A New Perspective for Information Theoretic Feature Selection

Gavin Brown
School of Computer Science
University of Manchester
Oxford Road, UK

gavin.brown@manchester.ac.uk

Abstract

Feature Filters are among the simplest and
fastest approaches to feature selection. A fil-
ter defines a statistical criterion, used to rank
features on how useful they are expected to
be for classification. The highest ranking fea-
tures are retained, and the lowest ranking can
be discarded. A common approach is to use
the Mutual Information between the feature
and class label. This area has seen a recent
flurry of activity, resulting in a confusing va-
riety of heuristic criteria all based on mutual
information, and a lack of a principled way to
understand or relate them. The contribution
of this paper is a unifying theoretical under-
standing of such filters. In contrast to current
methods which manually construct filter cri-
teria with particular properties, we show how
to naturally derive a space of possible rank-
ing criteria. We will show that several recent
contributions in the feature selection litera-
ture are points within this continuous space,
and that there exist many points that have
never been explored.

1 INTRODUCTION

High-dimensional datasets are a significant challenge
for Machine Learning. Some of the most practically
relevant and high-impact applications, such as gene
expression data may easily have more than 10, 000 fea-
tures. Many of these features may be completely ir-
relevant to the task, or redundant in the context of
others. Learning in this situation raises several is-
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sues, e.g. overfitting, computational burden, and in-
terpretability of the final model. It is therefore an
important research direction to automatically identify
meaningful smaller subsets of these variables, i.e. fea-
ture selection (Guyon and Elisseeff, 2003). We focus
on filter criteria—that is, model-independent criteria
that provide a ranking of the features. In particular,
we analyse approaches based on mutual information
(Shannon, 1948), and note that there is a lack of a
principled methodology for design/analysis of such cri-
teria.

The key result of this research is a new expansion of the
Shannon mutual information between the features and
the class label, and the use of this expansion to natu-
rally derive a space of possible filter criteria. We then
“retrofit” existing criteria into the theoretical frame-
work, showing that numerous published criteria are
points within this space, and that there exist many
points that have never been explored.

2 FEATURE SELECTION WITH
MUTUAL INFORMATION

Mutual Information measures the amount of informa-
tion shared by X and Y. As such it has found signifi-
cant uptake in machine learning, where we imagine X
as an input feature set, and Y as a target. It is not
difficult to show that the Bayes error of predicting Y
from X is lower-bounded by Fano’s inequality (Fano,
1961), and upper-bounded by half the conditional en-

tropy,

HY)-I(X;Y) -1
log(|Y])

< P(g(X) #Y) < SH(Y[X).

(1)

The first inequality states that for any function g(X) of
the inputs, the probability of error is lower bounded
by an expression dependent on the mutual informa-
tion. As the mutual information grows, the bound is
minimized—whether or not the bound can be reached
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depends on the ability of our classifier, i.e. the func-
tion g(X). Our task is therefore to select features
from a pool such that their joint mutual information
I1(X1.,;Y) is maximised.

To know whether we should include a given candi-
date feature, we must be able to evaluate the mutual
information—unfortunately, I(Xi.,;Y) involves high
dimensional distributions, and thus is extremely diffi-
cult to reliably estimate. As a heuristic, we could as-
sume the utility of each feature X, is independent of
all other features—and rank the features in descend-
ing order of the criterion Jyim = I(X,;Y). Under
the assumption of Naive Bayes as our classification
model, J,;m can in fact be derived as the optimal
feature selection criterion in terms of maximising the
log-likelihood of the dataset. However in the general
case, where features are interdependent, this is known
to be suboptimal.

In general, it is widely recognised that a good set
of features should not only be individually relevant,
but also should not be redundant with respect to
each other—features should not be highly correlated.
Several criteria have been proposed that attempt to
achieve this. For example, MIFS (Battiti, 1994), uses
the ranking criterion,

n—1

Tmifs = 1(Xn; V) = B I(X; Xp).
k=1

(2)

This includes the objective I(X,,;Y) term to ensure
feature relevance, but introduces a penalty to enforce
low inter-feature correlations. The [ is a configurable
parameter, which must be set experimentally. Using
B = 0 would be equivalent to selecting features in-
dependently, while a larger value will place more em-
phasis on reducing inter-feature dependencies. The
MIFS scheme was the first of many criteria that at-
tempted to capture the relevance-redundancy tradeoff
in feature sets with various heuristic terms (Yang and
Moody, 1999; Kwak and Choi, 2002; Vidal-Naquet and
Ullman, 2003; Fleuret, 2004; Peng et al., 2005; Lin
and Tang, 2006). Current best practice has been to
hand-design criteria, augmenting the individual fea-
ture relevance with various penalties to manage the
redundancy. In the following section we offer a novel
perspective on the problem.

3 A NOVEL PERSPECTIVE

As discussed in the previous section, our ultimate ob-
jective is to pick features {X7, ..., X,,} that maximise
I(X1.,;Y). That is, we want to maximise the mu-
tual information between label and the joint variable
of all the features. The current practice to designing
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ranking criteria can be viewed as heuristic “bottom-up”
approaches—manually construct a criterion composed
of various terms, that attempt to balance relevance
against redundancy at each step, with the expectation
that it should have a desirable effect on our overall ob-
jective. In this work we take a principled “top-down”
perspective. We begin with the objective I(X1.,;Y),
and analytically expand it into all possible correlations
that exist within the feature set. Then, rather than
starting with the marginal information I(X;;Y’), and
adding arbitrary terms, we start from the expanded
information, and discard terms. Note that we are not
offering a prescriptive framework here, that is we do
not claim any better reason for discarding a term than
including it, given particular data. Instead, we offer
a descriptive framework, showing that several heuris-
tic criteria in the literature (Battiti, 1994; Yang and
Moody, 1999; Kwak and Choi, 2002; Vidal-Naquet and
Ullman, 2003; Fleuret, 2004; Peng et al., 2005; Lin and
Tang, 2006), can be expressed in a common functional
form.

A key component of our approach is to use multi-
variate mutual information. While Shannon’s mutual
information I(X;Y) measures dependence between a
pair of variables, the multivariate form, known as In-
teraction Information (McGill, 1954), can account for
dependencies among multiple variables: I[({X,Y,Z}).
For a set of size 2, the Interaction Information reduces
to Shannon’s definition. An important and nonintu-
itive property is that the interaction information can
take negative values. See Appendix A for the definition
and properties.

Theorem 1
Given a set of input features S = {Xi,..., X}, and
a target Y, their Shannon mutual information can be
expanded as

I(Xl:n;Y) = Z I({TU Y})7

TCS

T =1 (3)

That is, the Shannon Mutual Information between
X1.n and Y expands into a sum of Interaction Infor-
mation terms. Note that ) ¢ should be read, “sum
over all possible subsets T drawn from S”.

Example: As an illustrative example for the 4 vari-
able case, the Shannon information between a joint
variable X7.3 and a target Y can be re-written as
I(Xl:3; Y)
I({X1,Y}) + I({X2,Y}) + I({X5,Y})
+I({X17 Xo, Y}’> + I({Xh X3, Y}) + I({X27 Xs, Y})
+I({ X1, X0, X3,Y}). (4)

This result explicitly separates the interactions of ev-
ery possible pair, triple, quadruple (etc) of variables.
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We will now show how this can be exploited to better
understand several criteria that have appeared in the
literature to date.

What would it mean if we truncated the expansion
at a certain order? For example, keeping only terms
with |T| = 2?7 In this case, we would have terms
I(X;;Y) for all ¢, plus terms I({X;, Xy,Y}) for all
J, k, but no further terms. When Interaction Informa-
tion is calculated for sets of size 3, it represents pair-
wise and conditional pairwise interactions. When the
set is larger than 3, the information represents prop-
erties of higher-order interactions—above pairwise in-
teractions. In summary, if we truncate terms beyond
|T| = 2, we assume there exist only conditional and
unconditional pairwise relations, and no higher order
relations. In the following we will show that all cur-
rently used filter criteria assume exactly this.

We proceed and retain only terms involving pairs of
features; so all terms where |T'| < 2. This gives us,

> Y

j=1k=j+1

({ X, X, V')

()
This is an approximation to the Shannon information,
assuming pairwise feature interactions, for a feature
set of size n. We now take the next important step to
understand the filtering process. If we already had
n — 1 features, then the wutility of X,,, i.e. the in-
formation gain when it is included, is quantified as
I(Xn7 Y|X1:n71) = I(Xlzn§ Y) - I(Xlznfl; Y) USing
the approximation in (5) for these terms, we obtain an
estimate for this as

I(le;Y)zZ (X5;Y) +

n—1

(X Y| X1ino1) # (X3 Y) + > T({ X0, X, YY),

k=1
(6)
which, using the definition of interaction information,
can be re-written as,

n—1
Ttou=I(Xp; V) — Z[ (Xns X)) — I(Xp; X V).
k=1

(7)

We call this, the first-order utility (FOU) of including
feature X,,. It is first-order because it includes only
first-order (~pairwise) interactions. The FOU for X,
is composed of three parts: its own mutual informa-
tion, subtract a positive term penalising high correla-
tions between itself and the existing features, plus an-
other positive term dependent on the class-conditional
probabilities. This tells us that the best feature is
a trade-off between these components: the individual
predictive power of the feature, the unconditional cor-
relations, and the class-conditional correlations.
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Understanding that we need a trade-off between these
components, we could parameterize it, as so,

n—1 n—1
J=1(Xp;Y) = B> I(Xu; Xi) +7 Y I(X; Xi]Y).
k=1 k=1

(8)
A remarkable similarity to MIFS is self-evident. With
~ = 0, this is exactly the MIFS criteria. If we allow /3
and v to vary in [0, 1], we have a unit square describ-
ing a space of possibilities. In the following section,
we will see that many heuristic criteria already in the
literature can be reproduced from eq(8), and are in
fact points within the space.

4 SUBSUMING PREVIOUS
CRITERIA

In a wide survey of the feature selection literature, we
have to date identified 12 separate criteria that can all
be described within this framework. In this section,
due to space limitations, we present a selection of the
most well-known criteria.

Each of the following have justified their use with dif-
ferent arguments, all with the central aspiration to “in-
crease feature relevancy” and “decrease feature redun-
dancy”. Where a re-writing of the heuristic is neces-
sary, proofs are in the appendix.

Battiti (1994) proposed the Mutual Information-
Based Feature Selection (MIFS) criterion,

n—1

Tmigs = I(Xp;Y) = 8 1(Xp; Xp).
k=1

(9)

The MIF'S scheme shows a clear link to eq (8) is seen—
it includes relevance and redundancy, but omits the
conditional term.

Peng et al. (2005) propose the Mazimum-Relevance
Minimum-Redundancy criterion,

n—1
1
Jmrmr = I(Xn,Y) - j I(Xn7Xk)

k=1

(10)

It can clearly be seen that MRMR is equivalent to
MIFS with 3 = —5, and that it takes the mean of
the redundancy term, but again omits the conditional

term.

Yang and Moody (1999) propose using Joint
Mutual Information (JMI),

n—1
Tjmi = »_I(XpX3;Y)
k=1

This is the information between the targets and a joint
random variable, defined by pairing the candidate X,

(11)
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with each current feature. This can be re-written as,

= I(XnY) -

{ (X, X2) I(Xn;Xk\Y)].
k:

(12)
Intermediate steps for this re-writing are given in Ap-
pendix C. JMI fully captures the redundancy term, but
takes the mean value. We can also see a close relation-
ship between MRMR and JMI i.e. the JMI criterion
is the MRMR criterion plus 1 LI( X X3|Y).

n— 1
Kwak and Choi (2002) propose an improvement to
MIFS, called MIFS-U. This claimed to be more suited
to problems where information is distributed uniformly
in the space, by using the criterion,

Z

in practice, the authors found 8 = 1 optimal. In
this case, the equivalence of eq(13) and eq(7) can be
proven; that is, Jom;fsu = Jfou-

Xk:7

szfsu =1 Xqu Xn;Xk). (13)

Lin and Tang (2006) propose a criterion for the
Computer Vision literature, called Conditional Info-
maz Feature Extraction. This turns out to be exactly
equivalent to our own proposal, eq(7). The key dif-
ference between this and our result is that we have
derived the general case, allowing arbitrary orders of
expansion.

The criteria we have described so far can all be rear-
ranged into a common functional form, such that they
can be exactly reproduced from various parameteriza-
tions of eq(8). Consequently, they all fit neatly into
a unit square, illustrated in figure 1. These are lin-
ear criteria, as they take linear combinations of the
relevance/redundancy terms. We will now cover two
criteria that follow a similar form, with the same rel-
evance/redundancy terms, though they involve a maz
operation, making them nonlinear.

Fleuret (2004) is probably the most well-known re-
cent criterion, based on Conditional Mutual Informa-
tion Maximization,

Jomim = TR [I(Xn; Y\Xk)}. (14)

This can be re-written,
= I(Xn;Y) — mazy {I(Xn; Xp) — I(Xn: Xk|Y)} (15)

The proof is again available in the appendix. CMIM
examines the information between a feature and the
target, conditioned on each current feature. From the
re-writing, it is clearer why the CMIM criterion suc-
ceeds. The term in square brackets is the interaction
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Figure 1: The full space of first-order linear filter cri-
teria, derived from equation (8). The left hand axis
of this graph is where the MRMR, and MIFS algo-
rithms sit. The bottom right corner is the assumption
of independent features, using just the marginal mu-
tual information.

information—which can be both positive and negative.
A negative value indicates that the shared informa-
tion between X, and Y has decreased as a result of
including X,. CMIM takes the smallest value, there-
fore identifying that X, interacts badly with at least
one of the existing features. CMIM therefore takes a
“pessimistic” view of X, if it interacts badly with the
existing set.

Vidal-Naquet and Ullman (2003) propose another
criterion used in Computer Vision, which we refer to
as Informative Fragments,

Jiy = miny, [I(ank; Y) - I(XpY)|].  (16)
The authors motivate this criterion by noting that
it measures the gain of combining a new feature X,
with each existing feature Xy, over simply using X}
by itself. The X with the least “gain” from being
paired with X, is taken as the score for X,,. Interest-
ingly, using the chain rule I(X, X;;Y) = [(Xy;Y) +
I(X,;Y|X}), therefore IF is equivalent to CMIM, i.e.
Jif =

J cmim:-

5 EXPERIMENTS

An interesting question is how the criteria perform rel-
ative to each other in practice. In this section we ex-
amine the overfitting behaviours, with the hypothesis
that criteria involving both the conditional and uncon-

FOU/ CIFE
JIMI n=2
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Figure 2: Noisy multiplexer problem: FOU and JMI
show significant benefit compared to criteria measur-
ing only pairwise dependencies.

ditional redundancy terms should overfit to a greater
extent, considering the larger number of parameters.

5.1 ARTIFICIAL DATA

In a first experiment we wish to evaluate the criteria
on data known to exhibit very strong feature inter-
dependencies. The multiplexer problem is a boolean
function used in signal processing. This is defined on
binary strings of length 11, and treats the string as
being composed of an index segment (the first 3 bits)
and a data segment (the remaining 8 bits). The output
of the function is the value of the indexed bit in the
data segment; so, for example, the correct output for
10100000100 is 1, since the first three (index) bits 101
point to data bit 5. This function is particularly inter-
esting as the features interact heavily—as such we ex-
pect only the criteria that assess higher order interac-
tions will perform well. To further test the criteria, 10
random boolean features were added as noise, giving
a total 21 features, 2048 examples. We used 10% for
training, 90% for testing, over ten trials, with simple
forward selection. The selected features were used in
a 1l-nearest neighbour classifier. Results clearly show
that FOU and JMI are the top performers, explained
by the fact that they include the multi-way interaction
between two features and the target.

5.2 REAL DATA

The Lung and SRBCT datasets, are freely available
gene expression datasets. Figures 3 and 4 show exper-
iments with these. We used a 1-nn classifier, and per-
formed a leave-one-out cross validation, at each step,
we also restricted the amount of training data that
was made available to the classifier, thus giving us a
learning curve. The far left of the graphs represent
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Figure 3: Lung data. Learning curve with 10 fea-
tures, showing that all criteria overfit, and become
essentially equivalent when data is limited. At the
extreme (10%) the more complex the criterion, the
more it overfits.
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Figure 4: SRBCT data. Learning curve with 10 fea-
tures. Simpler criteria resist overfitting until the ex-
treme data limit.

the data-poor training environments—both Lung and
SRBCT show the FOU criterion severely overfitting,
while the less complex criteria manage to resist un-
til the extreme data limit. At this extreme, note that
all criteria eventually overfit. In the data-rich environ-
ments, it appears the optimal criteria that incorporate
the right dependency assumptions are MRMR/JMI.

The experiments we have performed so far are all
with previous studied criteria. From figure 1 it is
evident that there exist many points within the space
that have never been explored. Figures 5 and 6 explore
the space, illustrating errors (a smaller square means
lower error), when picking 10 features for a 1-nn clas-
sifier. On the Lung data the minimum in the space
is {# = 0.8, = 0.2}. On the SRBCT data, it is at
{B = 0.6,y = 0.8}. Neither of these points correspond
exactly to any previously studied criteria. Whilst a
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full empirical study is outside the scope of this paper,
this serves as proof-of-concept that this space warrants
investigation.
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Figure 5: Lung data. Error rates for a 1-nn classifier,
using 10 features. FEach coordinate in the space
corresponds to a different criterion, some previously
investigated, some not.
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Figure 6: SRBCT data. Error rates for a 1-nn classi-
fier, using 10 features.

6 CONCLUSIONS

We have presented a unifying viewpoint on the ex-
isting information theoretic feature ranking literature.
The core of this is a ‘root’ criterion, which explicitly
quantifies the utility of a new feature. We showed how
several published heuristics are reproduced by param-
eterizations of this root criterion. All the heuristics
assume first-order feature interactions, and some ad-
ditionally omit the conditional term I(X,,, X;|Y). Cri-
teria that omit this conditional redundancy term are
MIFS and MRMR. Criteria that incorporate both re-
dundancy and conditional redundancy are CMIM, IF,
JMI and MIFS-U. Since I(X,,, X3|Y) is positive, these
latter criteria could be seen as more “aggressive” than
the former, assuming a higher utility for the same can-
didate feature. The consequence of this was demon-
strated in the overfitting behaviour of the criteria.

This approach has resulted in theoretical explana-
tions for the success and relations of several recently
published heuristics (Battiti, 1994; Yang and Moody,
1999; Kwak and Choi, 2002; Vidal-Naquet and Ull-
man, 2003; Fleuret, 2004; Peng et al., 2005; Lin and
Tang, 2006). This also opens the door for a data-driven
framework for feature selection. If we have some a-
priori belief of the dependencies within the dataset,
we may be able to build these into our choice of 5 and
~. Further work will also address the relative merits of
using higher-order feature interactions in the criteria.

It is important to note that, we do not claim eq(8) as a
universally superior criterion. The success of any filter
criterion will depend on the true dependencies in the
data, on the dependence structure assumed (explicitly
or implicitly) by the classifier, and also on the search
strategy employed. Instead, we hope that this work is
a step toward a longer term goal, a solid mathematical
foundation for feature selection methodology.

Appendix A : Multivariate Information

Several authors have offered what they claim to be
“natural” multi-variate extensions of Shannon’s mu-
tual information. Each definition has its own prop-
erties, some of which are desirable and some undesir-
able. It is widely acknowledged that McGill (1954) was
the first to propose a multi-variate mutual information
measure, the Interaction Information. We use the 2-
arity function I(;-) to denote the Shannon Mutual
Information between two variables, while the 1-arity
function I(-) denotes McGill’s Interaction Information
among all variables in the supplied set argument. For
three random variables, the Interaction Information is

I({ X1, Xo, X3}) = I(X1; Xo| X3) — I(X15 X2), (17)

that is, a difference of the conditional mutual informa-
tion and the simple mutual information. The case for
n variables is defined recursively,

I{X1,....Xn}) =

T(X1, oo X1} X)) — I X1, ooy Xn1}). (18)

The conditional form is defined by simply marginalis-
ing over the distribution of X,,. A general closed-form
definition can be shown by re-writing it as entropies,

Wlth S - {X17 ann}v

I(8) = = Y (=)S\H(T), (19)

TCS

where ) .~ g denotes a sum over all possible subsets
drawn from S. The case for n = 2 reduces to Shan-
non’s definition. An important property to note is
that the interaction information can be negative—it
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can be understood as the gain (or loss) of information
between two variables, due to additional knowledge of
a third. A positive value indicates a synergistic inter-
action among the variables; that is, the shared infor-
mation between A and B has increased as a result of
observing C. A negative value indicates the opposite,
that shared information is decreased by observing C.
This is a highly non-intuitive property of information
content. A reader less practised with information the-
ory might assume since conditioning reduces entropy,
I(A; B|C) < I(A;B), therefore (17) is always nega-
tive. However, as these are sums of entropies, and it
can easily be the opposite case, I(A; B|C) > I(A; B).

As an example, imagine A and B are two inde-
pendently sampled binary values, and that C
—(A zor B), ie. C = 1 when both are true, or
both false. Without knowledge of C, the informa-
tion between A and B is zero, however when C' is re-
vealed, A and B become completely dependent, there-
fore I(A; B|C) > I(A;B). The converse can also
be shown. Imagine A and B are now noisy obser-
vations of another variable C, i.e. A = (C zor ¢)
and B = (C zor ¢), where ¢ is a function returning
true/false with equal probability when called. Now
when C' is revealed, the only component left is ¢, a
completely random quantity, therefore the information
between A and B is again 0 and I(4; B|C) < I(A; B).
It is important to note that the quantity I(ABC; D)
has a very different meaning to I({A, B,C, D}). The
former is Shannon’s mutual information between the
joint random variable ABC' and the variable D; the
latter is McGill’s interaction information among all
four variables {A, B,C,D}. Theorem 1 in the main
body of this paper shows a deep connection between
these two definitions.

Appendix B : Proof of Theorem 1

To prove theorem 1, we use a classic technique from
number theory, Mobius inversion. This is a method
for inverting finite sums over partially ordered sets —
for our use, the poset is the set of all subsets of S =
{X1,..., X}, ordered by inclusion. For a set S, if we
define a function

= f(T)

TCS

(20)

where ) ;¢ should be read, “sum over all possible
subsets T' drawn from S”. Then, we can write f’(-)
as,

F(8) = > n(S. D), )l

TCS

u(S,T) = (-1

(21)
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Here, u(S,T) is the classical Mobius function from
number theory (Rota, 1964). Hence f’(-) is the in-
version of f(-), and vice versa. The formula allows us
to define either f(-) or f/(-), and derive the other with-
out ambiguity. For further details, we refer the reader
to an excellent survey (Bender and Goldman, 1975),
discussing generalisations of the formula and its use in
combinatorial analysis.

For our own needs, with S = {X3,..., X,,}, we define
f(S) = I(X1.,;Y), the Shannon information. Then
from (21) we have

S|

= > > (-

k=1 TCS,
|T[=k

IS\ [ g [ (V) + H(T) — H(TY)

(22)

where we note that for the subset T' = @), we have
I(T;Y) = 0. The H(Y) in eq (22) is independent of
the sum, so can be separated and simplified thus

| 5115
> 5 oo - 3 () st
=1 TCSs, k=1
|T|=Fk
= (=1)SI=tH(Y). (23)

The remaining entropy terms in eq (22) can be rewrit-
ten in a more compact notation, using 7} to indicate

a set T of size k, and so |S\Tx| = |S| — k, giving us
S|
6 = (VIS HT) - > HTWY))]
k=1 T,CS T,CS

We note that the following property holds,

YOHT)+ Y, HTaY)= >

T, CS Tr-1CS Tkg{SUY}

H(T})

(24)
For example, (a function of) all subsets of size 3
drawn from S, plus (a function of) ¥ with all subsets
of size 2 drawn from S, gives us all subsets of size 3
drawn from SUY. If S = {A, B,C, D}, then all size
3 subsets is {{ABC},{ABD},{BCD},{ACD}}.
All size 2 subsets, each unioned with Y, is
{{ABY},{ACY},{ADY },{BCY},{BDY},{CDY}}.
Finally the union of these two sets gives us all subsets
of size 3 from {S UY}. This property allows us to
rearrange our expression for ¢,

S|

6 = (VIS Hm) - Y BT
k=1 T,CS T,CS
= (DF YT Hm)| +
T.CS
|SUY|
SN Hm)] (@)
k=2 T, C{SUY}
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Recombining this with eq (23) and rearranging,
S|

SO st
k=1 T, C{SUY'}
|SUY|
_ Z Z (_1)‘{SUY}\TR|H(Tk)
k=1 T, C{SUY}
= I{SuY}) (26)

F'(8)

where the final step uses the closed-form definition of
interaction information, eq(19). We now reinsert this
into (20) and we have the desired result.

Appendix C : Proof of eqs (12) and (15)

The following proofs make use of the information iden-
tity, I(A; B|C) —I(A; B) = I(A; C|B) — I(A; C). The
Joint Mutual Information criterion (Yang and Moody,
1999) can be written,

n—1

Timi= > _ I(XnXi;Y)

= >[Ik Y) + 1(X0 Y IX)]
k=1
The term S 7~1 I(Xy;Y) in the above is constant with
respect to the X,, argument that we are interested in,
so can be omitted. The criterion therefore reduces to,
n—1
Timi = > [I(Xn; Y|Xk)}
k=1
n—1
= > [1(XasY) = 1005 Xi) + 1(Xo XY )]
1

>
Il

1
= (n = DIX ¥) = > [1(Xai Xe) = I(Xns XilY))]

3
|

=
Il

Multiplying the above by the constant ﬁ gives us
eq(12). The rearrangement of the Conditional Mutual
Information criterion (Fleuret, 2004) follows a very
similar procedure. The original, and its rewriting are,

Jomim = ming [I(Xn;Y|Xk)}

= min, [I(Xn; Y) = I(Xn; X3) + I(Xon; Xk|Y)}

1(X03 Y+ ming [T(X; Xy |Y) = 1(X0: Xi)|

= I(X,;Y) + ming [Im({Xlem Y})}
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