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Abstract

Here we obtain approximate Bayes inferences
through variational methods when an expo-
nential power family type prior is specified for
the regression coefficients to mimic the char-
acteristics of the Bridge regression. We ac-
complish this through hierarchical modeling
of such priors. Although the mixing distri-
bution is not explicitly stated for scale nor-
mal mixtures, we obtain the required mo-
ments only to attain the variational distri-
butions for the regression coefficients. By
choosing specific values of hyper-parameters
(tuning parameters) present in the model, we
can mimic the model selection performance of
best subset selection in sparse underlying set-
tings. The fundamental difference between
MAP, maximum a posteriori, estimation and
the proposed method is that, here we can ob-
tain approximate inferences besides a point
estimator. We also empirically analyze the
frequentist properties of the estimator ob-
tained. Results suggest that the proposed
method yields an estimator that performs sig-
nificantly better in sparse underlying setups
than the existing state-of-the-art procedures
in both n > p and p > n scenarios.

1 INTRODUCTION

Consider the familiar linear regression model, y =
Xβ + ε where y is an n-dimensional vector of re-
sponses, X is the n × p dimensional design matrix
and ε is an n-dimensional vector of independent noise

Appearing in Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS)
2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

variables which are normally distributed, Np

(
0, σ2Ip

)

with variance σ2. In what follows, assume that a sub-
set of the regression coefficients, β, is zero indicating
that the corresponding regressors do not contribute to
the response in the underlying model.

Consider the bridge regression (Frank and Friedman
1993) which results from the following regularization
problem:

min
β

(y − Xβ)
′
(y − Xβ) + λ

p∑

j=1

|βj |γ (1)

where γ = {0, 1, 2} result in familiar and well-studied
solutions, i.e. best subset selection, lasso and ridge
estimators respectively.

Our particular focus is on the set γ = (0, 1). It is also
well-known that the values within this set will lead to
nonconcave minimization problems which may render
hard to deal with. On the other hand, such penalty
regions provide much sparser solutions than the lasso
where γ = 1 (Tibshirani 1996).

A Bayesian solution can be obtained by placing ap-
propriate priors on the regression coefficients that will
mimic the effects of the Bridge penalty. As is very
well-known, this choice of prior would be an indepen-
dent exponential power density on each of the coef-
ficients. A closed form solution is not possible with
a normal likelihood since we lose the quadratic struc-
ture of the prior in the kernel of the density. However,
as it has been studied, this family of distributions for
0 < γ < 2 can be represented as scale mixtures of nor-
mals which makes a prior of such form possible with
analytical ease through some hierarchical modeling
(Andrews and Mallows 1974, West 1984, 1987). A very
well-known example of this is the double-exponential
distribution (yielding the lasso solution) which can be
modeled as a mixture of normals with an exponential
distribution as the mixing distribution. Although not
related to this family, it is again well-known that a
Student’s t distribution can be obtained as a mixture
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of normals where the mixing distribution is gamma.
Although a normal mixture representation is possible
for the exponential power family for 0 < γ < 2, a rec-
ognizable mixing distribution may not be obtained for
γ 6= 1 in a readily available form which will present a
problem in Bayesian hierarchical modeling. The hier-
archical structures studied by (Figueiredo 2003) and
(Park and Casella 2008) to achieve the lasso solution
in the Bayesian paradigm make use of such an explic-
itly stated mixing distribution to mimic the effects of
a double-exponential prior. Despite the unavailability
of such explicitly stated mixing distributions, we may
be able to exploit the mixture formulation under the
variational Bayes framework by only extracting the re-
quired moments.

2 THE MODEL

Here a normal likelihood is assumed, y|β, σ2 ∼
N (Xβ, σ2I), with independent priors on the regres-
sion coefficients of the form p(βj|λ) ∝ exp {−λ|βj |γ},
λ > 0, 0 < γ < 1 and a typical conjugate prior on the
error precision σ−2 ∼ G(c0, d0). It is obvious to those
who are familiar with the simplest Bayesian models
that the exponential power family prior is not a con-
jugate prior with the normal likelihood for γ 6= 2.

Following (Andrews and Mallows 1974, West 1984),
the above family of distributions can be written as

p(βj |λ, γ) =

∫ ∞

0

N (0, τ−1
j λ−2/γ)f(τj)dτj , (2)

where N (α, ̺) denotes a normal pdf with mean α and
variance ̺, f(τj) ∝ τ−1/2q(τj), and q(τj) is the density
of the stable distribution of index γ/2.

If we proceed by placing independent normal pri-
ors on the regression coefficients p(βj |τj , λ, γ) =

λ1/γ
√

τj/2π exp(−τjλ
2/γβ2

j /2) and regard f(τj) as a
hyper-prior on τj , we obtain

λ1/γ

2Γ(1 + 1/γ)
exp (−λ|βj |γ) =

∫ ∞

0

p(βj |τj , λ, γ)f(τj)dτj ,

(3)
where Γ(.) denotes the Gamma function.

Let us first introduce the variational framework and
then derive the approximate marginal distributions for
the parameters.

2.1 VARIATIONAL INFERENCE

The marginal likelihood of the observed data in (1)
or in many other non-trivial models cannot be ob-
tained analytically. Yet the integral can easily be ap-
proximated via the variational methods (Jordan et al.
1999). We can decompose the marginal likelihood

conditional on λ and γ following (Bishop 2006). Let
θ = (β, σ2, τ ). Given a λ and a γ value, we have

log p(y|λ, γ) =

∫

Θ

q(θ|λ, γ) log
p(θ,y|λ, γ)

q(θ|λ, γ)
dθ

︸ ︷︷ ︸
Lλ,γ

−
∫

Θ

q(θ|λ, γ) log
p(θ|y, λ, γ)

q(θ|λ, γ)
dθ

︸ ︷︷ ︸
KL(q‖p)

(4)

where Lλ,γ is referred to as the lower-bound on the
marginal likelihood and KL(.‖.) denotes the Kullback-
Leibler divergence between two distributions. Since
this quantity is a strictly non-negative one and is equal
to 0 only when p(θ|y, λ, γ) = q(θ|λ, γ), the first term
in (4) constitutes a lower-bound on log p(y|λ, γ). It
is evident that maximizing the first term in the right
hand side of (4) is equivalent to minimizing the second
term in the right hand side, suggesting that q(θ|λ, γ) is
an approximation to the posterior density p(θ|y, λ, γ).

Following (Bishop and Tipping 2000) we consider a
factorized form

q(θ|λ, γ) =
∏

i

qi(θi|λ, γ), (5)

where θi is a sub-vector of θ. Maximizing the lower
bound with respect to qi(θi|λ, γ) yields

qi(θi|λ, γ) =
exp〈log p(y, θ|λ, γ)〉j 6=i∫

Θi
exp〈log p(y, θ|λ, γ)〉j 6=idθi

, (6)

where 〈.〉j 6=i denotes the expectation with respect to
the distributions qj(θj) for j 6= i. As we will see,
due to the conjugate structure we will obtain for our
model via the scale normal mixture representation of
the exponential power prior, these expectations will
be easily evaluated. Thus the procedure will consist of
initializing the required moments and cycling through
them by updating the distributions given by (6).

2.2 APPROXIMATE POSTERIORS

Following the solution given in (6) and the aforemen-
tioned normal mixture representation of the exponen-
tial power distribution, we will obtain the approximate
marginal posterior distributions for the regression co-
efficients and the error variance. Although, due to the
unknown mixing distribution f(τj), we cannot get an
explicit expression for q(τj), fortunately we can evalu-
ate 〈τj〉 which is required for q(β|λ, γ).

The approximate marginal posterior distributions of
the regression coefficients and the error precision are
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given by

q(β|λ, γ)
d
= N

(
β̂, Σβ

)
(7)

q(σ−2|λ, γ)
d
= G

(
ĉ, d̂
)

(8)

where

β̂ = 〈σ−2〉ΣβX′y

Σβ =
(
X′X〈σ−2〉 + T

)−1

T = λ2/γdiag(〈τj〉)
ĉ = n/2 + c0

d̂ =
1

2
y′y − y′X〈β〉 +

1

2

n∑

i=1

xi〈ββ′〉x′
i + d.

The above-mentioned moments are obvious except for
〈τj〉 since we do not have an explicit form available for
its approximate distribution.

〈β〉 = β̂ (9)

〈ββ′〉 = Σβ + 〈β〉〈β′〉 (10)

〈σ−2〉 = ĉ/d̂ (11)

Following (6), the approximate marginal distribution
of τj can be written as

q(τj |λ, γ) =
exp (〈log p(βj |τj , λ, γ)〉 + 〈log f(τj)〉)∫∞

0
exp (〈log p(βj |τj , λ, γ)〉 + 〈log f(τj)〉) dτj

.

(12)
Notice from (3) that, the left hand side evaluated at
β2

j = 〈β2
j 〉 is the normalizing constant for q(τj |λ, γ).

Furthermore, if we differentiate both sides of (3) with
respect to β2

j and evaluate it again at β2
j = 〈β2

j 〉, we
obtain

λ1−1/γγ〈β2
j 〉γ/2

2Γ(1 + 1/γ)
exp

(
−λ〈β2

j 〉γ/2
)

=

∫ ∞

0

τj
λ1/γτj√

2π
exp

(
−1

2
τjλ

2/γ〈β2
j 〉
)

f(τj)

︸ ︷︷ ︸
∝q(τj)

dτj . (13)

This is the expectation of τj with respect to some un-
normalized density which is proportional to q(τj). Af-
ter normalization we obtain,

〈τj〉 = λ1−2/γγ〈β2
j 〉γ/2−1. (14)

Now we have all the required moments to carry out
the iterative procedure explained in Section 2.1.

The lower bound Lλ,γ can be calculated very straight-
forwardly both for tracking the monotonic increase

and for possibly setting a convergence criterion.

Lλ,γ = 〈log p
(
y|β, σ2

)
〉 + 〈log p (β|τ , λ, γ)〉

+〈log p
(
σ−2

)
〉 + 〈log f (τ )〉

−〈log q (β|λ, γ)〉 − 〈log q
(
σ−2|λ, γ

)
〉

−〈log q (τ |λ, γ)〉 (15)

where

〈log p
(
y|β, σ2

)
〉 = −1

2

n∑

i=1

ni[log 2π − 〈log σ−2〉]

−〈σ−2〉(d̂ − d0) (16)

〈log p (β|τ , λ, γ)〉 = −p

2
log 2π +

1

2

p∑

j=1

〈log τj〉

+γ−1 log λ

−λ2/γ

p∑

j=1

〈τj〉〈β2
j 〉 (17)

〈log p
(
σ−2

)
〉 = c0 log d0 + (c0 − 1)〈log σ−2〉

−d0〈σ−2〉 − log Γ(c0) (18)

〈log f (τ )〉 =

p∑

j=1

〈log f(τj)〉 (19)

〈log q (β|λ, γ)〉 = −p

2
(log 2π + 1) − 1

2
log |Σβ| (20)

〈log q
(
σ−2|λ, γ

)
〉 = ĉ log d̂ + (ĉ − 1)〈log σ−2〉

−d̂〈σ−2〉 − log Γ (ĉ) (21)

〈log q (τ |λ, γ)〉 =

p∑

j=1

〈log p(βj |τj , λ, γ)〉 + p log 2

+

p∑

j=1

〈log f(τj)〉 − pγ−1 log λ

+p log Γ(1 + 1/γ) + λ

p∑

j=1

〈β2
j 〉γ/2.

(22)

After simplifications the lower-bound reduces to

Lλ,γ = −n

2
log(2π) +

p

2
+

1

2
log |Σβ| + c0 log d0

−ĉ log d̂ − log Γ(c0) + log Γ(ĉ) + pγ−1 log λ

−p log 2 − p log Γ(1 + 1/γ) − λ

p∑

j=1

〈β2
j 〉γ/2.

(23)
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2.3 SOME REMARKS

Since our primary goal is sparsity, the lower end of the
interval γ = (0, 1) will be our preference. Recall that
when γ = 0, (1) results in subset selection which per-
forms the best in sparse underlying setups (Tibshirani
1996). Thus we will expect that our procedure yields
sparser solutions as γ → 0.

There is a striking similarity between solutions ob-
tained by the variational bridge regression (VBR) as
γ → 0 and the variational relevance vector machines
(VRVM) which arises from Student’s t prior (through
scale normal mixtures where the mixing distribution
is gamma) on the regression coefficients (Bishop and
Tipping 2000). Student’s t distribution is a natural
prior in robust Bayesian analysis due to its heavy tails.
It is also used frequently as a natural shrinkage prior
assigning larger densities in the neighborhood of 0.

The first moment of the regression coefficients for the
VBR procedure can be obtained by the iterative pro-
cedure

〈β〉(k+1) = arg min
β

(y − Xβ)
′
(y − Xβ)

+λγ〈σ−2〉−1
(k)

p∑

j=1

β2
j 〈β2

j 〉γ/2−1
(k) , (24)

and for the VRVM, obtained by

〈β〉(k+1) = arg min
β

(y − Xβ)′ (y − Xβ)

+(2η + 1)〈σ−2〉−1
(k)

p∑

j=1

β2
j

〈β2
j 〉 + 2µ

,

(25)

where 〈.〉(k) denotes the expectation computed at
the kth iteration, and η and µ are some hyper-
parameters arising from normal-gamma type priors
used in VRVM; see (Bishop and Tipping 2000) for de-
tails. Notice from (24) and (25), as γ → 0, µ → 0
and λγ → 2η + 1, these solutions will be identical. Of
course, in these procedures, one would not choose to
set µ = 0, γ = 0 as these would lead to the impropri-
ety of the posteriors remembering that in such cases
the decomposition given in (4) would lose its mean-
ing, i.e. the normalizing constant diverges. It would
be sensible to choose small values as done by (Bishop
and Tipping 2000).

Also note that if we replace 〈β2
j 〉(k) and 〈βj〉(k+1) by

β2
j(k) and βj(k+1) respectively where βj(k+1) is the min-

imizer of the above-mentioned optimization problems
at the (k + 1)th iteration, after convergence, the solu-
tion obtained is the MAP estimate of β which emerges
through an expectation-maximization (EM) procedure
maximizing log p(β|y).

2.3.1 Computational Considerations

For smaller values of γ, and larger values of λ, as
the algorithm proceeds to the solution, some 〈β2

j 〉 will
approach zero corresponding to irrelevant predictors.
Recall that 〈β2

j 〉 = Σβ,jj + 〈βj〉2 where Σβ,jj is the
jth diagonal of the variance-covariance matrix of β.
Thus, as γ ↓ 0 and λγ → c, where c is some suffi-
ciently large positive finite constant, the approximate
posteriors will become nearly singular along the di-
mensions of irrelevant predictors. To avoid numerical
break-downs, we suggest that those βjs are removed
from the model as the algorithm proceeds. More for-
mally, we set βj = 0, if 〈β2

j 〉 < ǫMach where ǫMach

denotes the machine epsilon. This will also reduce the
computational burden since in a reduced model we will
have to invert a smaller dimensional matrix. Thus the
computational cost of the algorithm at each iteration
is O(p3

k) where pk is the the dimension of the prob-
lem at the kth iteration. When the lower-bound is
tracked as the algorithm proceeds, some breaks can be
observed where the dimension of the problem is being
reduced. Note that as we remove predictors from the
model, we are in fact creating a new problem with a
different size which means we are computing a brand-
new lower-bound. Thus this procedure can be seen as
a series of lower-bound maximization problems where
the problem with reduced number of dimensions uses
the non-zero elements of 〈β〉 in the larger model as its
initial values.

2.4 EXPERIMENTS

In this section we will investigate the frequentist prop-
erties of the point estimator given by the proposed
method (〈β〉) and contrast it with some of the state-
of-the-art methods. Here we will consider γ = 0.001
and λγ = {2, 3, 4, 5, 6, 7} and will also set c0 = 0.1
and d0 = 0.001 for the experiments. These choices of
hyper-parameters will lead to rather vague priors on β

and σ−2. Notice that the power exponential prior re-
sulting from chosen γ and λ values will be very heavy-
tailed and strongly peaked at zero.

We consider a model of the form y = Xβ+Nn(0, σ2I).
For the lasso and adaptive lasso solution paths we use
the lars package in R. In the following experiments,
y is centered and the columns of X are scaled to have
unit 2-norm, i.e. ‖xj‖2 = 1 for j = 1, ..., p.

2.4.1 Simulation 1

This section reports the results of a simulation study
comparing the model selection performance of the pro-
posed method with that of lasso and adaptive lasso
solution paths.
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We set the number of predictors to p = 64, number of
samples to n = {2.5p, 7.5p}, error standard deviation
to σ = 1, and sparsity level to q = {0.25p, 0.5p, 0.75p}
where q is the number of nonzero βjs in the model and
the regression coefficients to β1:q = (1, ..., 1)

′
, βq+1:p =

0. Then the model is generated as follows:

1. C ∼ W(p, Ip), where W denotes a Wishart den-
sity

2. xi ∼ N (0,C), where xi is the ith row of X

3. y = Xβ + Nn(0, σ2I)

For each (n, q) combination we generate 100 covariance
matrices, C, and for each C we generate 100 design
matrices, X. In Simulation 2 and 3, as in some earlier
studies (Tibshirani 1996, Zou 2006, Figueiredo 2003),
we fixed the correlation structure at cor(xij , xik) =
0.5|j−k| where j and k denote the jth and the kth
covariates. The results of (Zhao and Yu 2006) show
that under such a design (power decay correlation) the
lasso is model selection consistent. By randomizing the
correlation of the design we hope to provide a more
realistic assessment of effectiveness of such procedures
in terms of correct model specification. The results are
presented in Figure 1.

From top to bottom in Figure 1 we have six pairs of
sample size and sparsity levels, (n, q)={(2.5p, 0.25p),
(7.5p, 0.25p), (2.5p, 0.5p), (7.5p, 0.5p), (2.5p, 0.75p),
(7.5p, 0.75p)}. Not surprisingly as we move in the di-
rection (↓), the performance of the proposed method
diminishes. Nonetheless, in all cases we can see that
the proposed method outperforms the entire solution
paths of the competing procedures. Recall that here
we are comparing individual estimates arising from the
proposed method with the entire solution paths of the
lasso and the adaptive lasso (thus one would still need
to choose the tuning parameters). This performance is
most pronounced, again not surprisingly, in sparse un-
derlying cases (first two subfigures in Figure 1). Due to
the structure of the prior in VBR (for small γ), we are
observing a sparse estimation behavior similar to that
of subset selection. Note that for (n, q) = (2.5p, 0.75p)
all methods fail to detect the correct underlying model.
Of course this is not to say necessarily that they would
also provide bad predictions.

When it comes to the choice of a particular λγ value,
λγ = {2, 3} values may be chosen as a good compro-
mise among all cases considered. However, recall that
the method is tested only with a value of γ = 0.001
as we wanted to mimic a subset selection behavior
and obtain sparse estimation which requires a prior
assumption of a sparse underlying model. Further dis-
cussion is given in Conclusions.
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Figure 1: Model selection performances of VBR vs.
the lasso and adaptive lasso solution paths. In
each subfigure the boxplots are for VBR (λγ =
{2, 3, 4, 5, 6, 7}), lasso and adaptive lasso (γ =
{0.5, 1, 2}) respectively. The vertical axis represents
the number of correctly specified models (out of 100).

2.4.2 Simulation 2

We now compare the prediction accuracy and model
selection consistency using following two models which
are drawn from (Tibshirani 1996). The proposed
method is contrasted with the lasso (Tibshirani 1996),
the adaptive lasso (Zou 2006), the non-negative gar-
rote (Breiman 1995) and the ordinary least squares
(OLS) estimate.

Model 1 : In this example, we let β =
(3, 1.5, 0, 0, 2, 0, 0, 0)′ with iid normal predictors xi (i =
1, ..., n) where the pairwise correlation between the jth
and the kth columns of X is adjusted to be (.5)|j−k|.

Model 2 : We use the same setup as model 1 with β =
(5, 0, 0, 0, 0, 0, 0, 0)′.
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To choose the tuning parameters for the lasso and the
adaptive lasso we use 10-fold cross-validation. We also
use the the method of (Yuan and Lin 2005), CML, to
select the tuning parameter for the lasso. For both
models we set σ = 3 and experiment with two levels of
sample size, n = {50, 100}. 100 data sets are generated
for each case. In Table 1, we report the median predic-
tion error (MSE) on a test set of 10,000 observation for
each of the 100 cases. The values in the parentheses
give the bootstrap standard error of the median MSE
values obtained. C, I and CM respectively stand for
the number of correct predictors chosen, number of in-
correct predictors chosen and the proportion of cases
(out of 100) where the correct model was specified by
the method. The bootstrap standard error was calcu-
lated by generating 500 bootstrap samples from 100
MSE values, finding the median MSE for each case,
and then calculating the standard error of the median
MSE.

It is clear from the results that the proposed method
outperforms the others by a large margin under Model
2 both in terms of prediction and model selection accu-
racy. Under Model 1, it still performs the best for cer-
tain choices of λγ. It is evident and expected that the
smaller values of λγ perform better in the denser model
(Model 1). Having evaluated these results, λγ = 3
value can be chosen as a good compromise.

2.4.3 Simulation 3

Here we consider the case where p > n. We let β1:q =
(5, ..., 5)

′
, βq+1:p = 0, p = 250, q = 10, σ = {1, 3}

and n = 50 with iid normal predictors xi (i = 1, ..., n)
where the pairwise correlation between the jth and the
kth columns of X is again adjusted to be (.5)|j−k|. We
compare the proposed method with the lasso and the
adaptive lasso.

Again it is evident from the results presented in Table
2 that for certain choices of λγ, the proposed method
significantly outperforms the others. For p > n case,
VBR yields better results for larger λγ values than it
did for n > p case. λγ = 5 can be suggested as a good
compromise in this simulation study.

3 EXTENSIONS

The discussed method can easily be extended to the
binary response case. Suppose we make n binary
observations, y1, ..., yn. Following (Albert and Chib
1993), we can create a probit model by introducing
n latent variables, z1, ..., zn, where zi are independent
N (xiβ, 1), and defining yi = 1 if zi > 0 and yi = 0
otherwise. The joint posterior density for our problem

Table 1: Prediction and model selection performances
of VBR and the competing methods in Simulation 2.

Model 1, n = 50
Method MSE(se) C I CM
VBR (λγ = 2) 10.2255(0.1477) 2.69 0.17 60
VBR (λγ = 3) 11.0053(0.1981) 2.39 0.06 43
VBR (λγ = 4) 11.4702(0.1972) 2.08 0.02 27
VBR (λγ = 5) 11.9725(0.4651) 1.86 0.01 19
VBR (λγ = 6) 15.2724(0.3710) 1.55 0 9
VBR (λγ = 7) 15.6777(0.1171) 1.31 0 8
Lasso (CV) 10.2814(0.0999) 3 2.11 11
Lasso (CML) 10.2530(0.1266) 2.95 1.09 26
A. Lasso (CV) 10.5387(0.1576) 2.79 1.19 27
Non. Garrote 10.2000(0.0996) 2.98 2.41 2
OLS 15.7119(0.7054) 3 5 0

Model 1, n = 100
VBR (λγ = 2) 9.4047(0.0495) 2.98 0.08 90
VBR (λγ = 3) 9.4322(0.0492) 2.87 0.02 87
VBR (λγ = 4) 9.6489(0.1230) 2.70 0.01 71
VBR (λγ = 5) 10.4674(0.3727) 2.49 0 52
VBR (λγ = 6) 10.9238(0.0899) 2.30 0 39
VBR (λγ = 7) 11.0405(0.0726) 2.16 0 29
Lasso (CV) 9.6846(0.0677) 3 2.04 15
Lasso (CML) 9.5897(0.0529) 3 0.99 36
A. Lasso (CV) 9.7485(0.0874) 2.87 0.92 40
Non. Garrote 9.5880(0.0587) 3 2.39 7
OLS 9.6985(0.0868) 3 5 0

Model 2, n = 50
VBR (λγ = 2) 9.3366(0.0434) 1 0.14 86
VBR (λγ = 3) 9.2668(0.0342) 1 0.01 99
VBR (λγ = 4) 9.2610(0.0350) 1 0.01 99
VBR (λγ = 5) 9.2545(0.0367) 1 0 100
VBR (λγ = 6) 9.2592(0.0335) 0.99 0 99
VBR (λγ = 7) 9.2650(0.0466) 0.99 0 99
Lasso (CV) 9.7558(0.0782) 1 1.53 32
Lasso (CML) 9.5396(0.0662) 1 1 44
A. Lasso 9.6441(0.1430) 1 0.97 41
Non. Garrote 9.9496(0.0735) 1 3.1 1
OLS 15.1516(0.5148) 1 7 0

Model 2, n = 100
VBR (λγ = 2) 9.1768(0.0171) 1 0.11 90
VBR (λγ = 3) 9.1579(0.0205) 1 0 100
VBR (λγ = 4) 9.1625(0.0180) 1 0 100
VBR (λγ = 5) 9.1613(0.0181) 1 0 100
VBR (λγ = 6) 9.1620(0.0188) 1 0 100
VBR (λγ = 7) 9.1656(0.0154) 1 0 100
Lasso (CV) 9.4131(0.0354) 1 2.06 20
Lasso (CML) 9.2780(0.0300) 1 1.20 42
A. Lasso 9.4289(0.0757) 1 1.12 34
Non. Garrote 9.4253(0.0418) 1 3.31 1
OLS 9.6921(0.0632) 1 7 0

can then be written as

p(β, z, τ ,y) = p(β|τ )p(τ )

n∏

i=1

N (zi;xiβ, 1) , (26)

such that, zi > 0 if i ∈ I and zi ≤ 0 otherwise, where
I = {i|yi = 1}.
Similarly to the derivations in the linear regression
case, it is easy to show that the variational approxi-
mations to the distributions of β and zi for i = 1, ..., n



         23

Armagan

Table 2: Prediction and model selection performances
of VBR, lasso and adaptive lasso in Simulation 3.

σ = 1
Method MSE(se) C I CM
VBR (λγ = 2) 1.6257(0.0730) 10 26.81 0
VBR (λγ = 3) 0.8126(0.0753) 10 11.01 38
VBR (λγ = 4) 0.2677(0.0163) 10 1.09 94
VBR (λγ = 5) 0.2575(0.0173) 10 0 100
VBR (λγ = 6) 0.2608(0.0172) 10 0 100
VBR (λγ = 7) 0.2638(0.0167) 10 0 100
Lasso (CV) 0.8233(0.0809) 10 20.35 0
Lasso (CML) 1.0549(0.0804) 10 20.37 0
A. Lasso (CV) 1.7222(0.0958) 10 38.97 0

σ = 3
VBR (λγ = 2) 18.8568(0.6706) 10 32.91 0
VBR (λγ = 3) 16.5078(1.2552) 10 21.67 15
VBR (λγ = 4) 3.6775(0.5267) 9.99 7.18 70
VBR (λγ = 5) 3.3592(0.2555) 9.96 2.39 92
VBR (λγ = 6) 3.5160(0.3382) 9.95 1.04 95
VBR (λγ = 7) 3.9673(0.4997) 9.64 0.36 91
Lasso (CV) 10.8621(0.7361) 10 21.97 0
Lasso (CML) 15.2470(0.4904) 9.99 39.01 0
A. Lasso (CV) 7.8980(0.1114) 10 18.15 0

are

q(β|λ, γ)
d
= N

(
β̂, Σβ

)
(27)

q(zi|λ, γ)
d
=





N+

(
xiβ̂, 1

)
, yi = 1

N−
(
xiβ̂, 1

)
, yi = 0

(28)

where

β̂ = ΣβX′〈z〉
Σβ = (X′X + T)

−1

T = λ2/γdiag(〈τj〉)

〈zi〉 =

{
xi〈β〉 + φ(xi〈β〉)

1−Φ(−xi〈β〉) , yi = 1

xi〈β〉 − φ(xi〈β〉)
Φ(−xi〈β〉) , yi = 0

〈τj〉 = λ1−2/γγ〈β2
j 〉γ/2−1

〈β〉 = β̂

〈ββ′〉 = Σβ + 〈β〉〈β′〉,

N+ and N− denote normal densities truncated from
left and right respectively and φ(.) and Φ(.) denote
the standard normal density and distribution functions
respectively.

The lower bound in this case can be calculated again
very straight-forwardly as

Lλ,γ = 〈log p (y, z|β)〉 + 〈log p (β|τ , λ, γ)〉
+〈log p (τ )〉 − 〈log q (β|λ, γ)〉
−〈log q (z|λ, γ) − 〈log q (τ |λ, γ)〉 (29)

where

〈log p (y, z|β)〉 = −n

2
log 2π − 1

2
〈z′z〉 − 〈z′〉X〈β〉

+
1

2

n∑

i=1

xi〈ββ′〉x′
i (30)

〈log p (β|τ , λ, γ)〉 = −p

2
log 2π +

1

2

p∑

j=1

〈log τj〉

+γ−1 log λ

−λ2/γ

p∑

j=1

〈τj〉〈β2
j 〉 (31)

〈log p (τ )〉 =

p∑

j=1

〈log π(τj)〉 (32)

〈log q (β|λ, γ)〉 = −p

2
(log 2π + 1) − 1

2
log |Σβ| (33)

〈log q (z|λ, γ)〉 = −n

2
log 2π − 1

2
〈z′z〉 − 〈z′〉X〈β〉

+
1

2
〈β〉′X′X〈β〉

−
∑

i∈I

log (1 − Φ(−xi〈β〉))

−
∑

i∈I′

log (Φ(−xi〈β〉)) (34)

〈log q (τ |λ, γ)〉 =

p∑

j=1

〈log p(βj |τj , λ, γ)〉 + p log 2

+

p∑

j=1

〈log f(τj)〉 − pγ−1 log λ

+p log Γ(1 + 1/γ) + λ

p∑

j=1

〈β2
j 〉γ/2.

(35)

After simplifications we obtain

Lλ,γ = −n

2
log(2π) + p + log |Σβ| + γ−1 log λ

− log 2 − log Γ(1 + 1/γ) − λ

p∑

j=1

〈β2
j 〉γ/2

+
∑

i∈I

log (1 − Φ(−xi〈β〉))

+
∑

i∈I′

log (Φ(−xi〈β〉))

+
1

2

(
n∑

i=1

xi〈ββ′〉x′
i − 〈β〉′X′X〈β〉

)
.(36)
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4 CONCLUSIONS

We have considered a variational approximation ap-
proach to Bayesian inference in regression models
where the prior on the regression coefficients is of the
exponential power form. Nonconjugacy of such pri-
ors with a normal likelihood results in posteriors that
we cannot efficiently sample from. Exploiting the scale
mixture normal representation of such distributions we
form a hierarchical Bayesian model which mimics the
behavior of such priors. Although the mixing distri-
bution is not explicitly obtained, under the mean field
variational approximations we merely need to acquire
the required moments which is very straight-forward.
We showed that this yields a computationally rather
attractive procedure providing us with a sparse esti-
mator as well as approximate inferences on the pa-
rameters of interest. The choice of mentioned hyper-
parameters is of course a concerning issue. However, as
our primary goal in this study is sparse estimation, we
worked with small values of γ which very well mimic
the sparse estimation characteristic of best subset se-
lection. Then we experimented with a set of λγ values
to empirically evaluate their performances to come up
with a reasonable compromise for fast and sparse es-
timation/prediction.

As mentioned earlier, we used a small value of γ to
obtain sparse estimation which required a prior as-
sumption of a sparse underlying model. This is not a
radical assumption in many of today’s problems with
large number of available predictors and potentially
merely a few of them explaining the response. If we
do not have such a prior assumption of a sparse un-
derlying model, it may be better to conduct a search
over γ and λ values as the exploited hierarchy cov-
ers a wide spectrum of possible priors from the ones
that strongly enforce sparsity to the ones leading to
ridge-regression-like solutions.

We also provided a straight-forward extension to the
analysis of binary responses yet limited the experi-
ments to the linear regression case due to space con-
straints.
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