γq
,

with

Υr(γq, t, t′) = 2 exp
(
`2rγ

2
q

4

)
exp(−γq(t− t′))

− exp
(
− (t−t′)2

`2r

)
w(jzrq(t))− exp

(
− (t′)2

`2r

)
× exp(−γqt)w(−jzrq(0)), (6)

and zrq(t) = (t− t′)/`r − (`rγq)/2. Note that zrq(t) ∈
C, and w(jz) in (6), for z ∈ C, denotes Faddeeva’s
function w(jz) = exp(z2)erfc(z), where erfc(z) is the
complex version of the complementary error function,
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(a) Replica 1. Latent force 1.
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(b) Replica 2. Latent force 1.
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(c) Replica 3. Latent force 1.
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(d) Replica 1. Latent force 2.
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(e) Replica 2. Latent force 2.
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(f) Replica 3. Latent force 2.
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(g) Replica 1. Latent force 3.
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(h) Replica 2. Latent force 3.
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(i) Replica 3. Latent force 3.

Figure 1: (a)-(c) and (d)-(f) the two latent forces associated with p53 activity. p53 targets are sensitive to a
combination of these functions allowing them to account for transcriptional delays. (g)-(h) a latent force that
was inconsistent across the replicas. It may be associated with cellular processes not directly related to p53.

erfc(z) = 1− erf(z) = 2√
π

∫∞
z

exp(−v2)dv. Faddeeva’s
function is usually considered the complex equivalent
of the error function, since |w(jz)| is bounded when-
ever the imaginary part of jz is greater or equal than
zero, and is the key to achieving a good numerical sta-
bility when computing (6) and its gradients.

Similarly, the cross-covariance between latent func-
tions and outputs is given by

kyqfr
(t, t′) =

`rSrq
√
π

j4ωq
[Υr(γ̃q, t, t′)−Υr(γq, t, t′)],

A visualization of a covariance matrix with a latent
force and three different outputs (overdamped, under-
damped and critically damped) is given in Figure 2.

4.1 Motion Capture data

Our motion capture data set is from the CMU motion
capture data base2. We considered 3 balancing mo-
tions (18, 19, 20) from subject 49. The subject starts
in a standing position with arms raised, then, over
about 10 seconds, he raises one leg in the air and low-
ers his arms to an outstretched position. Of interest
to us was the fact that, whilst motions 18 and 19 are
relatively similar, motion 20 contains more dramatic
movements. We were interested in training on motions
18 and 19 and testing on the more dramatic movement

2The CMU Graphics Lab Motion Capture Database was
created with funding from NSF EIA-0196217 and is avail-
able at http://mocap.cs.cmu.edu.
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Figure 2: Visualization of the covariance matrix asso-
ciated with the second order kernel. Three outputs and
their correlation with the latent function are shown.
Output 1 is underdamped and the natural frequency
is observable through the bars of alternating correla-
tion and anti correlation in the associated portions of
the covariance matrix. Output 2 is overdamped, note
the more diffuse covariance in comparison to Output
3 which is critically damped.

to assess the model’s ability to extrapolate. The data
was down-sampled by 32 (from 120 frames per second
to just 3.75) and we focused on the subject’s left arm.
Our objective was to reconstruct the motion of this
arm for motion 20 given the angles of the shoulder
and the parameters learned from motions 18 and 19
using two latent functions. First, we train the second
order differential equation latent force model on mo-
tions 18 and 19, treating the sequences as independent
but sharing parameters (i.e. the damping coefficients
and natural frequencies of the two differential equa-
tions associated with each angle were constrained to
be the same). Then, for the test data, we condition on
the observations of the shoulder’s orientation to make
predictions for the rest of the arm’s angles.

For comparison, we considered a regression model that
directly predicts the angles of the arm given the ori-
entation of the shoulder using standard independent
GPs with RBF covariance functions. Results are sum-
marized in Table 1, with some example plots of the
tracks of the angles given in Figure 3.

5 Partial Differential Equations and
Latent Forces

So far we have considered dynamical latent force mod-
els based on ordinary differential equations, leading to
multioutput Gaussian processes which are functions
of a single variable: time. However, the methodology
can also be applied in the context of partial differen-

Table 1: Root mean squared (RMS) angle error for
prediction of the left arm’s configuration in the motion
capture data. Prediction with the latent force model
outperforms the prediction with regression for all apart
from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09

tial equations in order to recover multioutput Gaussian
processes which are functions of several inputs.

5.1 Diffusion in the Swiss Jura

The Jura data is a set of measurements of concentra-
tions of several heavy metal pollutants collected from
topsoil in a 14.5 km2 region of the Swiss Jura. We
consider a latent function that represents how the pol-
lutants were originally laid down. As time passes, we
assume that the pollutants diffuse at different rates
resulting in the concentrations observed in the data
set. We therefore consider a simplified version of the
diffusion equation, known also as the heat equation,

∂yq(x, t)
∂t

=
d∑
j=1

κq
∂2yq(x, t)
∂x2

j

,

where d = 2 is the dimension of x, the measured con-
centration of each pollutant over space and time is
given by yq(x, t), and the latent function fr(x) now
represents the concentration of pollutants at time zero
(i.e. the system’s initial condition). The solution to
the system (Polyanin, 2002) is then given by

yq(x, t) =
R∑
r=1

Srq

∫
Rd

fr(x′)Gq(x,x′, t)dx′

where Gq(x,x′, t) is the Green’s function given as

Gq(x,x′, t) =
1

2dπd/2T d/2q

exp

− d∑
j=1

(xj − x′j)2

4Tq

 ,

with Tq = κqt. Again, if we take the latent function to
be given by a GP with the RBF covariance function
we can compute the multiple output covariance func-
tions analytically. The covariance function between
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Figure 3: (a) Inferred latent force for the motion capture data. The force shown is the weighted sum of the two
forces that drive the system. (b)-(f) Predictions from the latent force model (solid line, grey error bars) and from
direct regression from the shoulder angles (crosses with stick error bars). For these examples noise is high due
to the relatively small length of the bones. Despite this the latent force model does a credible job of capturing
the angle, whereas direct regression with independent GPs fails to capture the trends.

the output functions is obtained as

kypyq (x,x′, t) =
R∑
r=1

SrpSrq|Lr|1/2

|Lrp + Lrq + Lr|1/2

× exp
[
−1

2
(x− x′)> (Lrp + Lrq + Lr)

−1 (x− x′)
]
,

where Lrp,Lrq and Lr are diagonal isotropic matrices
with entries 2κpt, 2κqt and 1/`2r respectively. The co-
variance function between the output and latent func-
tions is given by

kyqfr
(x,x′, t) =

Srq|Lr|1/2

|Lrq + Lr|1/2

× exp
[
−1

2
(x− x′)> (Lrq + Lr)

−1 (x− x′)
]
.

5.2 Prediction of Metal Concentrations

We used our model to replicate the experiments de-
scribed in (Goovaerts, 1997, pp. 248,249) in which a
primary variable (cadmium, copper, lead and cobalt)
is predicted in conjunction with some secondary vari-
ables (nickel and zinc for cadmium; lead, nickel and

zinc for copper; copper, nickel and zinc for lead; nickel
and zinc for cobalt).3 By conditioning on the val-
ues of the secondary variables we can improve the
prediction of the primary variables. We compare re-
sults for the diffusion kernel with results from predic-
tion using independent GPs for the metals and “or-
dinary co-kriging” (as reported by (Goovaerts, 1997,
pp. 248,249)). For our experiments we made use of
10 repeats to report standard deviations. Mean abso-
lute errors and standard deviations are shown in Table
2 ((Goovaerts, 1997) does not report standard devia-
tions for the co-kriging method). Our diffusion model
outperforms co-kriging for all but one example.

6 Discussion

We have proposed a hybrid approach for the use of sim-
ple mechanistic models with Gaussian processes which
allows for the creation of new kernels with physically
meaningful parameters. We have shown how these ker-
nels can be applied to a range of data sets for the
analysis of microarray data, motion capture data and

3Data available at http://www.ai-geostats.org/.
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Table 2: Mean absolute error and standard devia-
tion for ten repetitions of the experiment for the Jura
dataset. IGPs stands for independent GPs, GPDK
stands for GP diffusion kernel, OCK for ordinary co-
kriging, Cd for Cadmium, Cu for Copper, Pb for lead
and Co for Cobalt. For the Gaussian process with dif-
fusion kernel, we learn the diffusion coefficients and the
length-scale of the covariance of the latent function.

Metals IGPs GPDK OCK
Cd 0.5823±0.0133 0.4505±0.0126 0.5
Cu 15.9357±0.0907 7.1677±0.2266 7.8
Pb 22.9141±0.6076 10.1097±0.2842 10.7
Co 2.0735±0.1070 1.7546±0.0895 1.5

geostatistical data. To do this we proposed a range of
linear differential equation models: first order, second
order and a partial differential equation. The solu-
tions to all these differential equations are in the form
of convolutions. When applied to a Gaussian process
latent function they result in a joint GP over the latent
functions and the observed outputs which provides a
general framework for multi-output GP regression.

We are not the first to suggest the use of convolu-
tion processes for multi-output regression, they were
proposed by (Higdon, 2002) and built on by (Boyle
and Frean, 2005) — the ideas in these papers have
also recently been made more computationally practi-
cal through sparse approximations suggested by (Al-
varez and Lawrence, 2009). However, whilst (Boyle
and Frean, 2005) was motivated by the general idea of
constructing multi-output GPs, our aims are different.
Our focus has been embodying GPs with the charac-
teristics of mechanistic models so that our data driven
models can exhibit well understood characteristics of
these physical systems. To maintain tractability these
mechanistic models are necessarily over simplistic, but
our results have shown that they can lead to significant
improvements on a wide range of data sets.
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