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Abstract

This paper presents a general, fully Bayesian
framework for sparse supervised-learning
problems based on the horseshoe prior. The
horseshoe prior is a member of the family of
multivariate scale mixtures of normals, and
is therefore closely related to widely used ap-
proaches for sparse Bayesian learning, includ-
ing, among others, Laplacian priors (e.g. the
LASSO) and Student-t priors (e.g. the rel-
evance vector machine). The advantages of
the horseshoe are its robustness at handling
unknown sparsity and large outlying signals.
These properties are justified theoretically
via a representation theorem and accompa-
nied by comprehensive empirical experiments
that compare its performance to benchmark
alternatives.

1 Introduction

Supervised Learning can be cast as the problem of
estimating a set of coefficients β = {βi}pi=1 that de-
termine some functional relationship between a set of
inputs {xi}pi=1 and a target variable y. This frame-
work, while simple, is of central focus in modern statis-
tics and artificial-intelligence research; it encompasses
problems of regression, classification, function estima-
tion, covariance regularization, and others still. The
main challenges arise in “large-p” problems where, in
order to avoid overly complex models that will pre-
dict poorly, some form of dimensionality reduction is
needed. This entails finding sparse solutions, where
some of the elements βi are zero (or very small).
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From a Bayesian-learning perspective, there are two
main sparse-estimation alternatives: discrete mixtures
and shrinkage priors. The first approach (Mitchell and
Beauchamp, 1988; George and McCulloch, 1993) mod-
els each βi with a prior comprising both a point mass
at βi = 0 and an absolutely continuous alternative; the
second approach (see, e.g., Tibshirani, 1996 and Tip-
ping, 2001) models the βi’s with absolutely continuous
“shrinkage” priors centered at zero.

The choice of one approach or the other involves a se-
ries of tradeoffs. Discrete mixtures offer the correct
representation of sparse problems by placing positive
prior probability on βi = 0, but pose several diffi-
culties. These include foundational issues related to
the specification of priors for trans-dimensional model
comparison, and computational issues related both
to the calculation of marginal likelihoods and to the
rapid combinatorial growth of the solution set. Shrink-
age priors, on the other hand, can be very attrac-
tive computationally. But they create their own set
of challenges, since the posterior probability mass on
{βi = 0} (a set of Lebesgue measure zero) is never pos-
itive. Truly sparse solutions can therefore be achieved
only through artifice.

In this paper we adopt the shrinkage approach, while
at the same time acknowledging the discrete-mixture
approach as a methodological ideal. Indeed, it is with
this ideal in mind that describe the horseshoe prior
(Carvalho, Polson and Scott, 2008) as a default choice
for shrinkage in the presence of sparsity.

We begin our discussion in the simple situation where
β is a vector of normal means, since it is here that the
lessons drawn from a comparison of different shrink-
age approaches for modeling sparsity are most readily
understood. In this context, we provide a theoreti-
cal characterization of the robustness properties of the
horseshoe via a representation theorem for the poste-
rior mean of β, given data y. We then give a handful
of examples of the horseshoe’s performance in linear
models, function estimation, and covariance regular-
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ization (a problem of unsupervised learning for which
the horseshoe prior is still highly relevant).

Our goal is not to characterize the horseshoe estima-
tor as a “cure-all”—merely a default procedure that is
well-behaved, that is computationally tractable, and
that seems to outperform its competitors in a wide va-
riety of sparse situations. We also try to provide some
intuition as to the nature of this advantage: namely,
the horseshoe prior’s ability to adapt to different spar-
sity patterns while simultaneously avoiding the over-
shrinkage of large coefficients.

Finally, we will return several times to a happy, and
remarkably consistent, fact about the horseshoe’s per-
formance: that it quite closely mimics the answers one
would get by performing Bayesian model-averaging,
or BMA, under a heavy-tailed discrete-mixture model.
Bayesian model averaging is clearly the predictive gold
standard for such problems (see, e.g., Hoeting et al,
1999), and a large part of the horseshoe prior’s appeal
stems from its ability to provide “BMA-like” perfor-
mance without the attendant computational fuss.

2 The Horseshoe Prior

We start by introducing our approach to sparsity in the
simple, stylized situation where (y|β) ∼ N(β, σ2I),
and where β is believed to be sparse.

The horseshoe prior assumes that each βi is condition-
ally independent with density πHS(βi | τ), where πHS
can be represented as a scale mixture of normals:

(βi|λi, τ) ∼ N(0, λ2
i τ

2) (1)
λi ∼ C+(0, 1) ,

where C+(0, 1) is a half-Cauchy distribution for the
standard deviation λi. We refer to the λi’s as the local
shrinkage parameters and to τ as the global shrinkage
parameter.

Figure 1 plots the densities for the horseshoe, Lapla-
cian and Student-t priors. The density function
πHS(βi|τ) lacks a closed-form representation, but it
behaves essentially like log(1 + 2/β2

i ), and can be well
approximated by elementary functions as detailed in
Theorem 1 of Carvalho et al. (2008).

The horseshoe prior has two interesting features that
make it particularly useful as a shrinkage prior for
sparse problems. Its flat, Cauchy-like tails allow strong
signals to remain large (that is, un-shrunk) a posteri-
ori. Yet its infinitely tall spike at the origin provides
severe shrinkage for the zero elements of β. As we will
highlight in the discussion that follows, these are the
key elements that make the horseshoe an attractive
choice for handling sparse vectors.
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Figure 1: The horseshoe prior and two close cousins:
Laplacian and Student-t.

2.1 Relation to other shrinkage priors

The density in (1) is perfectly well defined without ref-
erence to the λi’s, which can be marginalized away.
But by writing the horseshoe prior as a scale mix-
ture of normals, we can identify its relationship with
commonly used procedures in supervised learning. For
example, exponential mixing, with λ2

i ∼ Exp(2), im-
plies independent Laplacian priors for each βi; inverse-
gamma mixing, with λ2

i ∼ IG(a, b), leads to Student-t
priors. The former represents the underlying model for
the LASSO (Tibshirani, 1996), while the latter is the
model associated with the relevance vector machine
(RVM) of Tipping (2001).

This common framework allows us to compare the
appropriateness of the assumptions made by differ-
ent models. These assumptions can be better under-
stood by representing models in terms of the “shrink-
age profiles” associated with their posterior expecta-
tions. Assume for now that σ2 = τ2 = 1, and define
κi = 1/(1 +λ2

i ). Then κi is a random shrinkage coeffi-
cient, and can be interpreted as the amount of weight
that the posterior mean for βi places on 0 once the
data y have been observed:

E(βi | yi, λ2
i ) =

(
λ2
i

1 + λ2
i

)
yi+

(
1

1 + λ2
i

)
0 = (1−κi)yi .

Since κi ∈ [0, 1], this is clearly finite, and so by Fubini’s
theorem,

E(βi | y) =
∫ 1

0

(1− κi)yi π(κi | y) dκi

= {1− E (κi | yi)} y . (2)

By applying this transformation and inspecting the
priors on κi implied by different choices for π(λi), we
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Figure 2: Densities for the shrinkage weights κi ∈ [0, 1].
κi = 0 means no shrinkage and κi = 1 means total shrink-
age to zero.

can develop an understanding of how these models at-
tempt to discern between signal and noise. Figure 2
plots the densities for κ derived from a few important
models in this class. Choosing λi ∼ C+(0, 1) implies
κi ∼ Be(1/2, 1/2), a density that is symmetric and
unbounded at both 0 and 1. This horseshoe-shaped
shrinkage profile expects to see two things a priori:
strong signals (κ ≈ 0, no shrinkage), and zeros (κ ≈ 1,
total shrinkage).

No other commonly used shrinkage prior shares these
features. The Laplacian prior tends to a fixed constant
near κ = 1, and disappears entirely near κ = 0. The
Student-t prior and the Strawderman–Berger prior
(see Section 2.3) are both unbounded near κ = 0, re-
flecting their heavy tails. But both are bounded near
κ = 1, limiting these priors in their ability to squelch
noise components back to zero.

As an illustration, consider a simple example. Two re-
peated standard normal observations yi1 and yi2 were
simulated for each of 1000 means: 10 signals with
βi = 10, 90 signals βi = 2 and 900 noise components
where βi = 0. Based on this data, we estimate the
vector β under two models: (i) independent horseshoe
priors for each βi, and (ii) independent Laplacian pri-
ors. Both models assume τ ∼ C+(0, 1), along with
Jeffreys’ prior π(σ) ∝ 1/σ.

The shrinkage characteristics of the models are pre-
sented in Figure 3, where ȳi is plotted against β̂i =
E(βi|y). The important differences occur when ȳi ≈ 0
and when ȳi is large. Compared to the horseshoe prior,
the Laplacian specification tends to over-shrink the
large values of ȳ and yet under-shrink the noise ob-
servations. This is a direct effect of the prior on κi,
which in the Laplacian case is bounded both at 0 and
1, limiting the ability of each κi to approach these val-
ues a posteriori.

Figure 3 also plots posterior draws for the global
shrinkage parameter τ , offering a closer look at the
mechanism underlying signal discrimination. Under
the horseshoe model, τ is estimated to be much smaller
than in the Laplacian model. This is perhaps the sin-
gle most important characteristic of the horseshoe: the
clear separation between the global and local shrinkage
effects. The global shrinkage parameter tries to esti-
mate the overall sparsity level, while the local shrink-
age parameters are able to flag the non-zero elements
of β. Heavy tails for π(λi) play a key role in this pro-
cess, allowing the estimates of βi to escape the strong
“gravitational pull” towards zero exercised by τ .

Put another way, the horseshoe has the freedom to
shrink globally (via τ) and yet act locally (via λi).
This is not possible under the Laplacian prior, whose
shrinkage profile forces a compromise between shrink-
ing noise and flagging signals. This leads to over-
estimation of the signal density of underlying vector,
combined with under-estimation of larger elements of
β. Performance therefore suffers—in this simple ex-
ample, the mean squared-error was 25% lower under
the horseshoe model.

In fairness, the most commonly used form of the Lapla-
cian model is the LASSO, where estimators are de-
fined by the posterior mode (MAP), thereby produc-
ing zeros in the solution set. Our experiments of the
next section, however, indicate that the issues we have
highlighted about Laplacian priors remain even when
the mode is used—the overall estimate of the sparsity
level will still be governed by τ , which in turn is heav-
ily influenced by the tail behavior of the prior on λi.
Robustness here is crucial, which is an issue towards
which we now turn.

2.2 Robust Shrinkage

The robust behavior of the horseshoe can be formal-
ized using the following representation of the posterior
mean of β when (y|β) ∼ N(β, 1). Conditional on one
sample y∗,

E(β|y∗) = y∗ +
d

dy∗
lnm(y∗), (3)
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Figure 3: Plots of ȳi versus θ̂i for Laplacian (left) and
horseshoe (right) priors on data where most of the means

are zero. The diagonal lines are where θ̂i = ȳi.

where m(y∗) =
∫
p(y∗|β)π(β) dβ is the marginal den-

sity for y∗ (see Polson, 1991).

From (3) we get an essential insight about the behav-
ior of an estimator in situations where y∗ is very dif-
ferent from the prior mean. In particular, robustness
is achieved by using priors having the “bounded influ-
ence” property—i.e. those giving rise to a score func-
tion that is bounded as a function of y∗. If such a
bound exists, then for large values of |y∗|, E(β|y∗) ≈
y∗, implying that the estimator never misses too badly
in the tails of the prior.

Theorem 3 of Carvalho et al. (2008) shows that the
horseshoe prior is indeed of bounded influence, and
furthermore that

lim
|y∗|→∞

d
dy∗

lnmH(y∗) = 0 . (4)

The Laplacian prior is also of bounded influence, but
crucially, this bound does not decay to zero in the tails.
Instead,

lim
|y∗|→∞

d
dy∗

lnmL(y∗) = ±a , (5)

where a varies inversely with the global shrinkage pa-
rameter τ (Pericchi and Smith, 1992). Unfortunately,
when the vector β is sparse, τ will be estimated to be
small, and this “nonrobustness bias” a will be quite
large. Figure 4 illustrates these results by showing
the relationship between y∗ and the posterior mean
under both the horseshoe and the Laplacian priors.
These are available analytically for fixed values of τ ,
which for the sake of illustration were chosen to yield
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Figure 4: A comparison of the posterior mean versus y for
horseshoe and Laplacian priors.

near-identical shrinkage within roughly 2σ of the ori-
gin. Both models can “bow” near the origin to accom-
modate sparse vectors by changing τ ; only the horse-
shoe can simultaneously perform well in the tails, even
when τ is very small.

This effect can be confirmed by inspecting the joint
distribution of the data and parameters under the
horseshoe prior,

p(y,κ, τ2) ∝ π(τ2) τp
p∏
i=1

e−κiy
2
i /2

√
1− κi

p∏
i=1

1
τ2κi + 1− κi

,

(6)
from which it is clear that the marginal density for κi
is always unbounded at 1, regardless of τ . (This is one
reason why the posterior mode is inappropriate here.)
Hence the horseshoe prior, its tail robustness notwith-
standing, will always have the ability to severely shrink
elements of β when needed.

2.3 Relation to Bayesian model averaging

As we have mentioned, one alternative approach for
handling sparsity is the use of discrete mixtures priors,
where

βi ∼ (1− w)δ0 + w · π(βi) . (7)

Here, w is the prior inclusion probability, and δ0 is
a degenerate distribution at zero, so that each βi is
assigned probability (1− w) of being zero a priori.

Crucial to the good performance of the model in (7)
are the choice of π(β) and the careful estimation of w.
The former allows large signals to be accommodated,
while the latter allows the model to adapt to the over-
all level of sparsity in β, automatically handling the
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implied multiple-testing problem (Scott and Berger,
2006). By carefully choosing π(β) and accounting for
the uncertainty in w, this model can be considered the
“gold standard” for sparse problems, both theoreti-
cally and empirically. This is extensively discussed by,
for example, Hoeting et al (1999) and Johnstone and
Silverman (2004).

The discrete-mixture model is therefore an important
benchmark for any shrinkage prior. Here, we will fo-
cus on a version of the discrete mixture where the
nonzero βi’s follow independent Strawderman–Berger
priors (Strawderman, 1971; Berger, 1980), which have
Cauchy-like tails and and yet still allow closed-form
convolution with the normal likelihood. Figure 2 dis-
plays the shrinkage profile of the Strawderman-Berger
prior on the κ scale, where it is seen to yield a Beta(1,
1/2) distribution. Here, the point mass at βi = 0
can be equivalently be construed as a point mass at
κi = 1. If Strawderman–Berger priors are assumed
for the nonzero βi’s, the discrete mixture model will
yield a shrinkage profile with the desired unbounded-
ness both at κi ≈ 0 (signal) and κi ≈ 1 (noise).

Notice that both the horseshoe prior and the discrete
mixture have mechanisms for controlling the overall
signal density in β. In the discrete mixture model,
this parameter is clearly w, the prior inclusion prob-
ability. But under the horseshoe prior, this role is
played by τ , the common variance parameter. This is
easily seen from the joint distribution in (6), since one
can approximate the conditional posterior for τ by

p(τ2 | κ) ≈ (τ2)−p/2
(

1 +
1− κ̄
τ2κ̄

)−p
≈ (τ2)−p/2 exp

{
− 1
τ2

p(1− κ̄)
κ̄

}
,

where κ̄ = p−1
∑p
i=1 κi. This is essentially a

Ga {(p+ 2)/2, (p− κ̄)/κ̄} distribution for τ−2, with
posterior mean equal to 2(1− κ̄)/κ̄. When κ̄ gets close
to 1, implying that most observations are shrunk to
zero, then τ2 is estimated to be very small.

2.4 Hyperparameters

Much of the above discussion focused on the behav-
ior implied by different choices of priors for the local
shrinkage parameters λi’s. Yet the estimation of the
global parameters τ and σ plays a large role in separat-
ing signal from noise, as seen in the example depicted
in Figure 2.

So far, we have focused on a fully Bayesian spec-
ification where weakly informative priors were used
both for τ and σ (as well as w in the discrete mix-
ture). There is a vast literature on choosing priors for

variance components in general hierarchical models,
and justifications for our choices of τ ∼ C+(0, 1) and
π(σ) ∝ 1/σ appear in Gelman (2006). Alternatives
to a fully Bayesian analysis include cross validation
and empirical-Bayes, often called Type-II maximum
likelihood. These “plug-in” analysis are, in fact, the
standard choices in many applications of shrinkage es-
timation in both machine learning and statistics.

While we certainly do not intend to argue that “plug-
in” alternatives are wrong per se, we do recommend,
as a conservative and more robust route, the use of
the fully Bayesian approach. The full Bayes analysis
is quite simple computationally using MCMC, and will
avoid at least three potential problems:

1. Plug-in approaches will ignore the unknown corre-
lation structure between τ and σ (or τ , σ and w in
the discrete mixture model). This can potentially
give misleading results in situations where the cor-
relation is severe, while the full Bayes analysis will
automatically average over this joint uncertainty.

2. The marginal maximum-likelihood solution is al-
ways in danger of collapsing to the degenerate
τ̂ = 0. The issue is exacerbated when very few
signals are present, in which case the posterior
mass of τ will concentrate near 0 and signals will
be flagged via large values of the local shrinkage
parameters λi.

3. Plug-in methods may fail to correspond to any
kind of Bayesian analysis even asymptotically,
when there no longer is any uncertainty about the
relevant hyperparameters. See Scott and Berger
(2008) for an extensive discussion of this phe-
nomenon.

One may ask, of course, whether a global scale param-
eter τ is even necessary, and whether the local param-
eters λi can be counted upon to do all the work. (This
is the tactic used in, for example, the relevance vector
machine.) But this is equivalent to choosing τ = 1,
and we feel that Figure 3 is enough to call this prac-
tice into question, given how far away the posterior
distribution is from τ = 1.

3 Examples

Carvalho, Polson, Scott and Yae (2009) provide an
extensive discussion of the use of the horseshoe in tra-
ditional supervised-learning situations, including lin-
ear regression, generalized linear models, and func-
tion estimation through basis expansions. We now
focus on a few examples that highlight the effective-
ness of the horseshoe as a good default procedure.



         78

Handling Sparsity via the Horseshoe

σ2 = 1 σ2 = 9
Loss LP HS DM LP HS DM

`2
LP 209 1.62 1.62 850 1.47 1.51
HS 77 0.95 416 0.99

DM 93 440

`1
DE 178 1.50 1.60 341 1.56 1.75
HS 80 1.02 142 1.10

DM 83 123

Table 1: Risk under squared-error (`2) loss and absolute-
error (`1) loss in Experiment 1. Bold diagonal entries in the
top and bottom halves are median sum of squared-errors
and absolute errors, respectively, in 1000 simulated data
sets. Off-diagonal entries are average risk ratios, risk of
row divided by risk of column, in units of σ. LP: Laplacian.
HS: horseshoe. DM: discrete mixture, fully Bayes.

These situations all involve an n-dimensional vector
y ∼ N(Xβ, σ2I), where X is a n × p design matrix.
In regression, the rows of X are the predictors for
each subject; in basis models, they are the bases eval-
uated at the points in predictor space to which each
entry of y corresponds. The horseshoe prior for the
p-dimensional vector β takes the form in (1).

3.1 Exchangeable means

Experiment 1 demonstrates the operational similari-
ties between the horseshoe and a heavy-tailed discrete
mixture. We still focus on the problem of estimat-
ing a p-dimensional sparse mean (β) of a multivariate
normal distribution (implying that X is the identity).
We simulated 1000 data sets with different sparsity
configurations, and 20% non-zero entries on average.
Nonzero βi’s were generated randomly from a Student-
t distribution with scale τ = 3 and degrees of freedom
equal to 3. Data y was simulated under two possibil-
ities for the noise variables: σ2 = 1 and σ2 = 9. In
each data set we estimate β by the posterior mean un-
der three different models: horseshoe, Laplacian and
discrete mixtures. The results for estimation risk are
reported in Table 1.

Regardless of the situation, the Laplacian loses quite
significantly both to the horseshoe prior and the
discrete-mixture model. Yet neither of these two op-
tions enjoys a systematic advantage; their similarities
in shrinkage profiles seem to translate quite directly to
similar empirical results. Meanwhile, the nonrobust-
ness of the Laplacian prior is quite apparent.

3.2 Regression

In Experiment 2, we chose two fixed vectors of ten
nonzero coefficients: β1:10 = (2, 2, 2, 2, 2, 2, 2, 2, 5, 20)
and β1:10 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). We then
“padded” these with (p − 10) zeros for several dif-
ferent choices of p, simulated random design matrices

Case 1: β1:10 = (2, 2, 2, 2, 2, 2, 2, 2, 5, 20)
p 20 50 100 200 400
n 24 60 120 240 480

Lasso 1.86 0.78 0.34 0.13 0.12
HS 1.28 0.33 0.11 0.06 0.07

Case 2: β1:10 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
p 20 50 100 200 400
n 25 55 105 205 405

Lasso 0.61 0.40 0.48 0.21 0.23
HS 0.31 0.23 0.12 0.09 0.08

Table 2: Mean-squared error in estimating β in Experi-
ment 2.

with moderately correlated entries, and simulated y
by adding standard normal errors to the true linear
predictor Xβ. In all cases, n scaled linearly with p.

For this example, we evaluated the horseshoe using
the LASSO (i.e. the posterior mode under Laplacian
priors) as a benchmark, with τ chosen through cross-
validation. Results are presented in Table 2.

In Experiment 3, we fixed p = 50, but rather than
fixing the non-zero values of β, we simulated 1000
data sets with varying levels of sparsity, where non-
zero βi’s were generated from a standard Student-t
with 2 degrees of freedom. (The coefficients were 80%
sparse on average, with nonzero status decided by a
weighted coin flip.) We again compared the horse-
shoe against the LASSO, but also included Bayesian
model-averaging using Zellner-Siow priors as a second
benchmark. Results for both estimation error and out-
of-sample prediction error are displayed in Figure 5.As
these results show, both BMA and the horseshoe prior
systematically outperform the LASSO in sparse regres-
sion problems, without either one enjoying a noticeable
advantage over the other.

3.3 Basis expansion with kernels

In Experiment 4, we used the sine test function de-
scribed in Tipping (2001) to assess the ability of the
horseshoe prior to handle regularized kernel regression.
For each of 100 different simulated data sets, 100 ran-
dom points ti were simulated uniformly between −20
and 20. The response yi was then set to sin(ti)/ti+ εi,
with εi ∼ N(0, σ = 0.15).

The goal was to estimate the underlying function f(t)
using kernel methods. As a benchmark, we use the rel-
evance vector machine, corresponding to independent
Student-t priors with zero degrees of freedom. Gaus-
sian kernels were centered at each of the 100 observed
points, with the kernel bandwidth chosen as the de-
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Figure 5: Results for Experiment 3. “BMA” refers to the
model-averaged results under Zellner-Siow priors. “Lasso”
refers to the posterior mode under Laplacian priors.
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Figure 6: One example data set in Experiment 5 involving
the sin(t)/t test function, showing the true function, data,
and horseshoe/RVM estimates.

fault in the “rvm” function in the R package “kern-
lab.” These kernel basis functions, evaluated at the
observed values of ti, formed the 100× 100 design ma-
trix, with β representing the vector of kernel weights.

In these 100 simulated data sets, the average sum of
squared errors in estimating f(t) at 100 out-of-sample
t points was 7.55 using the horseshoe prior, and 8.19
using the relevance vector machine. In 91 cases of 100,
the horseshoe prior yielded lower risk. An example of
one simulated data set is in Figure 6.

3.4 Unsupervised covariance estimation

Suppose we observe a matrix Y whose rows are n re-
alizations of a p-dimensional vector y ∼ N(0,Σ), and
that the goal is to estimate Σ. This is an important

L-OR L-AND L-Chol HS BMA
791 729 520 372 347

Table 3: Sum of squared errors in predicting missing re-
turn values in the 59-dimensional mutual fund example.
“L-OR” and “L-AND” refer to estimates based on Lasso
regressions in the full conditionals of each asset. “L-Chol”
and “HS” refer to Lasso and horseshoe models on the tri-
angular system of linear regressions from the Cholesky de-
composition of Σ−1. Finally, “BMA” is based on Bayesian
model averaging using the FINCS.

problem in portfolio allocation, where one must as-
sess the variance of a weighted portfolio of assets, and
where regularized estimates of Σ are known to offer
substantial improvements over the straight estimator
Σ̂ = Y ′Y .

A useful way of regularizing Σ is by introducing off-
diagonal zeros in its inverse Ω. This can be done
by searching for undirected graphs that character-
ize the Markov structure of y, a process known
as Gaussian graphical modeling (see Jones et. al,
2005). While quite potent as a tool for regulariza-
tion, Bayesian model averaging across different graph-
ical models poses the same difficulties as it does in lin-
ear models: marginal likelihoods are difficult to com-
pute, and the model space is enormously difficult to
search.

Luckily, Gaussian graphical modeling can also be done
indirectly, either by fitting a series of sparse self-on-
self regression models for (yj | y−j), j = 1, . . . , p, or
by representing the Cholesky decomposition of Ω as
a triangular system of sparse regressions. The first
option is done using the LASSO by Meinshausen and
Buhlmann (2006). We now present similar results us-
ing the horseshoe.

Our test data set is the Vanguard mutual-fund data
set (p = 59, n = 86) of Carvalho and Scott (2009).
We recapitulate their out-of-sample prediction exer-
cise, which involves estimating Σ using the first 60
observations, and then attempting to impute random
subsets of missing values among the remaining 26 ob-
servations. We use that paper’s full BMA results as
a benchmark (which required many hours of comput-
ing using the FINCS algorithm of Scott and Carvalho,
2008).

Results from this prediction exercise are presented
in Table 3, where it is clear that the horseshoe, de-
spite being a much simpler computational strategy,
performs almost as well as the benchmark (Bayesian
model averaging). Once again, both BMA and the
horseshoe outperform alternatives based on the Lapla-
cian prior.
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4 Discussion

We have introduced and discussed the use of the horse-
shoe prior in the estimation of sparse vectors in super-
vised learning problems. The horseshoe prior is based
on a novel multivariate-normal scale mixture; it yields
estimates that are robust both to unknown sparsity
patterns and to large outlying signals, making it an
attractive default option.

It is reassuring that the theoretical insights of Section
2 regarding sparsity and robustness can be observed
in practice, as we have demonstrated through a vari-
ety of experiments. Moreover, it is surprising that in
all situations where we have investigated the matter,
the answers obtained by the horseshoe closely mimic
those arising from the gold standard for sparse estima-
tion and prediction: Bayesian model averaging across
discrete mixture models. This is an interesting (and as
yet under-explored) fact that may prove very useful in
ultra-high-dimensional situations, where the compu-
tational challenges associated with BMA may be very
cumbersome indeed.

Additional detail concerning these issues can be found
in working papers available from the authors’ websites.
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