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Abstract

Comprehensive visualization that preserves
the information in a large complex dataset re-
quires a visualization database (VDB): many
displays, some with many pages, and with
one or more panels per page. A single dis-
play using a specific display method results
from partitioning the data into subsets, sam-
pling the subsets, and applying the method
to each sample, typically one per panel. The
time of the analyst to generate a display is
not increased by choosing a large sample over
a small one. Displays and display viewers can
be designed to allow rapid scanning. Often,
it is not necessary to view every page of a
display. VDBs, already successful just with
off-the-shelf tools, can be greatly improved
by research that rethinks all of the areas of
data visualization in the context of VDBs.

1 INTRODUCTION

Large, complex datasets have some of the following
properties, often all: a large number of records; many
variables; complex data structures not readily put into
a tabular form of cases by variables; intricate patterns
and dependencies in the data that require complex
models and methods of analysis. Our goal, despite
the complexity, should be comprehensive study that
does not lose important information contained in the
data.

Nothing serves comprehensive analysis better than
data visualization. This principle has been accepted
and practiced for decades (Anscombe, 1973; Daniel
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and Wood, 1971; Tukey, 1977). Counsider this regres-
sion model: the mean of a numeric response is assumed
linear in three numeric explanatory variables, and the
errors are assumed i.i.d. N(0,0%). Suppose there are
100 observations of the response and each of the ex-
planatory variables, 400 numeric values altogether. To
check the linearity and normality of the model, it is
common practice to make, at the very least, a col-
lection of standard displays (Cleveland, 1993; Cook
and Weisberg, 1999): scatterplot matrix of the four
variables (1200 plotted points); three partial residual
plots, one for each explanatory variable (300 points);
three conditioning plots of the response against each
explanatory variable conditional on the other two (300
points); residuals against fitted values (100 points); ab-
solute residuals against fitted values (100 points); nor-
mal quantile plot of residuals (100 points); three con-
ditioning plots with residuals in place of the response
(300 points). The number of plotted points is 2400,
and each point encodes two numeric values, so 4800
values are displayed. This means the ratio of graphed
numeric values to the number of numeric values in the
data is 12.

In an effort to achieve comprehensive analysis of a
large dataset with billions or trillions of observations
we obviously cannot achieve a ratio of 12 in data dis-
plays. But we can make a large number of displays
to pursue comprehensive analysis. A display itself can
have a large numbers of pages, each of which can have
many panels. The total number of pages might be
measured in thousands or tens of thousands in this
visualization database, or VDB. We approach this by
partitioning the data into subsets, sampling the sub-
sets, and applying visualization methods to each sam-
ple. A sample receives the same comprehensive analy-
sis as the small dataset would. Of course, the sampling
frame must be chosen in a way that characterizes the
data. Backing us up are numeric methods that often
can be run on all subsets and help in designing sam-
pling frames.
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We are very optimistic because we have had substan-
tial success with VDBs even though research has just
begun on how to improve their use in practice. Re-
search topics include the following: Methods of display
design that enhance pattern perception to enable rapid
scanning of the pages of a large display; automation al-
gorithms for basic display elements such as the aspect
ratio, scales across panels, line types and widths, and
symbol types and sizes; Methods for subset sampling;
Viewers designed for multipanel, multipage displays
that scale across different amounts of physical screen
area. This article discusses the basic concepts for a
VDB, its hardware and software components, and ini-
tial thoughts on some of the above research topics.

Readers are encouraged to look at a Web site
(ml.stat.purdue.edu/vdb) prepared in coordination
with this article. It houses a number of VDBs. We
will make reference in this article to three of them —
surveillance, joke, and connection — that involve the
analysis of three data sets.

The surveillance data are the daily counts of chief
complaints from emergency departments (EDs) of the
Indiana Public Health Emergency Surveillance Sys-
tem (Grannis, Wade, Gibson, and Overhage, 2006).
The complaints are divided into eight classifications;
one is respiratory. Data for the first EDs go back to
November 2004, and new EDs have come online contin-
ually since then. There are now 76 EDs in the system.
Respiratory complaints for the 30 EDs with the most
data have been analyzed (Hafen, Anderson, Cleveland,
Maciejewski, Ebert, Abusalah, Yakout, Ouzzani, and
Grannis, 2009, to appear), and surveillance is the VDB
for this analysis.

The Jester project (www.ieor.berkeley.edu/~goldberg/
jester-data) has collected ratings on a scale of —10 to
10 of 100 jokes from 73,421 raters from April 1999 to
May 2003 (Goldberg, Roeder, Gupta, and Perkins,
2001). Our joke dataset has the 14,116 raters who
rated all jokes. Visualization methods are revealing
the properties of the data as a guide to building a
statistical model that will allow prediction of the
ratings of an individual from a set of 10 gauge jokes.

Internet communication consists of connections be-
tween two hosts who send packets back and forth,
each 1500 bytes or less. The TCP protocol manages
the connections for many applications such as web
page delivery (http), email (smtp), and encrypted re-
mote login (ssh). Our connection dataset consists of
packet traces for TCP collected on a subnet of the
Purdue Statistics Department. The packets are orga-
nized by connection because the research topic is net-
work security based on analysis of connection proper-
ties as a function of time and of the logical network.

The data for each packet are the arrival timestamp,
and certain information from the TCP and IP head-
ers: source-destination IP addresses (anonymized),
source-destination ports; source-destination sequence
numbers; size of packet payload; values of 6 flags
(SYN, FIN, PSH, RST,and ACK); and ACKed se-
quence number. Trace collection was on four separate
days for a total of 96 hr. There are 749,128 connec-
tions and 1,490,238,292 packets. The binary version
of the raw data is 146 gigabytes, which is converted
to a distributed database that is 190 gigabytes. More
collection is planned.

2 PARTITIONING & TIME

An important strategy of comprehensive analysis for
a large complex dataset is to partition it into small
subsets in one or more ways, and apply numeric meth-
ods and visualization methods to each of a sample of
subsets. Section 1 discussed the use of a large num-
ber of plotted points per observation that is commonly
carried out for small datasets. Achieving comprehen-
sive analysis of a large dataset requires preserving this
for the subsets, analyzing each in detail. The sam-
pling frame can vary from one analysis method to the
next. It is common to have numeric methods applied
to more subsets than visualization methods. In some
cases, sampling can be exhaustive: all subsets. Two
non-exhaustive sampling methods, representative and
regional, are discussed in Section 3.

Partitioning can be carried out in many different ways.
Often, we start with a core partition that arises natu-
rally from the structure of the raw data. This is a soft
concept but useful nevertheless. The subsets of the
core are often further partitioned by variables other
than those that defined the core.

The time for a data analyst to create a display method
for a single subset by writing commands in the com-
puting environment can vary from very small to large.
But once the commands are written, there is typ-
ically negligible additional command-time difference
between small and large samples. So in this regard,
a large visualization database is not significantly more
costly than a small one.

The data analyst spends more time looking at a large
sample than at a small sample. To understand the
data as a whole, there needs to be a requisite number
of subsets, and this can be quite large. But study-
ing displays and thinking about the data, and not the
programming language, is time well spent. It does not
have to be an undue burden. A display method applied
to a very large number of subsets must be viewed se-
quentially because the resulting display will take up an
amount of virtual screen space much larger than the

194



Guha, Hafen, Kidwell, and Cleveland

available physical screen space. Some displays might
be scanned entirely; for others, a small fraction of the
pages might suffice. In work described briefly in Sec-
tion 3, we are developing methods of display design
that invoke principles of visual perception to enhance
pattern perception and enable rapid page scanning.
This turns page viewing into a form of controlled ani-
mation. We are also developing viewers for the sequen-
tial task that can reduce the viewing time substantially
when the screen space is large.

Partitioning leads to embarrassingly parallel computa-
tion. Large amounts of computer time can be saved by
distributed computing environments. One is RHIPE
(ml.stat.purdue.edu/rhipe), a recent merging of the
R interactive environment for data analysis (www.R-
project.org) and the Hadoop distributed file system
and compute engine (hadoop.apache.org).

3 SAMPLING, TRELLIS, & 3 VDBs

In representative sampling, survey variables are de-
fined that measure properties of the subsets. A subset
sampling frame is chosen to encompass the multidi-
mensional space of the survey variables in a uniform
way by some definition. In regional sampling, samples
have values of the survey variables lying in a region
of the multidimensional space that is important to the
analysis.

Partitioning for data visualization is commonplace for
small data sets and is the stimulus for trellis display,
a framework for visualization that provides condition-
ing plots: displays of a set of variables conditional on
the values of other variables (Becker, Cleveland, and
Shyu, 1996). The trellis framework is well suited for
displaying the subsets of large datasets by creating dis-
play documents with pages and a rectangular array of
panels on each page. Trellis display is implemented in
R by the lattice graphics system (Sarkar, 2008)

3.1 JOKE DATASET

For the joke dataset, two core partitions have been
used — by joke and by rater — resulting in 100 and
73,421 subsets respectively. For the by-joke partition,
the sampling for all numeric and visualization methods
is exhaustive. For the by-rater partition, sampling is
exhaustive for numeric methods, and representative
for visualization methods.

All models explored for the data have a rater loca-
tion effect because there are hard graders and easy
graders. One model we explored starts with rescaling
the ratings to the interval [0, 1] and taking a logistic
transformation. The transformed ratings are modeled
by additive main effects of joke and rater, and error
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Figure 1: First Page of 100-Page Trellis Display of
Normal Quantile Plots by Rater.

terms with identical normal distributions with mean
ZeT0.

One display method for model building is a normal
quantile plot of residuals for each rater. The repre-
sentative sampling frame for this method selects 4000
raters so that the rater location estimates from the
model are as close to uniformly spaced as possible from
the minimum to the maximum estimate. Figure 1 is
the first page of a 100-page, 4000-panel trellis display
for this display method and sampling frame. Each
panel is a normal quantile plot of the residuals for one
rater. Each page has 8 columns and 5 rows. The line
on the plot goes through the two quartile points of
the display. As we go left to right, bottom to top,
and through the pages of the display, there is an in-
crease in the rater location estimates, shown in the
lower right of each panel of the display. For this plot,
the 100 pages can be visually scanned in a few minutes
because our visual systems can effortlessly detect de-
partures of the plotted points on a panel from the line.
Across the panels, the patterns of the points follow the
lines, which means the normal is a good approximation
of the error marginal distribution.

3.2 SURVEILLANCE DATASET

For the surveillance dataset, the core partitioning is
by emergency department (ED). Because the dataset
size is moderate, the partition sampling is exhaustive
for both numeric and visualization methods. Figures 2
and 3 show parts of pages 1 and 2 of a trellis display
from an exhaustive sample in which the core subsets
are further partitioned. The full display has 1 column,
6 rows, and 90 pages. Figures 2 and 3 are the top and
bottom panels of pages 1 and 2 of the full display.

In the project, new methods for modeling respiratory
counts for each ED are based on STL, the nonpara-
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metric seasonal-trend numeric decomposition proce-
dure. Square root counts are decomposed into inter-
annual, yearly-seasonal, day-of-the-week, and random-
error components. Using this decomposition method,
a new synoptic-scale (days to weeks) numeric outbreak
detection method is developed. STL is compared with
five other methods, some widely used for surveillance.
Each method was tested on each ED count series. An
outbreak occurrence starting on a particular day was
added to the counts, the outbreak methods applied,
and detect or non-detect within 14 days recorded for
the start day. This was done for each ED on each day
separately starting with the 366th day of data. There
are 3 different outbreak magnitudes (2, 1.5, and 1),
and 30 EDs (with anonymized names such as Act).
With 6 detection methods, 3 outbreak magnitudes,
and 30 EDs, there are 540 = 6 x 3 x 30 outbreak test
sequences across time.

Each panel of the full trellis display shows information
about one test sequence for one method, one magni-
tude and one ED, which are indicated by the strip
labels to the left of each panel. Outbreak method
changes the fastest; each page has 6 panels showing
the 6 methods for one combination of magnitude and
ED. Magnitude changes next fastest; on page 1 the
magnitude is 2 (see Figure 2), on page 2, the magni-
tude is 1.5 (see Figure 3), and on page 3, magnitude
is 1 (not shown). ED changes the slowest; pages 1
to 3 are Act, pages 4 to 6 are the next ED, and so
forth. The curve formed by the bottoms of the cyan
lines and the tops of the magenta lines on each panel
is the STL seasonal component. Each vertical line em-
anating from the curve shows the detection result for
the outbreak starting on the day at which the line is
drawn; cyan is non-detect and magenta is detect.

The full trellis display reveals the effect of the yearly
seasonal pattern on detection performance and how
the effect changes with the values of the three condi-
tioning variables: detection method, magnitude, and
ED. Outbreak methods, as expected, detect more fre-
quently as the magnitude increases. STL is the best
performer. STL failure to detect occurs most fre-
quently during periods of decline in the seasonal pat-
tern.

3.3 CONNECTION DATASET

For the connection dataset, core partitioning is by con-
nection, resulting in 749,128 subsets. One part of the
connection VDB involves a numeric rules-based statis-
tical algorithm (RBSA) that is applied to a connec-
tion. Even though the algorithm is computationally
intensive, distributed computing with RHIPE makes
computation for all subsets feasible; sampling for this
numeric method is exhaustive.

The RBSA classifies each packet in both directions of
a connection as an ssh client keystroke or not. The
algorithm uses the packet timestamps, payload sizes,
and flags. The goal for network security is to classify
the whole connection as interactive ssh or not. The
algorithm does not assume knowledge of which direc-
tion is a client or whether the connection is ssh. The
ssh well-known port is 22, but the algorithm is applied
to all connections because backdoor login services can
be created by intruders.

The RBSA is very accurate at the packet level but
does have some misclassifications; we found that clas-
sifying the connection as interactive ssh if there are 5
or more keystroke detections, has very few damaging
connection-level misclassifications. Part of our study
of the algorithm performance uses regional sampling
for the display method discussed in Section 6. The
sampling frame captures connections with the follow-
ing properties: classified as ssh interactive login, nei-
ther host port is 22, and one host is not on the Purdue
campus.

4 VIEWERS & SCREEN SPACE

To consume large VDBs we want as much physical
screen space as possible. We have been experimenting
with two 30-inch monitors, each 2560x1600 in reso-
lution. This is equivalent to ten 1024x768 monitors.
The monitors can be positioned so that the resulting
screen space does not greatly exceed the visual field of
the analyst, and can be viewed with small movements
of the head.

Designing visual displays and a viewer to look at them
must consider visual processes. It must also consider
a very practical matter. On a typical data analysis
project, displays must be viewable on a range of dis-
play devices from large multiple monitors to laptops.
To make the displays scale across screen space, we de-
sign them so that each page is viewable on a small
screen; mouse clicks in this case take us through a
document one page at a time. For larger amounts of
screen space, the viewer allows multiple pages to be
displayed, which is very beneficial. If we display a
block of 12 pages, 6 on each of the two monitors, then
a mouse click takes us to a new block of 12 pages, so
the click process is reduced by a factor of 12. Within
a block, eye movement over the 12 displays provides
even more rapid and effective visual decoding than 12
sequential views on a small screen.

5 AUTOMATION ALGORITHMS

There are many levels of display design. The first
and fundamental one is the display method: qualita-
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tive and quantitative information of a specific type are
shown by a display whose overall visual design is of a
certain type. Examples are scatterplots with a smooth
curve superimposed, normal quantile plots with a line
through the quartile points, and box plots.

For each display method, many design decisions must
be made about basic elements such as the aspect ratio;
values of tick marks; line widths and colors; text sizes
and fonts for labels; plotting-symbol sizes and colors;
taking the log of a variable or not; when there are
two or more panels with the same variables displayed,
choosing the horizontal or vertical scales across panels
to have the same range, to have the same number of
units/cm, or to be free ranging; and many more.

A data analyst is completely responsible for the deci-
sion about the choice of display method, but is very
well served by a system that can assist in the decisions
about basic elements. Systems today already engage
in this to some extent — for example, choosing the
values of tick marks — but much more can be done to
develop automation algorithms for basic elements and
to study their mathematical, statistical, and percep-
tual properties.

The aspect ratio of a display, the height of a rectan-
gle just enclosing the data divided by the width, has
an immense impact on our ability to judge the rate of
change of one variable as function of another. Rate of
change is conveyed by the slopes of line segments that
make up a curve. Figure 4 shows an example: the
STL seasonal component for one ED from the surveil-
lance dataset. A change in the aspect ratio changes the
physical slopes of the segments which in turn changes
our ability to visually decode slopes to judge rate of
change. In the 1980s, it was demonstrated that bank-
ing to 45°, which means choosing the aspect ratio to
center the absolute values of the slopes on 1, greatly
enhances the judgment of rate of change (Cleveland,
McGill, and McGill, 1988; Heer and Agrawala, 2006).
If we take this general principle and add to it a spe-
cific definition of the meaning of centering on 45°, then
the result is a banking automation algorithm for the
aspect ratio.

We are studying a new banking algorithm that pro-
ceeds conceptually as follows: each segment with a
negative slope is replaced with a segment of the same
length but with the sign of the slope dropped to make
it positive; the new segments, as vectors, are added to
form a resultant vector; the segments and their resul-
tant are displayed in a hypothetical display with an
aspect ratio of 1, which makes the resultant have a
slope of 1. The aspect ratio of the original display is
chosen so that the absolute orientations are the same
as those of the hypothetical display. This resultant-

vector automation algorithm was used in Figure 4; the
aspect ratio is 0.12. Figure 5 graphs the seasonal com-
ponent again, but with the aspect ratio equal to 0.04.
This greatly reduces our ability to perceive the behav-
ior of the component.
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Figure 4: Yearly Seasonal Component with Aspect Ra-
tio of 0.12 from Resultant-Vector Algorithm.
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Figure 5: Figure 4 with Aspect Ratio of 0.04.

6 GESTALT DESIGN METHODS

Our extraordinary human visual system can readily
process very large displays by methods of viewing not
utilized for the single-page display. One is rapid scan-
ning. It is possible to click at a fast rate through the
pages of a document with the same display method
replicated across the panels and pages, one subset per
panel. But for this to succeed, it must involve the as-
sessment of a gestalt: a pattern that forms effortlessly
without attentive search of basic elements of the dis-
play. The pattern “hits you between the eyes.” When
there are two or more gestalts to assess, it is best to
scan through pages assessing one at a time. Attempt-
ing simultaneous assessment slows down the process
remarkably because a cognitive shift of assessment is
time consuming.

Gestalts can sometimes form as a matter of course for
many common display methods; Figure 1 is one exam-
ple. But in general, gestalt formation must get special
attention in the design of a display. While principles
of gestalt psychology can give some guidance (Koffka,
1935), some level of iterative experimentation for a
particular type of display is typically needed.

The top panels of Figures 6 to 8 show an experiment
with gestalt formation for a method of visualizing con-
nection packet dynamics for the connection dataset. In
the three top panels, log(1 + payload size) for packets
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Figure 6: First Experiment in Gestalt Perception: Color.
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Figure 7: Second Experiment: Juxtaposition.
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Figure 8: Third Experiment: Color and Juxtaposition.
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with payload bytes greater than 0 are plotted against
the packet arrival order by the vertical lines. Also
encoded is the packet direction. In Figure 6 it is en-
coded by color; red is from the client and blue is from
the server. We want to see each direction as a gestalt,
mentally filtering out the packets of the other direc-
tion. In Figure 7 direction is encoded by juxtaposition
instead of the superposition of the top panel. The
server packets are displayed downward on the vertical
scale and the client packets upward. We could juxta-
pose by an upward scale for the server with the lines
emanating from the bottom of the panel, but this in-
terferes with our ability to judge arrival order for client
and server combined. In Figure 8, direction is encoded
by color and juxtaposition. Encoding direction just by
color is the poorest method for gestalt formation, jux-
taposition is better, and using both is the best method,
also allowing effective assessment of the sequence and
size patterns in payload packets.

7 VDB COMPONENTS

The software and hardware components of a VDB (in
italics below) begin with a display generator in an in-
teractive environment for data analysis that produces
the VDB display documents. A storage schema might
have the display documents as fundamental objects or
the pages of the documents. A display viewer renders
the display documents on a display device; there can
be different viewer designs to accommodate different
document types and different amounts of screen space
of display devices. Display managers organize, doc-
ument, and provide access. There can be more than
one manager; all provide organization and access to
display storage objects but vary in the documenta-
tion of the displays and of the project of which they
are a part. They can range from no documentation
to project notes to a comprehensive narrative of the
project for others.

In our projects using VDBs, the display viewer and
devices discussed in Section 4 resulted from consider-
ations of VDBs. The other components are off-the-
shelf, using what is readily available and widely used.
We work in the R interactive environment (www.R-
project.org) and use lattice graphics (Sarkar, 2008) in
R to generate displays. For large datasets, we em-
ploy distributed computing using RHIPE, discussed
in Section 2. The storage schema objects are the in-
dividual displays. Our managers are html pages with
the display files as links. The html is typically com-
puter generated, for example, by org-mode in emacs
(org-mode.org).

We have had much success with these start-up com-
ponents, but success can be far greater with more re-

search on each of them and on visualization methods
for very large displays.
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