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Abstract

We define a novel, basic, unsupervised learn-
ing problem — learning hyperplane passing
through the origin with the lowest probabil-
ity density. Namely, given a random sam-
ple generated by some unknown probability
distribution, the task is to find a hyperplane
passing through the origin with smallest in-
tegral of the probability density on the hy-
perplane. This task is relevant to several
problems in machine learning, such as semi-
supervised learning and clustering stability.
We investigate the question of existence of
a universally consistent algorithm for this
problem. We propose two natural learning
paradigms and prove that, on input random
samples generated i.i.d. by any distribution,
they are guaranteed to converge to the opti-
mal separator for that distribution. We com-
plement this result by showing that no learn-
ing algorithm for our task can achieve learn-
ing rates that are independent of the data
generating distribution.

1 Introduction

While the theory of machine learning has achieved ex-
tensive understanding of many aspects of supervised
learning, our theoretical understanding of unsuper-
vised learning leaves a lot to be desired. In spite of the
obvious practical importance of various unsupervised
learning tasks, the state of our current knowledge does
not provide anything that comes close to the rigorous
mathematical performance guarantees that classifica-
tion prediction theory enjoys.
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In this paper we make a small step in that direction by
analyzing one specific unsupervised learning task — the
detection of low-density linear separators for data dis-
tributions over Euclidean spaces. We consider the sce-
nario in which some unknown probability distribution
over R" generates a finite i.i.d. sample. Taking such a
sample as an input we seek to find a hyperplane pass-
ing through the origin with lowest probability density.
We assume that the underlying data distribution has
a continuous density function and define the density of
a hyperplane as the integral of that density function
over that hyperplane.

Our model can be viewed as a restricted instance of
the fundamental issue of inferring information about
a probability distribution from the random samples it
generates. Tasks of that nature range from the am-
bitious problem of density estimation (Devroye and
Lugosi, 2001), through estimation of level sets (Ben-
David and Lindenbaum, 1997; Tsybakov, 1997; Singh
et al., 2008), densest region detection (Ben-David
et al., 2002), and, of course, clustering. All of these
tasks are notoriously difficult with respect to both the
sample complexity and the computational complexity
aspects (unless one presumes strong restrictions about
the nature of the underlying data distribution). Our
task seems more modest than these, however, we be-
lieve that it is a basic and natural task that is relevant
to various practical learning scenarios. We are not
aware of any previous work on this problem (from the
point of view of statistical machine learning, at least).

One important domain to which the detection of low-
density linear separators is relevant is semi-supervised
learning (Chapelle et al., 2006). Semi-supervised
learning is motivated by the fact that in many real
world classification problems, unlabeled samples are
much cheaper and easier to obtain than labeled ex-
amples. Consequently, there is great incentive to de-
velop tools by which such unlabeled samples can be
utilized to improve the quality of sample based classi-
fiers. Naturally, the utility of unlabeled data to classifi-
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cation depends on assuming some relationship between
the unlabeled data distribution and the class member-
ship of data points; see (Ben-David et al., 2008) for
a rigorous discussion of this point. A common postu-
late of that type is that the boundary between data
classes passes through low-density regions of the data
distribution. Transductive Support Vector Machine
(TSVM) by Joachims (1999) is an example of an algo-
rithm that implicitly uses such a low density boundary
assumption. Roughly speaking, TSVM searches for a
hyperplane that has small error on the labeled data
and at the same time has wide margin with respect to
the unlabeled data sample.

Another area in which low-density boundaries play
a significant role is the analysis of clustering stabil-
ity. Recent work on the analysis of clustering stabil-
ity found close relationship between the stability of
a clustering and the data density along the cluster
boundaries. Roughly speaking, the lower these den-
sities the more stable the clustering (Ben-David and
von Luxburg, 2008; Shamir and Tishby, 2008).

An algorithm for the lowest-density-hyperplane prob-
lem takes as an input a finite sample generated by some
distribution and has to output a hyperplane passing
through the origin with the smallest integral of the
probability density on the hyperplane. We investigate
two notions of success for these algorithms: uniform
convergence over a family of probability distributions
and consistency. For uniform convergence we prove
a general negative result, showing that no algorithm
can guarantee any fixed convergence rates (in terms
of sample sizes). This negative result holds even in
the simplest case where the data domain is the one-
dimensional unit interval.

On the positive side, we prove the consistency of
two natural algorithmic paradigms: soft-margin algo-
rithms that choose a margin parameter (depending on
the sample size) and output the separator with low-
est empirical weight in the margins around it, and
hard-margin algorithms that choose the separator with
widest sample-free margins.

The paper is organized as follows: Section 2 provides
the formal definition of our learning task as well as
the success criteria that we investigate. In Section 3
we present two natural learning paradigms for a sim-
pler, but related problem over the real line and prove
their consistency. Section 4 extends these results to
show the learnability of lowest-density hyperplanes for
probability distributions over R for arbitrary dimen-
sion d. In Section 5 we show that the previous univer-
sal consistency results cannot be improved to obtain
uniform learning rates (by any finite-sample based al-
gorithm). We conclude the paper with a discussion of
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directions for further research.

2 Preliminaries

For dimension d > 2, a learning algorithm L for the
lowest-density-hyperplane problem is a function that
takes as an input a finite sample S € (J>o_, (R9)™
and outputs a unit weight vector w € R? which is the
normal of a homogeneous' hyperplane w’x = 0. We
assume that S is an i.i.d. sample from a probability
measure u over R? with continuous density function
f: R - Rar. The goal of the algorithm is to find a
hyperplane such that the integral of the density func-
tion over the hyperplane is as small as possible.

More precisely, for a unit vector w € R? we define the
hyperplane h(w) = {x € R? wlx = 0} and the
“density on the hyperplane”

Flw) = /h e

The mapping f : w — f(w) is a continuous func-
tion defined on the (d — 1)-sphere S ! = {w €
R4 |lw|l2 = 1} which is compact. In particular,
f attains global minimum at some point w*. The
minimum of f is never unique, since f satisfies the
obvious symmetry f(w) = f(—w) for any w € S
However, if up to this symmetry the global minimum
w* is unique, the algorithm L is required to output w
which is with high probability “close” to w*.

To define what “close” means, we consider several
distance measures? over S?~!. For a weight vector
w € R? we define the half-spaces ht(w) = {x €
R : wix >0} and h~(w) = {x e R? : wTx <0}.
We define the following three distance measures.
Definition 1. For w,w’ € S [et

Dp(w,w')=1-— |WTW/
2. Dy(w,w') = |f(w') = f(w)]
3. Dy(w,w’)
in { u(

Note that all three distance measures above respect
the symmetry of f ie. D(w,—w) = 0.

We say that the algorithm L is consistent w.r.t. a dis-
tance measure D, if D(w*, L(S)) converges in proba-
bility to zero as the sample size m increases. Formally,
L is consistent if for any probability measure p with

Thomogeneous = passing through the origin

2Technically speaking, by a distance measure we mean
a pseudo-metric. Recall that a pseudo-metric D is a metric
except that it does not need to satisfy the condition that
if D(w,w’) =0 then w = w’.
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continuous density f such that the minimum w* of f
is (up to symmetry) unique, we have

Ve>0 lim Pr [D(L(S),w")>¢=0. (1)
m—oo S~pm

It is not hard to see if L is consistent w.r.t. Dg, then
it is consistent w.r.t. to other two distance measures
as well. This follows from continuity of f and the
existence of the density function f. For that reason
when talking about consistency we consider only the
pseudo-metric Dg and omit the explicit reference to
the distance measure.

A natural question is whether one can guarantee the
speed of the convergence D(w*,L(S)) — 0 which
would not depend on the probability distribution .
Such guarantee is called uniform convergence.

Definition 2. Let F be a family of probability distri-
butions over R% and D a distance measure over S¥—1.
We say that algorithm L is F-uniformly convergent if
for every e, 6 > 0, there exists sample size m(e,d) such
that for any probability distribution p € F such that
the minimum w* of f is up to symmetry unique, then
for all m > m(e, d) we have

sEr, [D(L(S), W) 2 e] <0 (2)

For dimension d = 1, we study a simpler, but related
problem where the probability distribution p is de-
fined over the unit interval [0, 1] and has continuous
density function f. We assume that f attains unique
minimum at z*. Given an i.i.d. sample S from u,
the task of the algorithm L is to output = € [0,1]
“close” to z*. To measure closeness, we naturally
(re)define distance measures Dg, Dy, D, as follows
Dp(z,2') = |z —a'|, Dy(x,2') = |f(z) — f(2’)] and
Du(xv :El) = M((—OO, I]A(—OO, xl])

3 The One Dimensional Problem

We consider two natural learning algorithms for the
one-dimensional problem. The first is a simple buck-
eting algorithm. We explain it in detail and show its
consistency in Section 3.1. The second algorithm is the
hard-margin algorithm which outputs the mid-point
of the largest gap between two consecutive points the
sample. We show its consistency in Section 3.2.

Let F; be the family of all probability distributions
over the unit interval [0,1] that have continuous den-
sity function. In Section 5 we show there are no algo-
rithms that are Fj-uniformly convergent.

3.1 The Bucketing Algorithm

The algorithm is parameterized by a function k : N —
N. For a sample of size m, the algorithm splits the in-
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terval [0,1] into k(m) equal length subintervals (buck-
ets). Given an input sample S, it counts the number
of sample points lying in each bucket and outputs the
mid-point of the bucket with fewest sample points. In
case of ties, it picks the rightmost bucket. We denote
this algorithm by Bj. As it turns out, there exists a
choice of k(m) which makes the algorithm Bj consis-
tent.

Theorem 3. If the number of buckets k(m) = o(y/m)
and k(m) — oo as m — oo, then the bucketing algo-
rithm By, is consistent.

Proof. Fix f € Fi, assume f has a unique minimizer
xz*. Fix ¢, > 0. Let U = (2* — ¢/2,2* + ¢/2) be
an neighbourhood of the unique minimizer x*. The
set [0,1] \ U is compact and hence there exists o :=
min f([0,1] \ U). Since z* is the unique minimizer of
f, a > f(z*) and hence n := o — f(x*) is positive.
Thus, we can pick a neighbourhood V of z*, V C U,
such that for all z € V, f(z) < a — n/2.

The assumptions on growth of k(m) imply that there
exists mg such that for all m > mg

1/k(m) < |V|/2
In(1/6)

m

3)

7 (4)

2 2k(m)

Fix any m > mg. Divide [0, 1] into k(m) buckets each
of length 1/k(m). For any bucket I, INU = 0,

«

k(m) -

Since 1/k(m) < |V|/2 there exists a bucket J such
that J C V. Furthermore,

p(l) = ()

a—n/2

u(J) < )

(6)

For a bucket I, we denote by |I N S| the number
of sample points in the bucket I. From the well
known Vapnik-Chervonenkis bounds (see Anthony and
Bartlett, 1999), we have that with probability at least
1 — 6 over i.i.d. draws of sample S of size m, for any
bucket I,

In(1/6)

m

(7)

Ins|
m

uu)\ <

Fix any sample S satisfying the inequality (7) . For
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any bucket I, INU = 0,

—|J25| < p(Jd)+ L(;/é) by (7)
a—1n/2 In(1/6)
< ) - by (6)
« In(1/6) In(1/0)
< k(m) 2\/ m i \/ m by (4)
< () - % by (5)
<08 by (7)

Since |[J N S| < |I NS|, the algorithm By must not
output the mid-point of any bucket I for which INU =
(). Henceforth, the algorithm’s output, By (S), is the
mid-point of an bucket I which intersects U. Thus the
estimate By (S) differs from z* by at most the sum of
the radius of the neighbourhood U and the radius of
the bucket. Since the length of a bucket is 1/k < |V|/2
and V C U, the sum of the radii is

3
|U|/2+|V]/4 < Z|U| <e.

Combining all the above, we have that for any €,6 >
0 there exists mg such that for any m > mg, with
probability at least 1 — § over the draw of an i.i.d.
sample S of size m, |Bg(S) —x*| < e. This is the same
as saying that By is consistent. O

Note that in the above proof we cannot replace the
condition k(m) = o(y/m) with k(m) = O(y/m) since
Vapnik-Chervonenkis bounds do not allow us to de-
tect O(1/+/m)-difference between probability masses
of two buckets.

The following theorems shows that if there are too
many buckets the bucketing algorithm is not consistent
anymore.

Theorem 4. If the number of buckets k(m)
w(m/logm), then By is not consistent.

To prove the theorem we need a proposition of the
following lemma dealing with the classical coupon col-
lector problem.

Lemma 5 (The Coupon Collector Problem (Motwani
and Raghavan, 1995)). Let the random variable X de-
note the number of trials for collecting each of the n
types of coupons. Then for any constant ¢ € R, and
m=mnlnn+cn,

lim Pr[X >m]=1—-¢"¢

n—oo
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Proof of Theorem 4. Consider the following density f
on [0,1],

(4—16z)/3 ifx€0,1]
(16z—4)/3 ifze(1,3)
4/3 if € [1,1]

f(x)

NI s =

which attains unique minimum at * = 1/4.

From the assumption on the growth of k(m) for all
sufficiently large m, k(m) > 4 and k(m) > 8m/Inm.
Consider all buckets lying in the interval [1,1] and
denote them by by,bs,...,b,. Since the bucket size
is less than 1/4, they cover the interval [2,1]. Hence
their length total length is at least 1/4 and hence there
are
n > k(m)/4 > 2m/Ilnm

such buckets.

We will show that for m large enough, with probability
at least 1/2, at least one of the buckets b1,bs,...,b,
receives no sample point. Since probability masses of
b1, ba,...,b, are the same, we can think of these buck-
ets as coupon types we are collecting and the sample
points as coupons. By Lemma 5, it suffices to verify,
that the number of trials, m, is at most, say, %nln n.
Indeed, we have for large enough m
2m

(i)

Inm+1n2—Inlnm) >m.

2 an > 22m
3n = 3lnm

4 m (
3lnm
Now, Lemma 5 implies that for sufficiently large m,
with probability at least 1/2, at least one of the buckets
b1, b2, ...,b, contains no sample point.

If there are empty buckets in [, 1], the algorithm out-
puts a point in [%, 1]. Since this happens with proba-
bility at least 1/2 and since z* = 1/4, the algorithm
cannot be consistent. o

When the number of buckets k(m) is asymptotically
somewhere in between /m and m/Inm, the bucket-
ing algorithm switches from being consistent to failing
consistency. It remains an open question to determine
where exactly the transition occurs.

3.2 The Hard-Margin Algorithm

The hard-margin algorithm outputs the mid-point
of the largest interval between the adjacent sample
points. Formally, given a sample S of size m, the algo-
rithm sorts the sample SU{0,1} so that zp =0 < 7 <
9 <+ <y, <1 =241 and outputs the midpoint
(z; + xi41)/2 where the index i, 0 < ¢ < m, is such
that the gap [x;, z;+1] is the largest. Henceforth, the
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notion largest gap refers to the length of the largest
interval between the adjacent points of a sample.

Theorem 6. The hard-margin algorithm is consis-
tent.

To prove the theorem we need the following property
of the distribution of the largest gap between two ad-
jacent elements of m points forming an i.i.d. sample
from the uniform distribution on [0, 1]. The following
statement follows as a corollary of Lévy (1939). How-
ever, we will present a direct and much simpler proof.

Lemma 7. Let L,, be the random variable denoting
the largest gap between adjacent points of an i.i.d.
sample of size m from the uniform distribution on

[0,1]. For any e >0
1
>ﬂﬂ _1
m

[Lm € <(1 —€)

Proof of Lemma. Consider the uniform distribution
over the unit circle. Suppose we draw an i.i.d. sam-
ple of size m from this distribution. Let K,, denote
the size of the largest gap between two adjacent sam-
ples. It is not hard so see that the distribution of
K,, is the same as that of L,,_;. Furthermore, since
% — 1, we can thus prove the lemma with
L., replaced by K,,.

1
lim Pr nm

1
1+

Fix € > 0. First, let us show that for m sufficiently
large K, is with probability 1 — o(1) above the lower
bound (1 — €)™, We split the unit circle b = %
buckets, each of length (1 — €)™, It follows from
Lemma 5, that for any constant ¢ > 0 and an i.i.d.
sample of (1 — ¢)blnd points at least one bucket is
empty with probability 1 — o(1). We show that for
some ¢, m < (1 —¢)blnbd. The expression on the right
1-¢1+d6m

side can be rewritten as
1
. < Inm >

(1-¢1+d6m
Inm
>m(l—¢)(1+9) (1—0(
For ( sufficiently small and m sufficiently large the last
expression is greater than m, yielding that a sample of
m points misses at least one bucket with probability
1 —o(1). Therefore, the largest gap K, is with prob-
ability 1 — o(1) at least (1 — e)I“Tm

(1-C)blnb =

Inlnm

Inm

Next, we show that for m sufficiently large, K, is with
probability 1 —o(1) below the upper bound (1+¢)22.
We consider 3/¢ bucketings By, Ba,...,Bs,. Each
bucketing B;, i = {1,2,...,(3/€)}, is a division of the
unit circle into b = % equal length buckets;
each bucket has length ¢ = (1 + ¢/3)22. The buck-
eting B; will have its left end-point of the first bucket
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at position i(fe/3). The position of the left end-point
of the first bucket of a bucketing is called the offset of
the bucketing.

We first show that there exists ¢ > 0 such that m >
(14 ¢)blnb for all sufficiently large m. Indeed,

m
(1+¢/3)lnm  (1+¢/3)Inm

o(t-o ()

For any ¢ < €/3 and sufficiently large m the last ex-
pression is greater than m.

m

(1+Qblnb=(1+()

1+¢
~1+¢/3

ln(

Inlnm

Inm

The existence of such ( and Lemma 5 guarantee that
for all sufficiently large m, for of each bucketing B;,
with probability 1—o(1), each bucket is hit by a sample
point. We now apply union bound and get that, for all
sufficiently large m, with probability 1 — (3/¢)o(1)
1—0(1), for each bucketing B;, each bucket is hit by at
least one sample point. Consider any sample S such
that for each bucketing, each bucket is hit by at least
one point of S. Then, the largest gap in .S can not be
bigger than the bucket size plus the difference of offsets
between two adjacent bucketings, since otherwise the
largest gap would demonstrate an empty bucket in at
least one of the bucketings. In other words, the largest
gap K, is at most

Inm

(le/3)+0 = (1+¢/3)0 = (1—!—6/3)2me < (14—

for any € < 1. O

Proof of the Theorem. Consider any two disjoint in-

tervals U,V C [0, 1] such that for any x € U and any
yev, ;EZ) < p < 1 for some p € (0,1). We claim
that with probability 1 — o(1), the largest gap in U is
bigger than the largest gap in V.

If we draw an i.i.d. sample m points from pu, according
to the law of large numbers for an arbitrarily small
x > 0, the ratio between the number of points my in
the interval U and the number of points my in the
interval V' with probability 1 — o(1) satisfies

)
V]

my

my

(8)

<p(1+x)

For a fixed x, choose a constant € > 0 such that %—jr: >
p+X

From Lemma 7 we show that with probability 1 —
o(1) the largest gap between adjacent sample points
falling into U is at least (1—¢)|U]| % Similarly, with
probability 1 — o(1) the largest gap between adjacent
sample points falling into V' is at most (1 +e)|V|%.
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From (8) it follows that the ratio of gap sizes with
probability 1 — o(1) is at least

l—elUjRme ¢ 1 1
( )| |1mU > € nmU:(l—l—”y) nmey
(I+oV[EEe ~ 1+ep+xnmy Inmy
In((p + ) fptmy)
>(1+7) - !
1%

=1+ (14+01)/nmy) — (1+7v) asm — oo

1-c_1
for a constant v > 0 such that 1+~ < 7= Fet

for sufficiently large m with probability 1 — o(1), the
largest gap in U is strictly bigger than the largest gap
in V.

Hence

Now, we can choose intervals V;, V5 such that [0,1] \
(V1 U V3) is an arbitrarily small neighbourhood con-
taining x*. We can pick an even smaller neighbour-
hood U containing * such that for all z € U and all
y € Vi U Va, % < p < 1 for some p € (0,1). Then
with probability 1— o(1), the largest gap in U is bigger
than largest gap in V7 and the largest gap in Vo. O

4 The High Dimensional Problem

In this section we consider the lowest-density-
hyperplane problem for dimension d > 2. Recall that
the task is to find a unit normal vector w of a homo-
geneous hyperplane w’x = 0 such that the “density
on hyperplane” f(w) is as small as possible. We show
that there exists a learning algorithm that is consis-
tent.

We define the soft-margin algorithm with parameter
v: N — RT as follows. Given a sample S of size m,
it counts for every hyperplane, the number of sample
points lying within distance v := y(m) and outputs
the hyperplane with the lowest such count. In case
of the ties, it breaks them arbitrarily. We denote this
algorithm by H,. Formally, for any weight vector w &
S41 we consider the “y-strip”

h(w,v)={x¢€ R? - |WTX| <~/2}

and count the number of sample points lying in it. We
output the weight vector w for which the number of
sample points in h(w, ) is the smallest; we break ties
arbitrarily.

To fully specify the algorithm, it remains to specify the
function y(m). As it turns out, there is a choice of the
function «y(m) which makes the algorithm consistent.
Theorem 8. If vy(m) = w(1/y/m) and v(m) — 0 as
m — oo, then H. is consistent.

Proof. The structure of the proof is similar to the proof
of Theorem 3. However, we will need more technical
tools.
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Fix the probability measure 1 and (hence also f). Note
that for any w € S,

o 1.1 ()
()

=f(w).

In other words, the sequence of functions
{;L(h(~,~y(m)))/fy(m) :8d-1 RJ}::P converges
point-wise to the function f : S~! — R{. Note that
w(h(-,v(m)))/y(m) = 8%~ — Ry is continuous for
any m and S ! is compact. Therefore the sequence
{p(h(-,v(m)))/v(m)}>o_, converges uniformly to f.
In other words, for every ¢ > 0 there exists mg such
that for any m > 0 and any w € S,

plh(w,y(m)) =
) fw)] <.

Fix ,0 > 0. Let U = {w € S4 ! . |wlw*|>1—¢}
be the “e-double-neighbourhood” of the antipodal pair
{w*, —w*}. The set S1 \ U is compact and hence
o := min f(8?71 \ U) exists. Since w*, —w* are the
only minimizers of f, @ > f(w*) and hence 1 := o —
f(w*) is positive.

The assumptions on v(m) imply that there exists mg
such that for all m > my,

) /d+1;11(1/5) g

plh(w. 3 m)
w2 Fw)| <af3 (o)

v(m) (9)

w3

Vw e §¢1 ’

Fix any m > mg. For any w € S%1\ U, we have

PR D) Fw) — /3 by (10)
> f(w*) +n—-n/3
(by choice of n and U)
— Fw*) + 20/3
o Hh(w",5(m)))
v(m)
p(h(w”,y(m)))
= —— 3.
A
From the above chain of inequalities, after multiplying
by ~v(m), we have

pu(h(w,v(m))) > p(h(w*,y(m))) +ny(m)/3 . (11)

—n/34+2n/3 by (10)

From the well known  Vapnik-Chervonenkis
bounds (see Anthony and Bartlett, 1999), we
have that with probability at least 1 — ¢ over i.i.d.
draws of S of size m we have that for any w,
|[h(w,y) N S| d+1n(1/6)
PO OS] hon o < )
(12)
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where |h(w,v) N S| denotes the number of sample
points lying in the y-strip h(w, 7).

Fix any sample S satisfying the inequality (12). We
have, for any w € S\ U,

the intervals [0, % — %], [% — %, %]7 [%7 % + %)]7 and
[+ + 5, 1], and satisfies
1 1 1 1 1
— - — e — —_— = 1 — ) =
10 =1 (3-50) =/ (54 50) = F0 1 =0

and g is the reflection of f w.r.t. to the centre of the
unit interval, i.e. f(z) = g(1 — z).

1/n

)OS o, A (m)) - \/@
> p(h(w", y(m))) + 777;”1) - \/W
> [h(w*,7) N S| [d+In(1/5) . %

[T

h *
_ Iw ) 0s|
m

Since |h(w,v) N S| > |h(w*,v) N S|, the algorithm
must not output a weight vector w lying in S\ U.
In other words, the algorithm’s output, H,(S), lies in
Uie. |[Hy(S)'w*| >1—c¢.

We have proven, that for any €,6 > 0, there exists mg
such that for all m > my, if a sample S is drawn i.i.d.
from f, then |H,(S)"w*| > 1 —e. In other words, H,,
is consistent. O

5 The Impossibility of Uniform
Convergence

In this section we show a negative result that roughly
says one cannot hope for an algorithm that can achieve
€ accuracy and 1 — ¢ confidence for sample sizes that
only depend on these parameters and not on properties
of the probability measure.

Theorem 9. No learning algorithm is Fi-uniformly
convergent w.r.t. any of the distance measures Dg,

Dy and D,,.

Proof. For a fixed 6 > 0 we show that for any m € N
there are distributions with density functions f and g
such that no algorithm using a random sample of size
at most m drawn from one of the distributions cho-
sen uniformly at random, can identify the distribution
with probability of error less than 1/2 with probability
at least § over random choices of a sample.

Since for any § and m we find densities f and g such
that with probability more than (1 — ¢) the output of
the algorithm is bounded away by 1/4 from either 1/4
or 3/4, no algorithm is F3-uniformly convergent w.r.t.
any distance measure.

Consider two partly linear density functions f and g
defined in [0, 1] such that for some n, f is linear in
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Figure 1: f is uniform everywhere except a small
neighbourhood around 1/4 where it has a sharp ‘v’
shape. And g is the reflection of f about = =1/2.

Let us lower-bound the probability that a sample of
size m drawn from f misses the set U UV for U :=
-ty Lland vV i=[3 - L 2+ L] For any
x € Uandy ¢ U, f(x) < f(y), and furthermore,
f is constant on the set [0,1] \ U containing at most
the entire probability mass 1. Therefore, for p,(Z)
denoting the probability that a point drawn from the
distribution with the density f hits the set Z, we have
pr(U) < ps(V) < L5, yielding that ps(UUV) < 2.
Hence, an i.i.d. sample of size m misses U U V' with
probability at least (1 —2/(n —1))™ > (1 —n)e=2™/"
for any constant 7 > 0 and n sufficiently large. For a
proper 7 and n sufficiently large we get (1—n)e=2"/" >
1—9. From the symmetry between f and g, a random
sample of size m drawn from g misses U UV with the
same probability.

We have shown that for any § > 0, m € N, and for
n sufficiently large, regardless of whether the sample
is drawn from either of the two distributions, it does
not intersect U U V' with probability more than 1 —
. Since in [0,1] \ (U U V) both density functions are
equal, the probability of error in the discrimination
between f and g conditioned on that the sample does
not intersect U UV cannot be less than 1/2. O

6 Conclusions and Open Questions

In this paper have presented a novel unsupervised
learning problem that is modest enough to allow learn-
ing algorithm with asymptotic learning guarantees,
while being relevant to several central challenging
learning tasks. Our analysis can be viewed as pro-
viding justification to some common semi-supervised
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learning paradigms, such as the maximization of mar-
gins over the unlabeled sample or the search for
empirically-sparse separating hyperplanes. As far as
we know, our results provide the first performance
guarantees for these paradigms.

From a more general perspective, the paper demon-
strates some type of meaningful information about a
data generating probability distribution that can be
reliably learned from finite random samples of that dis-
tribution, in a fully non-parametric model — without
postulating any prior assumptions about the structure
of the data distribution. As such, the search for a low-
density data separating hyperplane can be viewed as
a basic tool for the initial analysis of unknown data.
Analysis that can be carried out in situations where
the learner has no prior knowledge about the data in
question and can only access it via unsupervised ran-
dom sampling.

Our analysis raises some intriguing open ques-
tions. First, note that while we prove the univer-
sal consistency of the hard-margin algorithm for one-
dimensional data distributions, we do not have a simi-
lar result for higher dimensional data. Since searching
for empirical maximal margins is a common heuristic,
it is interesting to resolve the question of consistency
of such algorithms.

Another natural research direction that this work calls
for is the extension of our results to more complex sep-
arators. In clustering, for example, it is common to
search for clusters that are separated by sparse data
regions. However, such between-cluster boundaries are
often not linear. Can one provide any reliable algo-
rithm for the detection of sparse boundaries from fi-
nite random samples when these boundaries belong to
a richer family of functions?

Our research has focused on the information com-
plexity of the task. However, to evaluate the practi-
cal usefulness of our proposed algorithms, one should
also carry a computational complexity analysis of the
low-density separation task. We conjecture that the
problem of finding the homogeneous hyperplane with
largest margins, or lowest density around it (with re-
spect to a finite high dimensional set of points) is NP-
hard (when the Euclidean dimension is considered as
part of the input, rather than as a fixed constant pa-
rameter). However, even if this conjecture is true, it
will be interesting to find efficient approximation algo-
rithms for these problems.
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