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Abstract

We derive a novel sparse version of Ker-
nel Fisher Discriminant Analysis (KFDA) us-
ing an approach based on Matching Pur-
suit (MP). We call this algorithm Matching
Pursuit Kernel Fisher Discriminant Analysis
(MPKFDA). We provide generalisation er-
ror bounds analogous to those constructed
for the Robust Minimax algorithm together
with a sample compression bounding tech-
nique. We present experimental results on
real world datasets, which show that MP-
KFDA is competitive with the KFDA and
the SVM on UCI datasets, and additional ex-
periments that show that the MPKFDA on
average outperforms KFDA and SVM in ex-
tremely high dimensional settings.

1 INTRODUCTION

Fisher Discriminant Analysis (FDA) was proposed by
Fisher| [1936] as a statistical approach for classifying
new data into two separate groups. In some sense,
FDA can be viewed as a classifier coupled with the
ability to carry out dimensionality reduction similar
to Principal Components Analysis (PCA). Fisher’s
Discriminant has been formulated using the kernel
trick, resulting in Kernel Fisher Discriminant Anal-
ysis (KFDA) [Mika et all |1999]. One drawback, as
with most kernel methods, is that storing large ker-
nel matrices is computationally prohibitive. In order
to tackle this problem, several authors have made at-
tempts at addressing this issue by creating low rank
kernel matrices behaving similarly to the full ranked
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ones |[Bach and Jordan), 2005, Kulis et al., |2006]. Most
importantly for us is the work of |Smola and Scholkopf]
[2000] where they devise a method of constructing low
rank kernel matrices, motivated by a greedy approach
called Matching Pursuit.

Matching Pursuit (MP) was proposed in the signal
processing literature by Mallat and Zhang| [1993] as
an attempt at finding a sparse set of basis functions
(atoms) for a signal from a given dictionary. In many
ways this problem can be interpreted as a sparse ver-
sion of least squares regression when the Orthogonal
Matching Pursuit (OMP) [Pati et al., [1993] version is
applied. In OMP each time a dictionary atom is cho-
sen, the remaining weight vectors are projected into
a space orthogonal to those chosen such that future
atoms are only considered from a set far from those
already picked. As with (K)FDA, Kernel Matching
Pursuit (KMP) [Vincent and Bengio, 2002] has been
proposed the kernel counterpart of MP.

We take the idea of Matching Pursuit, due to its very
fast greedy iterative nature, and apply it to Kernel
Fisher Discriminant Analysis in order to impose dual
sparsity. We prove that this sparse version results
in generalisation error bounds guaranteeing its future
success. The novel bounds come from the |Shawe-
Taylor and Cristianini [2003] analysis of the Robust
Minimax algorithm of |[Lanckriet et al.|[2003], which is
similar in flavour to FDA. Together with the bounds
of [Shawe-Taylor and Cristianini| [2003] we also apply
a compression argument [Littlestone and Warmuth|
1986| in order to gain an advantage of the dual spar-
sity we get from our algorithm. However, the algo-
rithm does not form a traditional compression scheme
so we use a similar idea to that of [Hussain and Shawe-
Taylor| [2008] and bound the generalisation error in the
sparsely defined subspace by amalgamating both theo-
ries mentioned above. In some ways the bounds justify
the choice of our fast iterative greedy strategy, which
is not provably optimal |Chen et al [1998|, by guaran-
teeing that for any random choice of dataset and from
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any given distribution we will be “probably approxi-
mately correct” [Valiant| [1984] with our predictions.

One of the practical advantages of Matching Pursuit
Kernel Fisher Discriminant Analysis (MPKFDA) lies
in the evaluation on test points - only k kernel eval-
uations are required (where k is the number of basis
vectors chosen) compared to m (the number of sam-
ples) needed for KFDA. It is also worth stating that
MPKFDA like the KFDA has the advantage of de-
livering conditional probabilities of classification (un-
like the SVM). There has been some research suggest-
ing that one cannot estimate conditional probabilities
without involving all of the data (see Bartlett and
Tewari| [2007]) - hence kernel methods cannot deliver
this efficiently - but here we do take account of all of
the data whilst still having an efficient kernel repre-
sentation.

Previous work on Sparse (Kernel) Fisher Discriminant
Analysis includes [Feng and Shi, 2004] who extend
on work by [Mika et al| [2001] which approximates
the weight vector, by proposing a sparse solution of
KFDA for face detection using a convex quadratic pro-
gramme. Similarly, [Dundar et al. [2005], motivated
by Computer-Aided Detection systems for identifying
structures of interest in medical images, have proposed
a sparse variation of FDA using 1-norm minimisa-
tion. Finally, Xing et al| [2005] have also proposed
a sparse KFDA through approximating the implicit
within-class scatter matrix in feature space. Our work
is different in that we propose a new variant of sparse
KFDA that is motivated by matching pursuit and also
a novel generalisation error bound that, to our knowl-
edge, has not previously been done.

The paper has the following layout. In Section [2] we
present the notations used throughout the paper while
Section [3] discusses the main practical contribution of
the paper and presents the MPKFDA algorithm. In
Section [4 we build on the theory presented in [Shawe-
Taylor and Cristianini| [2003] and [Littlestone and War-
muth| [1986], [Floyd and Warmuth| [1995] to propose a
novel generalisation error bound upper bounding the
loss of MPKFDA. The experiments are given in Sec-
tion [5} Finally, we conclude with a discussion in Sec-
tion

2 PRELIMINARIES

Assume we have a sample S containing examples x €
R™ and labels y € {—1,1}. Let X = (x1,...,Xm)’
be the input vectors stored in matrix X as row vec-
tors, where ’ denote the transpose of vectors or ma-
trices. For simplicity we always assume that the ex-
amples are already projected into the kernel defined
feature space, so that the kernel matrix K has entries

K[i, j] = (xi,%;). In the analysis section we will ex-
plicitly denote the feature map ¢(x) for some vector x.
The notation K|:, ] will denote the ith column of the
matrix K. When given a set of indices i = {i1,...,%}
(say) then KJi,i] denotes the square matrix defined
solely by the index set i.

For analysis purposes we assume that the training ex-
amples are generated i.i.d. according to an unknown
but fixed probability distribution that also governs
the generation of the test data. Expectation over the
training examples (empirical average) is denoted by
[E[.], while expectation with respect to the underlying
distribution is denoted E[].

For the sample compression analysis the compression
function A induced by a sample compression learning
algorithm A on training set S is the map A : S —
A(S) such that the compression set A(S) C S is re-
turned by A. A reconstruction function V¥ is a
mapping from a compression set A(S) to a set F of
functions ¥ : A(S) — F.

Let A(S) be the function output by learning algorithm
A on training set S. Therefore, a sample compression
scheme is a reconstruction function ¥ mapping a com-
pression set A(S) to some set of functions F such that
A(S) = U(A(S)). If F is the set of Boolean-valued
functions then the sample compression scheme is said
to be a classification algorithm.

We define fi(u) to be the empirical (true) mean of a
sample of m points from the set S projected into a
higher dimensional space using ¢,

and 3(X) its empirical (true) covariance matrix.

3 ALGORITHM

Matching Pursuit can be formalised as a general frame-
work in machine learning, where repeating the follow-
ing steps of:

1. Function maximisation; and

2. Deflation,

can result in Matching Pursuit algorithms for learning
tasks other than regression. In this paper we present
an application of this general framework to Kernel
Fisher Discriminant Analysis (KFDA), resulting in a
sparse form of KFDA that we call Matching Pursuit
Kernel Fisher Discriminant Analysis (MPKFDA).
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We can have a Matching Pursuit algorithm for Fisher
Discriminant Analysis (see|Shawe-Taylor and Cristian-
ini| [2004] for details) in the following way. Initially, we
pick one example i = {41} and project the remaining
training examples into the space defined by i. We then
find the index that maximises the Fisher discriminant
analysis (FDA) loss. After which we carry out a defla-
tion of the data matrix X (or kernel K) to allow new
training examples to be chosen. Finally this give us
a set i of training examples that can be used to com-
pute the final weight vector w, together with the FDA
decision function f(x) = sgn (w'x + b) where b is the
bias and x an example.

Using the notation from [Shawe-Taylor and Cristianini
[2004], we have the following maximisation problem
for FDA:

wX'yy' Xw ()
W = max—————
w w/'X'BXw ’
where m* are the number of positive examples, m~

the number of negative examples and B =D — C* —
C~ where D is a diagonal matrix with entries

. 2mT/m ify; =+1
Dii, ] _{ 2mt/m if y; = —1,

and CT and C™ are given by

L 2m~/(mm™) if y; = +1=y;
+ - ! J
Crlig] = { 0 otherwise,

and

oo 2mT ) (mmT) iy, =—1=y,
C™[i, J] _{ 0 otherwise.

We begin by applying the Nystrom method of low-
rank approximation of the Gram matrix [Williams and
Seeger, 2001]

K = K[, iK[i,i] K[, i
= K[, ijR'RK][;, 1]/,

where R is the Cholesky decomposition of KI[i,i] =}
such that R'R = K]i,i]~!. However, rather than use
the full [m x m] low rank approximation, it would be
preferable to work in the [k x k] space where k < m.
In order to do this we treat K[:,i]R’ as a new input X
in FDA, which in effect means we are projecting into
a k-dimensional subspace. Within this space we can
view

. = RK[,i]K[;, iR/,

as a form of covariance matrix within this space. This
trick allows us to perform nonlinear discriminant anal-
ysis on a sparse subspace using standard linear FDA.

We can define the following maximisation problem for
a dual sparse version of FDA by setting w = X'e;
where e; is the 7" unit vector of length m, and substi-
tuting into the FDA problem described above (ignor-
ing constants) to yield:

e/ XX'yyXX'e;

e, XX'BXX'e;
K[:,i'yy'K[:, 1]
K[:,i'BK[:, ]

maxp; =
7

Maximising the quantity above leads to maximisation
of the Fisher Discriminant ratio corresponding to e;,
and hence a sparse subset of the original KFDA prob-
lem. We would like to find the optimal set of indices
i. We proceed in a greedy manner (Matching Pursuit)
in much the same way as|Smola and Scholkopf| [2000]
and [Vincent and Bengio| [2002]. The procedure in-
volves choosing basis vectors that maximise the Fisher
Discriminant ratio iteratively until some pre-specified
number of k vectors are chosen.

After finding the best index i we would orthogonalise
the matrix K by setting 7 = K]:, ¢], and deflating like

SO: ,
K(IT/T>K
T T

This deflation ensures that remaining potential basis
vectors will be chosen from a space that is orthogonal
to those bases already pickedﬂ After choosing the k
training examples, giving i = (i1,...,i), we can de-
fine:

RK[:, i

as a new data matrix, where R is the Cholesky de-
composition of K[i,i]~!. We then train FDA as in
Equation [I] in this new projected space to find a k-
dimensional weight vector wy. Given the index j of a
test point x;, and using the train-test kernel on this
point K[j,1] and its projection ¢(x;) = RK[j,i)’, we
can make predictions using the FDA prediction func-
tion,

fxj) = sgn (W, 6(x;)) +b) (2)

4 GENERALISATION ERROR
ANALYSIS

We now construct a generalisation error bound for
Matching Pursuit Kernel Fisher Discriminant Anal-
ysis by applying the results from |[Shawe-Taylor and

Cristianini [2003] with a compression argument.

Tt is assumed that the vectors of the matrix K do not
form an orthonormal basis
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Algorithm 1 Matching Pursuit Kernel Fisher Dis-
criminant Analysis

Input: kernel K, sparsity parameter £ > 0, training
labels y.

1: calculate matrix B
2: initialise i = ()
3: fori=1to k do ol .
. . . K[, yy' K[:,i
4:  set i; to index of max K[BRL
5. set 7 = K[:,i;] to deflate kernel matrix like so:
77
K= (I - = ) K
T'T
6: end for

7: calculate the projection RK]:,i]’ where R is the
Cholesky decomposition of Kli,i]™' and i =
(i1,...,1g)

8: train FDA using Equation [I]in this new projected
space to find a sparse weight vector w and make
predictions using Equation

Output: final set i, (sparse) weight vector w, bias
term b

4.1 PRELIMINARIES

We need the following two results from [Shawe-Taylor
and Cristianini, 2003]. The first bounds the difference
between the empirical and true means.

Theorem 4.1 (Bound on the true and empirical
means). Let S be an m sample generated independently
at random according to a distribution P. Then with
probability at least 1 — § over the choice of S, we have

ﬂ—&wwm<j;@+ %§>. )

Consider the covariance matrix defined as

T =E[(¢(x) - p)(e(x) — )]

Let the empirical estimate of this quantity be

¥ =E[(¢(x) — i) (o(x) — )]

The following corollary bounds the difference between
the empirical and true covariance.

Corollary 4.2 (Bound on the true and empirical co-
variances). Let S be an m sample generated indepen-
dently at random according to a distribution P. Then
with probability at least 1 — & over the choice of S, we

have
’ﬁ:z“Fg?/};(Qﬂ/mn?), (4)

where R is the radius of the ball in the feature space
containing the support of the distribution and provided

2
m > (2—}—\/21112) .

The following Lemma is connected with a classification
algorithm developed by |Lanckriet et al. [2003]. The
basis for the approach is the following Lemma.

Lemma 4.3. Let p be the mean of a distribution and
3 its covariance matriz, w # 0, b given, such that
wu <band a €0,1), then if

b—wpu> kla)Vw'Ew,

where k(o) = /72, then

In order to provide a true error bound we must bound
the difference between this estimate and the value that
would have been obtained had the true mean and co-
variance been used.

4.2 BOUND FOR MATCHING PURSUIT
KERNEL FISHER DISCRIMINANT
ANALYSIS

We apply the bound above to a subspace defined
from a small number £ < m of basis vectors. Let
i= (i1,...,ix) be a vector of indices used to form a
k- dimensional subspace such as the one defined by
Matching Pursuit Kernel Fisher Discriminant Analy-
sis (MPKFDA). We use the notation S; to denote the
samples pointed to by i. First we give a general bound
and then specialise it to the case of Matching Pursuit
Kernel Fisher Discriminant Analysis.

Theorem 4.4 (main). Let S be a sample of m points
drawn independently according to a probability distri-
bution P where R is the radius of the ball in the fea-
ture space containing the support of the distribution.
Let piy, (ur) be the empirical (true) mean of a sample
of m — k points from the set S \ S projected into a
k-dimensional space, 3y, (i) its empirical (true) co-
variance matrix, wi # 0 with norm 1, and by given,
such that wip, < by and a € [0,1). Then with proba-
bility 1 — 0 over the draw of the random sample, if

by — W;;/’[k} > H(Oé)\/ W;cﬁ:kwka

P(wio(x)—bp >0) <1—a,

then

where
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(b — Wi pin — A)*
Wi Wi + B+ (b, — Whpix — A

o =

such that ||fix — pxrll < A where

R
A:m_k< \/k:l - +2In 5)

and Hﬁk — EkHF < B where

2R? \/ 4m
B= —— Ein &2 om0
\/m—k< & 5)

Proof. (sketch).
k(a)Vw'Ew from Lemma in terms of k(«):

b —w'p

First we re-arrange by, — w'p >

k(a) = (5)

wIw
These quantities are in terms of the true means and
covariances. In order to achieve an upper bound we
need the following sample compressed results for the
true and empirical means (Theorem {.1)) and covari-

ances (Corollary [£.2):
(X[ < A=

%( \/kl — +2In 5>7

H/zk _Ex[ﬂk

and

-], < -
F

2R? \/ 4m

Given Equation we can use the empirical quanti-
ties for the means and covariances in place of the true
quantities. However, in order to derive a genuine up-
per bound we also need to take into account the upper
bounds between the empirical and true means. Includ-
ing these in the expression above for k() by replacing
d with §/2, to derive a lower bound, we get:

bk — W;Cﬂgk —A

kla) = —————.

\/ W;Ekwk + B
Finally, making the substitution x(a) = /7%= and
solving for « yields the result. O

The following Proposition upper bounds the general-
isation error of Matching Pursuit Kernel Fisher Dis-
criminant Analysis.

Proposition 4.5. Let wy, by, be the (normalised)
weight vector and associated threshold returned by the
Matching Pursuit Kernel Fisher Discriminant Analy-
sis algorithm (MPKFDA ) when presented with a train-
ing set S. Furthermore, let 22’ {2;) be the empirical
covariance matrices associated with the positive (neg-
ative) examples of the m — k training samples from
S\ Si projected into a k dimensional space using wy,.
Then with probability at least 1 — & over the draw of
the random training set S of m training examples, the
generalisation error € is bounded by

e<max(l —at,1-a")

where o/, j = 4, — such that

) i)

. ‘ _ NeR
wiShw + Di + (j(wijid, —b) — C9)

(Wi, — b

ol =

where

. R em 4m
Ve ——— | 2 In— +2In—
C ijj<+\/knk+ n5>,

and

. 2R? \/ 8m
D)= —— k1n 21n .
vmi — kI ( k/’ + 1) >

Proof. For the negative —1 part of the proof we require
b — Wi fi, > k() wkﬁ;wk which is a straight for-
ward application of Theorem [.4] with § replaced with
d/2. For the positive +1 part, observe that we require

—by + Wi > k(a )\/w22+wk, hence, a further ap-

plication of Theorem [4.4| with & replaced by §/2 suf-
fices. O

5 EXPERIMENTS

We present a comparison on 13 benchmark datasets
derived from the UCI, DELVE and STATLOG bench-
mark repositories. We analyse the performance of
KFDA, MPKFDA, and SVM using Radial Basis Func-
tion (RBF) kernels. The data comes in 100 prede-
fined splits into training and test sets (20 in the case
of the image and splice datasets) as described in [Mika
et al., |1999] ﬂ For each of the datasets we used cross-
validation (c.v.) to select the optimal parameters (the

% Available to download from:
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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RBF kernel width parameter, the C parameter in the
SVM, and k the number of iterations in MPKFDA).
We used 5-fold c.v. over the first five training datasets
with a coarse range of parameter values, selecting the
median over the five sets as the optimal value, followed
by a similar process using a fine range of parameter val-
ues. This way of estimating the parameters leads to
more robust comparisons between the methods. The
means and standard deviations of the generalisation
error for each method and dataset are given in Table
We find that the performance of KFDA and MP-
KFDA are very similar, and both are competitive with
the SVM. This is demonstrated by the values for the
mean over the datasets.

Next we present results from the NIPS 2003 challenge
datasets |Guyon et al.,2004] ARCENE, DEXTER and
DOROTHEA Pl These datasets were chosen as we be-
lieve that the main advantage of MPKFDA will be
shown when the data lives in high dimensions. We
compare the performance of MPKFDA with standard
KFDA and SVM, again using an RBF kernel for each
of the classifiers. We used 5-fold cross validation on
the training set to select the optimal parameters for
each algorithm as before, and then tested on the val-
idation set. For each dataset we show the number
of features, and the number of examples in the train-
ing and validation sets, and the generalisation error of
each classifier on the validation set. All problems are
two-class classification problems. As can be seen from
Table[2] MPKFDA outperforms both KFDA and SVM
on these high dimensional datasets, whilst giving very
sparse solutions.

6 CONCLUSIONS

In this paper we derived a novel sparse version of Ker-
nel Fisher Discriminant Analysis (KFDA) using an ap-
proach based on Matching Pursuit (MP). We provided
generalisation error bounds analogous to that used
in the Robust Minimax algorithm [Lanckriet et al.,
2003], together with a sample compression bounding
technique. As it stands the bound is too loose to
perform model selection, but will anticipate that fur-
ther analysis may enable the bound to drive the al-
gorithm. We presented experimental results on real
world datasets, which showed that MPKFDA is com-
petitive with both KFDA and SVM, and additional
experiments that showed that MPKFDA performs ex-
tremely well in high dimensional settings. In terms of
computational complexity the demands of MPKFDA
during training are higher, but during the evaluation

3The train and validation sets and associated labels are
available for download from:

http://www.nipsfsc.ecs.soton.ac.uk/datasets/

on test points only k kernel evaluations are required
compared to m needed for KFDA.

The Fisher discriminant is the Bayes optimal classi-
fier for two normal distributions with equal covariance
Kim et al. [2006]. This probabilistic interpretation can
be extended to the Matching Pursuit setting, where
our input space is now the compressed space induced
by the projections. [Kim et all [2006] showed that
Robust Fisher Discriminant Analysis was able to mit-
igate against the sensitivity to problem data in FDA
by explicitly incorporating a model of data uncertainty
into the classification problem and optimising for the
worst-case scenario under this model. We believe this
method could also be applied to MPKFDA.

We believe this general approach of using Matching
Pursuit can be applied to other learning algorithms,
resulting in sparse greedy forms of these algorithms.
It would be conceivable to apply the method to Logis-
tic Regression. FDA has an advantage over Logistic
Regression that it has a probabilistic model of both
positive and negative data, which may prove useful in
further analysis. This also suggests a very natural way
to extend this work to multi-class classification.

Speeding up of the algorithm is also considered an im-
portant future research direction and not something
we paid particular attention to throughout this work.
The quotient that we maximise in Line 4 of the MP-
KFDA Algorithm serves as a reference point for fu-
ture studies and currently requires m? computations
at each step. Relieving this issue could speed up the
algorithm considerably and allow its application to a
much larger class of dataset.

Traditional OMP and KMP with pre-fitting work by
incrementing each element of the weight vector after
each choice of basis vector. However, we constructed
the full set k of bases before computing the final weight
vector. Although this did not prove detrimental we
still feel that addressing this issue would make us more
computationally favourable and allow the algorithm to
be fully incremental in its greedy strategy.

Another issue of speeding up the algorithm may be
to consider approximating p. A fast and quality ap-
proximation would yield much faster convergence rates
and also still be amenable to the bounds we presented
within this paper.
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Table 1: Generalisation error estimates and standard deviations for 13 benchmark datasets.

Dim | Train | Test KFDA MPKFDA SVM

Error s.d. Error s.d. k Error s.d.
Banana 2 400 | 4900 | 0.1069 0.0047 | 0.1101 0.0071 31 | 0.1068 0.0047
Breast Cancer 9 200 77 | 0.2886 0.0468 | 0.3174 0.0447 19 | 0.2603 0.0473
Diabetes 8 468 300 | 0.2596 0.0203 | 0.2543 0.0189 18 | 0.2332 0.0175
Flare Solar 9 666 400 | 0.3500 0.0168 | 0.3457 0.0220 19 | 0.3239 0.0179
German 20 700 300 | 0.2672 0.0248 | 0.2808 0.0205 27 | 0.2345 0.0215
Heart 13 170 100 | 0.2125 0.0327 | 0.1599 0.0312 13 | 0.1543 0.0326
Image 18 | 1300 | 1010 | 0.0092 0.0187 | 0.0136 0.0278 39 | 0.0061 0.0124
Ringnorm 20 400 | 7000 | 0.0685 0.0108 | 0.0573 0.0302 15 | 0.0164 0.0012
Splice 60 | 1000 | 2175 | 0.0397 0.0801 | 0.0314 0.0633 37 | 0.0223 0.0450
Thyroid 5 140 75 | 0.0392 0.0208 | 0.0699 0.0310 29 | 0.0520 0.0208
Titanic 3 150 | 2051 | 0.2259 0.0247 | 0.2468 0.0528 70 | 0.2256 0.0110
Twonorm 20 400 | 7000 | 0.0253 0.0022 | 0.0253 0.0016 14 | 0.0280 0.0024
Waveform 21 400 | 4600 | 0.1228 0.0053 | 0.1027 0.0046 13 | 0.1031 0.0047
Mean 0.1550 0.0237 | 0.1550 0.0274 26.5 | 0.1359 0.0184

Table 2: Generalisation error estimates for 3 high dimensional datasets.

Dim | Train | Test | KFDA MPKFDA SVM

Error Error k Error
Arcene 10000 100 | 100 | 0.2000 | 0.1800 40 0.2600
Dexter 20000 300 | 300 | 0.1133 | 0.0800 40 0.0733
Dorothea | 100000 800 | 350 | 0.0971 | 0.0571 11 0.0686
Mean 0.1368 | 0.1057 30.3 | 0.1340

SRC grant agreement N° EP-D063612-1, Learning the
Structure of Music.
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