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Abstract

We consider the problem of optimal exper-
imental design in structure identification.
Whereas standard approaches simply mini-
mize Shannon’s entropy of the estimated pa-
rameter posterior, we show how to select be-
tween alternative model configurations, too.
Our method specifies the intervention that
makes an experiment capable of determin-
ing whether or not a particular configura-
tion hypothesis is correct. This is performed
by a novel clustering technique in approx-
imated Bayesian parameter estimation for
non-linear dynamical systems. The compu-
tation of the perturbation that minimizes the
effective number of clusters in the belief state
is constrained by the increase of the expected
Kullback-Leibler divergence between the pa-
rameter prior and the posterior. This en-
ables the disambiguation of persisting alter-
native explanations in cases where standard
design systematically fails. Its applicabil-
ity is illustrated with a biochemical Good-
win model, showing correct identification be-
tween multiple kinetic structures. We expect
that our approach will prove useful especially
for complex structures with reduced observ-
ability and multimodal posteriors.

1 INTRODUCTION

Experimental design refers to the general task of spec-
ifying all aspects of an experiment. The designer
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chooses the values of the variables that can be con-
trolled before or during the process and is interested
in the effect of some interventions on the experimental
outcome. A design is called optimal if it maximizes
a specified information optimality criterion. Due to
its generality, this framework has a broad spectrum of
applications and its renewed interest is justified by its
fundamental role in systems biology. Not only con-
temporary experiments are technically laborious and
demanding, but also the studied phenomena are more
and more complex, with interacting structures whose
identification is challenging. Therefore, two main goals
are particularly desirable: the reduction of the uncer-
tainty for the estimated model parameters and, more
importantly, the ability to identify the correct struc-
ture between alternative configurations.

This paper is structured as follows. Section 1 describes
the problem and summarizes our contributions, ac-
companied by an outline of the related work. Sec-
tion 2 presents the method and its properties. The
effectiveness of the method is exemplified in Section 3
for a biochemical Goodwin model, where it enables the
correct identification of the kinetic structure. Finally,
conclusions and outlook are drawn in Section 4.

1.1 PROBLEM DESCRIPTION

In this paper, we address the following problem: given
the available prior information about a dynamical sys-
tem, find the intervention that makes an experiment
capable of decisively determining whether or not a pa-
rameter structure hypothesis is correct. In our sce-
nario, the parameters define the network topology of
the direct interactions between the variables of the dy-
namical system. We want to enable the automatic
active selection between alternative explanations that
would otherwise persist. Two constraints are added
to define a useful and realistic problem: the feasibility
of the intervention and the increase of the expected
Kullback-Leibler Divergence (KLD) between the pa-
rameter prior and the posterior.
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To illustrate the problem, let us consider the follow-
ing example. As portrayed in Fig. 1, the position of a
stationary object is measured by an observer. Due to
the presence of two perfect mirrors, the object appears
on the image plane at positions —A and A. There is
no way, solely based on observations, to disambiguate
the positions. In this example, our goal is the determi-
nation of an appropriate intervention w that modifies
the placement of the object, so that the resulting pro-
jected images allow the identification of the position.
Moreover, the intervention must be feasible and within
a given energy cost. After the perturbation, the ob-
ject appears on the image plane at position —B and
its reflected image at position B # C, thus permitting
the unambiguous determination of the state.

Our work is motivated by the renewed interest in
the identification of nonlinear dynamical systems with
complex structure. In the belief state, parameter clus-
ters encode alternative underlying structures with lo-
cal uncertainty. In general, developing such a strategy
is challenging for at least two reasons. First, the as-
sociated estimation method must avoid the arbitrary
exclusion of candidate solutions. Second, the simple
reduction of the uncertainty in the parameter estima-
tion in not enough when alternative explanations per-
sist under the form of multimodal parameter posteri-
ors. In fact, a belief state which is almost reduced to a
finite set of Dirac deltas has low entropy but still some
uncertainty remains between the alternative parame-
ter configurations. Viceversa, in a large number of
applications it is more desirable to tolerate some addi-
tional local uncertainty in the parameters, but finding
a single identifiable structure.

Figure 1: Tllustration of the mirror example: an appro-
priate perturbation u allows the identification of the
position of the object.

1.2 RELATED WORK

Experiment design has previously been conducted with
special-case algorithms, often considering linear ap-
proximations (Seeger 2007). Recently, there has been
a surge of interest in optimal design for systems bi-
ology and a large number of techniques have been
proposed (Wu 2008). The vast majority of these ad-
dresses the problem of parameter estimation. Despite
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the existence of such tools and their intuitive useful-
ness, little is known about the limits of their ability
to discriminate between alternative parameter config-
urations. This is mainly due to the intrinsic difficulty
coming from the non-linearity of the studied dynam-
ical systems (Akaho 2007). From the computational
point of view, the stable detection of multiple configu-
rations is already a challenging task. This is caused by
the fast divergence in the sequential importance sam-
pling/resampling approximations of Bayesian state es-
timation (King 2000).

In the case of Bayesian optimal experiment design, a
common goal is the maximization of the expected KLLD
between the prior and the posterior. When posteriors
are approximated by Gaussian distributions, this cor-
responds to the popular D-optimality criterion. There
are theoretical and practical limitations for this ap-
proach, among others

e the Gaussian assumption do not hold for poste-
riors of non-linear systems and is a poor approx-
imation especially for systems with complex and
interesting dynamics,

as described before, the maximization of the ex-
pected KLD between the prior and the posterior
do not necessarily discriminate between alterna-
tive parameter structures.

1.3 CONTRIBUTIONS

We address the problem of structure identification by
proposing a novel design approach that actively in-
tervenes to generate crucial experiments. While re-
ducing the uncertainty in the parameter estimation,
our framework enables the ability to choose between
mutually exclusive explanations of the observed phe-
nomena. This feature overcomes some of the limita-
tions of standard design described before thanks to
a novel embedded clustering. We introduce a new re-
sampling approach, which surmounts the common uni-
modal degeneracy problem of sequential Monte Carlo
algorithms. The resampling is preventive and based
on clustering: we show that a higher concentration of
samples in the most significant regions of the param-
eter space maintains stability and facilitates conver-
gence.

We combine clustering and sequential Monte Carlo
state estimation in a new criterion, that allows us to
automatically detect and actively reduce the number
of modes in the belief state. We demonstrate that the
sole maximization of the KLD is not always able to
discriminate between alternative families of parameter
configurations. This situation is influenced by the de-
gree of completeness of the measurement process and
by the complexity of the dynamic behavior. As an
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additional advantage, our scheme can be applied to
general nonlinear systems both for discrete and con-
tinuous time. Finally, we explore the effects of the
energy cost function and of feasibility constraints for
experimental interventions.

The results suggest that the stability introduced by
the dynamic clustering has strong effects on the ability
to discriminate between competing hypotheses, thus
validating our framework as an appropriate design for
systems with complex behavior.

2 METHODS

We begin with the mathematical specification of the
problem, followed by a description of the method. Our
approach is based on the generation of an equivalent
extended system, which facilitates the design process.
The latter is performed by minimizing the number of
clusters in the predicted parameter posterior, under
the constraints of feasibility and of increased expected
KLD between consecutive belief states.

2.1 GENERAL EXTENDED MODEL

Let us start by considering the canonical pro-
cess/measurement representation for a continuous-
time continuous-valued stochastic dynamical system
observed at discrete points in time. Let ¥ be a system
whose process model is given, in a time span [tg, tena],
by the Ito Stochastic Differential Equation (SDE)

dzy = f.(2¢, 0, us, t)dt + 0, (2¢, us, t)dW,e, (1)

where z; € R" is the state vector with finite dimen-
sion n, 8 € R” is the parameter vector and u; € U
is a controllable input intervention. Note that f, is a
known time-dependent non-linear function that, given
the current state, the parameters and the input, gov-
erns the deterministic component of the r.h.s. in (1).
It represents the deterministic drift acting upon W,
that is a standard n-dimensional Wiener process with
infinitesimal variance o2 in the infinitesimal time in-
terval dt. It is now possible to consider an equivalent
extended state space of dimension n + r, where the
extended states x are given by a combined transfor-
mation of the original states and parameters 6. In this
way, the parameters are hidden in the initial conditions
xq of the extended system. The parameter estimation
task is transformed into an equivalent state estima-
tion problem (Doucet 2003). Consequently, (1) can be
rewritten as

dXt = f(Xt,’U/t,t)dt+J(Xt7ut,t)th, (2)

where f and o are functions that satisfy the equiv-
alence between (1) and (2) for the dynamics of the
original process model. The same notation applies to
the equivalent extended Wiener process W.
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The measurement process is given by
Yi = h(xtia ‘/15)7 (3)

where y; € R™ is the experimental output, h is the
known measurement function and V; is a noise term.
The measurement is performed only at discrete time
points t; € [to,tena], that are arbitrarily distributed
and sequentially indexed. The result of the experiment
is given by the data set D = {(¢;,y:)};_,. The data
available at time t; <t < t;4, are denoted by D; =

{(tiya) Y=

2.2 APPROXIMATE BAYESIAN
ESTIMATION

Bayesian state estimation reconstructs the posterior
Probability Density Function (PDF) of the state,
based on available data D; and prior information
p(x;to). For sequential measurements, this can be per-
formed dynamically by using recursive Bayesian meth-
ods. An additional benefit is that, for every update of
the belief state, it is not necessary to store the com-
plete data set. In fact, all current information at time
t; <t < tjy1 is embodied by the posterior p(x;t|D;).

Recursive Bayesian estimation consists of essentially
two stages: prediction and update. The former uses
the process model to predict the state PDF between
one measurement time point ¢; and the next. Given a
continuous-time process model, the current belief state
p(x;t|D;) at time t; < t < t;41 is the solution of
the Fokker-Planck equation for the extended process
model, that is

9

L~ V- (p)+ 3A0n), @

where f governs the drift and o is the extended diffu-
sion tensor. The given initial condition for (4) is the
latest posterior at time ¢;, that is p(x;t;|D;).

The extra information coming at time ¢;;1 reduces the
uncertainty in the posterior, which is updated accord-
ing to Bayes theorem. When the measurement y;;1
becomes available, the update step follows

p(yj+11%; [to, t])p(%5t411D;) '
p(¥;+1|D;)

p(xitj41|Dj1) =

. . . ()
This recurrence relation, together with (4), consti-
tutes the basis for the optimal Bayesian solution.
In general, this solution cannot be computed an-
alytically and must be approximated, usually with
Monte Carlo approaches. In the case of non-linear
non-Gaussian recursive Bayesian estimation, sequen-
tial importance sampling/resampling techniques are
commonly used (Arulampalam 2002).

The required posterior PDF can be approximated by a
finite set of random samples {x(?}7+, with associated
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weights {w("}”+, normalized to one. This approxima-
tion becomes the solution of the optimal Bayesian esti-
mation as the number of samples tends to infinity. The
trajectory x(t) of the process model for t € [to,t;4;]
can be approximated by the sampling Xg.;j41.

Thus, the posterior can be estimated as

p(Xo:j+1|Dj+1) ~ Zw§215(xo:j+1 - X((Jgﬂ)v (6)
i+1

where {(xgi),w(i)(t))}?:”l denotes a random measure
that characterizes the posterior and ¢ is a Dirac delta.
Given a proposal density ¢(xo.j+1|D;+1), it is possible

()

to obtain samples x;; ; whose weights are

P(*0:j+1|Dj+1) )
q(x0:5+1/Dj+1)

If the importance proposal is chosen such that it can
be factorized as

@

w;{q

(8)

then the existing samples can be iteratively aug-
mented. This is be done by the following recursion

q(%0:j+1|Dj1) = ¢(Xj11]%0:5, Dj11)q(X0:5|D;),

o @PPinlxped )
Wi, X W; . , .
Jj+1 J (2) (2) D
q(XjJrl‘XO:j’ 1)
By numerically integrating with the Euler-Maruyama
method the SDE of the extended process model, we
can sample from p(x§21|xy)). This distribution can
be used as the importance proposal for the approxi-
mation, simplifying the recursive computation of the
weights in (9) to

(9)

wﬁl x wy(‘l)p(yﬁ‘ |X.§'21

).

Since the form of p(yj\xgi)_l) is known from (3), the

weights update requires only a simple function evalu-
ation.

(10)

There are two main difficulties associated with sequen-
tial Monte Carlo approximations. First, the degener-
acy problem is the common phenomenon where, after
few iterations, all but few particles present negligible
weight (Arulampalam 2002). A common measure of
degeneracy is the Effective Sample Size (ESS), denoted
by Neg as defined as follows

n ~ 1
Neff = L ~ Neff = np (g
Ei:l(wj )

The approximation is due to the fact that the quantity

1+ Var[w;(i)]

p(x\"D;)

a4 1y;)
cannot be evaluated exactly. Small values of ESS
are a symptom of degeneracy and it has been proved

*(2)

w; (12)
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that the variance of the importance weights can only
stochastically increase over time (Doucet 1998). The
degeneracy can be easily detected, as shown in the
experimental results, and can be solved by regenerat-
ing the sample set by resampling. However, standard
resampling is the cause of the second difficulty with se-
quential importance sampling/resampling: the diver-
gence caused by the collapse of multiple modes into a
single degenerate configuration (King 2000). Our solu-
tion to that is a preventive clustering approach, which
partitions the particles to contrast the predicted diver-
gence. This is important not only for the estimation
but also for the evaluation of any candidate interven-
tion.

2.3 BELIEF STATE CLUSTERING

A dynamic clustering of the belief state will help us in
three tasks: detecting multiple parameter configura-
tions, avoiding the divergent behaviors of the impor-
tance resampling approximation, optimizing the qual-
ity of the designed intervention. We consider clus-
ters in the posterior as alternative parameter config-
urations subject to local uncertainty. At any point
in time, particles from the importance resampling ap-
proximation of the belief state are partitioned into
n. clusters, obtained with weighted K-means. This
is done dynamically with cluster assignments recal-
culated at every Bayesian update. By initializing K-
means with the previous centroids, the clusters can be
efficiently tracked over time.

The problem of unimodal divergence is overcome by
preventive partitioned resampling. More precisely,
when the ESS falls below a certain threshold as a con-
sequence of a Bayesian update step at time ¢;, two
Gaussians are fitted for every cluster. The first one,
denoted as N~ locally approximates the belief state
before ¢;. Similarly, N is an approximation of the
predicted belief state after the Bayesian update. After
that, the preventive resampling is done separately for
every cluster. This maintains the number of particles
constant in every partition and avoids the degener-
ate loss of multimodality. The new particles are sam-
pled from the proposal AT and their new importance
weights are given by w® o N~ (x®)/N+(x®). The
procedure is exemplified with 100 samples in Fig. 2.
There, our strategy (right) outperforms the standard
cluster resampling technique (left) in the approxima-
tion of the posterior probability, given a prior for
parameter 6. This performance is due to the fact
that, whereas standard techniques resample after the
Bayesian update, we do that in advance. In fact, this
allows us to concentrate the samples in regions where
the contribution to the approximation is substantial,
instead of dissipating them were the weights present
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Figure 2: Compared with standard cluster resampling (left), our preventive approach better approximates the
posterior PDF (right) for the parameter 6. This is due to an the intermediate step that provides a higher sample
density the most significant regions of the parameter space.

diminished values.

In order to maintain in every cluster the number of
samples constant over time, we forbid sample diffu-
sion between adjacent clusters. This means that the
new samples that previously belonged to cluster C; will
be rejected if their new resampled coordinate is in the
partition assigned to cluster Cg, for k # j. Convex
regions of the parameter space are implicitly assigned
according to a Voronoi partitioning based on the cen-
troids of the clusters. The results show that this novel
strategy significantly facilitates the convergence of the
algorithm.

2.4 OPTIMIZED INTERVENTIONS

In order to define our design criterion, we need to
quantify the number of alternative uncertain struc-
tures in our belief state. Assuming that our dynamical
clustering acts upon the clusters of particles {C;}¢ iy
we assign to every cluster its global weight. Let P;
be the partition associated with cluster C;, then the
global weight W; is given by

W; = / (x;t|D)dx ~ Z w'?

ix(DeP;

x:4|D).

(13)

The vector Wi, ..., W] is normalized to unity since

ZW / (x: t|D)dx

and can be 1nterpreted as a vector representation of a
probability mass function p.. At this point, its discrete
entropy H[p.] can be easily computed plugging (13)
into

(14)

Ne

Hlp.] = ZW log (W (15)

By taking the following as information criterion to
maximize 1/(1+ H|[p.]), we favor the belief states with
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the lowest H|[p.|, that correspond to the ones that
maximally discriminate between alternative struc-
tures. Now, let p(x;t;|D;) be the belief state at time
t; and let us consider an experimental design for the
interval [t;,¢;4+]. By using a certain u, for a given re-
alization of the measurements y;.;1;, one can compute
H,[pc] following (15). We want to find the intervention
u belonging to the function space U such that

(16)

* E :
u' =argmax By, 1+ Hy[p.]

subject to the following two constraints:

1. energy cost: Enf[u] < «, where En is an energy
cost function and « is a given threshold;

. non-decreasing KLD:

¢(pu) > ¢(po),

6(pu) = Ey, ., [KL(pa (5 1 Dy 0)) [p(x 51D;)]
and similarly for pog. Here KL denotes
the KLD function, while p,(x;t;j+;|D;j4;) and
Po(X;tj41|/Dj41) denote the resulting belief state
respectively with or without the intervention.

(17)

The former constraint imposes an upper bound on the
energy cost for the intervention. The latter avoids the
selection of degenerate interventions that stimulate un-
predictable behaviors. In fact, these could finally hide
the underlying dynamics in larger and more uncertain
clusters, giving an illusory reduction of the number of
alternative structures.

The estimation of the expected value in (16) and in
the second constraint is computationally demanding
or even infeasible. As shown in the results, it can
be well approximated by taking the values which fol-
low from the estimation of E[y;.;j+;]. The resulting
optimization problem is generally non-convex and its
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complexity depends significantly on the construction
of the discrete representation of u and on its related
dimensionality.

3 EXPERIMENTAL RESULTS

To illustrate the effectiveness of our approach, we ap-
plied it to a modified version of the Goodwin model.
This is a biochemical negative feedback oscillator that
describes the molecular mechanism of the circadian
clock of Neurospora and Drosophila (Ruoff 2001). The
process model, the measurement conditions and the
nominal parameter values have been chosen for the
sake of clarity: they present an interesting non-linear
behavior and emerging multimodal posteriors. The
multimodality persist with observations and clearly
represent alternative kinetic structures. The most in-
teresting non-linear features are the presence of a sta-
bilizing feedback loop, of an inhibitory threshold effect
and of two competing parallel reactions.

3.1 BIOCHEMICAL MODEL

The model is schematically represented in Fig. 3 and
its mathematical formulation is the following:

c1 1 Uy

d|? = | N || +G|“?| | dt+DY2aw, (18)
C3 3 us
Cq T4 Uy

where every c¢; represent the concentration of the chem-
ical species Cj, u; are the components of the time-
dependent input intervention and r; are the following
reactions

7“1(61791) =01

7’2(01,92) = 021 (19)
73(c2, €3,03) = O3cacs
r4(ca,04,05) = 043/ (c + 63).

Reactions rates, concentrations and parameters are

o

C
U1= @T/ 2

Figure 3: The modified Goodwin model.

here assumed to remain non-negative. The matrices
N, G and D respectively represent the stoichiometric
matrix that governs the deterministic component of
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the reactions, the input interface matrix that maps
the inputs into the states and, finally, the covariance
of the Wiener process. These are defined as follows:

-1 -1 0 -1 1
1 0o -1 0 1

N = 0 1 -1 0 , G = 0]’ (20)
0 0 6 0 1

while D = diag[0.1,0.05,0.05,0.05]. The stoichiomet-
ric matrix N represents the net effect of all the in-
volved reactions visualized in Fig. 3. Note the paral-
lel structure of the competing reactions 71, 7r: their
parametrization is unknown and their products can-
not be measured, creating alternative candidate struc-
tures. The matrix G interfaces the external interven-
tions with the state space of the process model, de-
scribing the feasible manipulations.

The extended process model is obtained as described
in Subsection 2.1. It is related to the Horn-Jackson-
Feinberg formalism (Bullinger 2008) and its determin-
istic component is as follows:

e Uy — Te — L7 — L9
x1
Lo Uz + T — T3
x T7 — T8
3
T Uy + 628
4
i oo | = 2x4(uy + 623) (21)
dat |70 (u1—z6—T7—T9)
Te 1 x1
U1 —Te—T7—I
T 7,2( 1 6I1 7—%9)
(ug+z6—28) (z7—x8)
xg ’]"3( T2 73 )
[ 9] T4(2(U4+6zs) — 24

T4 Ts5 -

The measurement process is formalized as follows:

yi = Hx(t;) + vy, (22)
where the measurement matrix is
1 000 0 0 O0OTOO
H= 0001 0O0O0TUO0TUWO (23)

and v; is an additive white Gaussian noise process
with covariance matrix diag[0.6, 0.6]. This corresponds
to the case of a process with reduced measurability,
where only the initial and terminal chemical species
can be directly observed by experimentation. Measur-
able species are represented within a circle in Fig. 3.

3.2 CLUSTER STABILITY

Our preventive cluster resampling allows us to avoid
unimodal divergences, which are caused by recursive
sample impoverishment in regions of the multimodal
belief state. The results plotted in Fig. 4 show the dy-
namics of the belief state for the estimation of the score
function. Standard resampling rapidly diverges (left),
bringing more than 90% of the 500 realizations into de-
generate absorbing states. Viceversa, our strategy suc-
cessfully maintains more than 90% of the realizations



Busetto, Buhmann

Equilibrium State
B2 B o2 BN
x &5 K & & & B8
& 8 3 8 &8 3 8

@
=)

IS
S

N
15}

===

0.4

o

05 06 07
Time [AU]

0 01 0.2 03 0.8 0.9 1

Figure 4: Convergence is achieved when the equilibrium state remains in the central region.

N
S
3

.
®
3

=
@
3

H
IS
S

H
I
S}

100

Equilibrium State

@
S

@
3

IS
S

E—

N
S

é;\:

—

0.8

)

0.1 0.2 03 0.4 0.6 0.7

)

05
Time [AU]

0.9 1

Standard re-

sampling exhibits frequent unimodal degeneration (left), while our clustered resampling scheme shows greater

stability (right). Time is measured in arbitrary units.

in the central convergent region. This is a fundamen-
tal requisite for the approximation of the experimen-
tal criterion: without this stability, the utility value
is systematically overestimated and, consequently, the
design automation provides degenerate solutions.

3.3 STRUCTURE IDENTIFICATION

In our example, we consider the following parame-
ter vector § = [7,1,10,3,1]T and initial conditions
20 = [3,0.6,0.4,0.8]T. We dynamically perform the
design, considering the interval between one sample
and the next. Our approach is insensitive to the dis-
tribution of measurement time points, as long as they
are sequential. In Fig. 6, we consider 10 incomplete
measurements that are equally spaced for visualiza-
tion purposes. For the sake of clarity, we activate our
method at time ¢t = 0.5, allowing a comparative eval-
uation of its advantages. The dynamics of the belief
state for 1 — 05 is plotted in Fig. 6, on the left without
intervention and on the right with our optimized in-
tervention. The identification of the correct structure
is rapid, almost creating a discontinuity in the evolu-
tion of the belief state. We considered the intervention
space of independently scaled four dimensional Heav-
iside functions, shifted to the current point in time.
The numerical optimization has been performed with
simulated annealing, constrained by the following en-
ergy bound

Enfu] = ||ull2 < 20. (24)
The trajectory of the dynamical system subject to the
optimal intervention is plotted in Fig. 5.

4 DISCUSSION

In this study we proposed and evaluated a new
methodology for structure identification by designing
optimized interventions for a given experiment. The
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Dynamical Behavior with Interventions
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Figure 5: Trajectory of the dynamical system subject
to the optimal intervention. Time and concentrations
are measured in arbitrary units.

new approach enables the selection between alterna-
tive explanations and provides correct results in cases
where standard experimental design fails. It is espe-
cially suited for problems where multiple parameter
configurations persists, for example due to intrinsic
properties of the system or because of data scarcity.
Our strategy is based on a novel preventive resampling
technique, that provides stability to the simulated in-
ference and feasible approximations for the design cri-
terion to optimize. The sample clusters represent al-
ternative structures that are candidate explanations
for the measured system dynamics. They are used
to estimate the intervention that maximizes the ex-
pected difference between the probabilities associated
with the structures. This is done by considering two
additional constraints for the interventions: an upper
bound on the energy cost and the restriction to rea-
sonably predictable behaviors.

The three main advantages over the existing methods
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Without Optimized Intervention

P(6,-6,1D)

With Optimized Intervention

Figure 6: Our design approach permit the disambiguation between alternative structures (right) in cases where
multimodality would otherwise persist (left). After its activation at time ¢ = 0.5 it identifies the correct mode,

excluding the alternative candidate explanation.

are the following. First, the stability of the approxi-
mated utility function is due to the clustering of the
belief state. Second, the ability to constrain the in-
terventions avoids unpredictable trajectories. Third,
it combines precision in the parameter estimation and
simultaneous selection between alternative structures.
These capabilities will prove useful especially in cases
where the measurement process presents reduced ob-
servability and complex dynamics. The resulting opti-
mization problem can be computationally demanding
but we demonstrated that its numerical solution is fea-
sible for realistic applications. An interesting observed
phenomenon is the rapidity of the discrimination be-
tween alternative structures. This shows that promis-
ing results can be obtained with almost reactive, short
term design.

While we show that our new methodology is accurate
and useful, we note that it is sensitive to the selec-
tion of the intervention space. There are couple of
directions for future research. First, the assignment of
problem-specific intervention spaces and energy costs
could significantly simplify the optimization process.
Second, the determination of the number of sample
clusters is a task that deserves attention due to its
central role in the design criterion. These are both the
subjects of ongoing research.
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