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Abstract

We propose a new view of active learning algo-
rithms as optimization. We show that many on-
line active learning algorithms can be viewed as
stochastic gradient descent on non-convex objec-
tive functions. Variations of some of these al-
gorithms and objective functions have been pre-
viously proposed without noting this connec-
tion. We also point out a connection between the
standard min-margin offline active learning algo-
rithm and non-convex losses. Finally, we discuss
and show empirically how viewing active learn-
ing as non-convex loss minimization helps ex-
plain two previously observed phenomena: cer-
tain active learning algorithms achieve better
generalization error than passive learning algo-
rithms on certain data sets (Schohn and Cohn,
2000; Bordes et al., 2005) and on other data sets
many active learning algorithms are prone to lo-
cal minima (Schütze et al., 2006).

1 Background

We address the active learning problem in this paper. We
assume data points X ∈ Rd and labels Y ∈ {−1, 1} are
drawn from some fixed unknown distribution p(x, y). We
wish to choose the classifier f ∈ F that minimizes the
expected loss EX,Y [l(Y, f, X)] where l is a loss function.
In general, the size of F may be uncountable. In stan-
dard passive supervised learning we approximately mini-
mize this expected loss by minimizing instead the loss on a
set or stream of i.i.d. labeled training examples (xi, yi) ∼
p(x, y). In active learning, we also have access to i.i.d. xi,
but we selectively query the labels yi for the examples. In
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this way we avoid querying uninformative labels and poten-
tially reduce the number of labels we need. Labeling data
is often much more expensive and/or time consuming than
collecting input data, so this problem is of great practical
importance.

We also wish to make the distinction between offline learn-
ing algorithms and online algorithms. In offline active
learning, we have a set of i.i.d. unlabeled examples simul-
taneously available, and an initially empty set of labeled
examples. At each step of learning, we query the label of
one or more unlabeled examples based on some criteria,
add it to the set of labeled examples, and retrain the clas-
sifier on the entire set of labeled examples. This process
continues until a stopping criteria is met.

Online algorithms, by contrast, usually operate on a stream
of examples. In online active learning, we process a stream
of i.i.d. unlabeled examples one by one, deciding at each
step whether or not to query for a label and if so update
the current classifier. Labeled examples are not saved. In
fact, online algorithms have space complexity independent
of the number of examples processed and may have time
complexity dependent only on the required error (Shalev-
Shwartz et al., 2007). This is desirable since it allows on-
line learning algorithms to be run on arbitrarily large data
sets. Online learning algorithms are also potentially use-
ful for applications with evolving data distributions where
learning never stops. When data is scarce, however, of-
fline algorithms may achieve lower error rates since they
can consider all examples at once.

Previous work in active learning has shown that active
learning can give provably better label complexity than pas-
sive learning under certain distribution assumptions (Bal-
can et al., 2006; Dasgupta et al., 2007, 2005). Of these
algorithms, most that work with noisy data are currently
impractical since they minimize zero-one loss. Hanneke
(2008) shows that with convex losses, exponentially bet-
ter label complexity is typically not possible. This is be-
cause outlier points far away from the decision boundary
can have a large effect on the classifier, so more labels
need to be queried. Recently, Beygelzimer et al. (2008)
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presented the first practical, consistent active learning algo-
rithm that gives label complexity improvements for convex
losses although these improvements are not as good as in
the zero-one loss case and require the loss to satisfy certain
properties. Moreover, certain active learning algorithms
sometimes achieve generalization error below that of pas-
sive learning (Schohn and Cohn, 2000; Bordes et al., 2005)
on the fully labeled data set. Bordes et al. (2005) specu-
late that, among other possible causes, these active learn-
ing algorithms could be ignoring noise far away from the
decision boundary or the sparser solutions found by active
learning could have better generalization guarantees. Har-
Peled et al. (2007) also draw a connection between active
and noise tolerant learning; the authors give label bounds
for a variant of min-margin learning for noise-free data and
extended this to reject outliers. Some active learning algo-
rithms are also susceptible to local minima (Schütze et al.,
2006).

Heuristic offline active learning algorithms—for example
many algorithms for Support Vector Machines (SVMs) that
greedily label the point with the smallest absolute margin—
are practical and useful in a variety of settings (Schohn and
Cohn, 2000; Tong and Koller, 2001). These algorithms typ-
ically do not have guarantees aside from if the algorithm
labels the entire data set it converges to the passive solu-
tion. Previous work with online active learning algorithms
includes two perceptron style algorithms (Dasgupta et al.,
2005; Cesa-Bianchi et al., 2006). The algorithm of Das-
gupta et al. (2005) has provably better error rates under
certain noise free distribution assumptions. The algorithm
of Cesa-Bianchi et al. (2006) guarantees that it is no worse
than passive learning. These two algorithms are practical
(Monteleoni and Kaariainen, 2007).

In this work, we view active learning algorithms as opti-
mization. Specifically, we show that many online active
learning algorithms can be viewed as stochastic gradient
descent on non-convex objective functions. Variations of
some of these algorithms and objective functions have been
previously proposed (Dasgupta et al., 2005; Cesa-Bianchi
et al., 2006; Monteleoni and Kaariainen, 2007) without not-
ing this connection. While the online learning algorithms
we present do not have label complexity results, our algo-
rithms differ from previous heuristic active learning algo-
rithms in that they optimize an objective function—when
used with noisy data and early stopping heuristics it’s not
clear what solution, for example, the greedy SVM algo-
rithm finds. We also point out a connection between the
standard min-margin offline active learning algorithm and
non-convex losses. Finally, we discuss and show empiri-
cally how this connection helps explain the aforementioned
phenomena: certain active learning algorithms achieve bet-
ter generalization error than passive learning algorithms on
certain data sets (Schohn and Cohn, 2000; Bordes et al.,
2005) and on other data sets many active learning algo-
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Figure 1: Losses as a function of ywT x. For ramp loss
variants we use t = 1, for root-ramp loss we use s = .5.

rithms are prone to local minima (Schütze et al., 2006).

2 Online Active Learning as Stochastic
Gradient Descent

We can think of any online learning algorithm as a stochas-
tic optimization method in which updates to our estimate
f correspond to steps which in expectation move along the
objective function gradient. If the expected update for a
learning algorithm is equal to the gradient of a particular
objective function, then the learning algorithm is perform-
ing stochastic gradient descent on that objective function.
More formally, assuming the stream of data points are sam-
pled from some fixed distribution we require

∀f, −∇O(f) ≈ EX,Y [Update(f, X, Y )] (1)

where Update(f, x, y) is a function specifying the update
to apply to f for a point x with label y. In other words,
when x and y are sampled we set f to f +Update(f, x, y)).
More generally Update can be a random function in which
case we also take the expectation over this randomization.
If the objective function is non-differentiable and a sub-
gradient of the objective function is equal to the average
update then the algorithm performs stochastic sub-gradient
descent. To make the analysis concrete, we consider algo-
rithms for linear classifiers f(x) = wT x and margin based
losses l(x, f, y) = l(ywT x). The objective function is then
O(w) = EX,Y [l(Y wT X)].

As an example, consider stochastic gradient descent on
hinge loss (l(z) = max(0, 1 − z)). The standard hinge
loss update function is

Update(w, x, y) =

{
ηyx if ywT x < 1
0 if ywT x >= 1

where η is a learning rate. The hinge loss objective is

O(w) = EX,Y [max(0, 1− Y wT X)]
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Ramp Loss Active Learning
1: loop
2: Sample x
3: if |wT x| < t then
4: Query y
5: if ywT x < 1 then
6: w ⇐ w + ηyx
7: end if
8: end if
9: end loop

Log-Ramp Loss Active Learning
1: loop
2: Sample x
3: if |wT x| < t or Rand(0, 1) < 1

|wT x|−t+1
then

4: Query y
5: if ywT x < 1 then
6: w ⇐ w + ηyx
7: end if
8: end if
9: end loop

Figure 2: Example online active learning algorithms

A valid subgradient of the objective is

−∇O(w) = EX,Y [−∇max(0, 1− Y wT X)]

= EX,Y [−∇max(0, 1− Y wT X)I(Y wT X < 1)]

= EX,Y [Y XI(Y wT X < 1)]
∝ EX,Y [Update(w, X, Y )]

where I is the indicator function. Here we used −yx as a
subgradient for points with ywT x < 1, and the zero vector
as a subgradient for points with ywT x >= 1. This update
rule satisfies Equation 1 for the hinge loss objective.

This same connection applies for online active learning al-
gorithms. For active learning algorithms, points for which
the learning algorithm does not query a label or perform an
update intuitively must correspond to points at which the
gradient is zero or relatively small. For an algorithm that
queries for the label of a point x only if Query(f, x) = 1
and uses Update(f, x, y) for these points, we require

∀f, −∇O(f) ≈ EX,Y [Update(f,X, Y )Query(f,X)]
(2)

Query(f, x) may also be random, in which case we take
the expectation over this randomness as well.

We find with this interpretation many online active learn-
ing algorithms optimize non-convex losses. For non-
differentiable non-convex losses we use the notion of sub-
gradient used by Kiwiel (1985); the subgradient of f at
x is defined to be convex hull of all limits of {∇f(xi) :
xi → x} where f is differentiable at all xi (i.e. limits of
the gradients approaching the point of non differentiabil-
ity). With non-smooth, non-convex losses we no longer
have the standard convergence guarantees for subgradient
descent although we find in practice these algorithms still
perform well. It is also possible to replace the non-smooth
losses with smooth variations (Chapelle, 2007). We first
give two examples.

2.1 Ramp Loss Active Learning

The left of Figure 2 shows a very simple threshold based
active learning algorithm which has a positive threshold
t >= 1. The algorithm queries labels for points where
|wT x| < t and then for points with ywT x < 1 performs

a perceptron style update. The algorithm is inspired by the
algorithm of Dasgupta et al. (2005) and the offline active
learning algorithm of Balcan et al. (2007) (in these papers
the threshold changes, the threshold can be less than one,
and the updates are different).

The update rule is the same as in the hinge loss case

Update(w, x, y) =

{
ηyx if ywT x < 1
0 if ywT x >= 1

but with an additional sampling rule

Query(w, x) =

{
1 if |wT x| < t

0 if |wT x| >= t

One objective function which satisfies Equation 2 is a mod-
ified version of the hinge loss objective with

l(z) = min(max(1− z, 0), t + 1)

We call this loss ramp loss. Figure 2 plots it along with
other losses used in this paper. With this objective function
we have a subgradient satisfying Equation 2

−∇O(w) = EX,Y [−∇min(max(0, 1− Y wT X), t + 1)]

= EX,Y [Y XI(Y wT X < 1 and |wT X| < t)]
∝ EX,Y [Update(w,X, Y )Query(w, X)]

Here we use −yx as a subgradient for points with −t <
ywT x < 1 and the zero vector for other points.

Except for the restriction that t >= 1, this loss is identi-
cal to the ramp loss used by for example Collobert et al.
(2006). Collobert et al. (2006) argue ramp loss, although
non-convex, has better scaling properties and can be opti-
mized faster than hinge loss for kernel classifiers because
it produces more sparse solutions. They do not however
note this connection with active learning. We see this con-
nection with active learning as another possible advantage
over hinge loss: with a suitable optimization method, ramp
loss optimization may give label savings. Decreasing the
threshold while training can be interpreted as optimizing
tighter and tighter non-convex bounds on zero-one loss.
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2.2 Log-Ramp Loss Active Learning

The right of Figure 2 gives an active learning algorithm in-
spired by the randomized rule used by Cesa-Bianchi et al.
(2006). The probability of querying the label for a point de-
creases with the inverse of the absolute value of the margin.
Cesa-Bianchi et al. (2006) use a slightly different sampling
rule, and their algorithm performs updates for any point
with ywT x < 0. Here t is again a positive threshold with
t >= 1. The expected update rule is still

Update(w, x, y) =

{
ηyx if ywT x < 1
0 if ywT x >= 1

while the sampling rule is a random function

Query(w, x) =

{
1 if |wT x| < t

1 w/ prob. 1
|wT x|−t+1

if |wT x| >= t

A valid loss is similar to ramp loss but with a logarithmic
section below −t.

l(z) =





t + 1 + log(1− t− z) if z < −t,

1− z if −t <= z <= 1,

0 if z > 1.

We call this log-ramp loss. This algorithm queries labels
less selectively than the ramp loss algorithm but is also
more smooth and may be easier to optimize.

2.3 Deriving Algorithms for Other Losses

This analysis method is general in that for any active learn-
ing algorithm for which we can write down and integrate
the update rule, we can derive a corresponding objective
function satisfying Equation 2. It’s also interesting to con-
sider the converse question: for what loss functions can
we derive an active learning algorithm using this method?
Considering this question also helps to show why online
active learning seems to lead to non-convex losses.

The left of figure 3 gives a general online algorithm for
minimizing an arbitrary differentiable margin based loss
l ∈ {< → <+} with an arbitrary margin based selective
sampling strategy specified by q ∈ {<+ → [0, 1]}. The
function q provides the probability of querying for the label
of a point given that point’s absolute margin. Although q is
typically related to l, q may be arbitrary with the restriction
that q(|wT x|) = 0 only where l′(+wT x) = l′(−wT x) =
0. For any such l and q, this algorithm satisfies Equation 2
for O(w) = EX,Y l(Y wT X). The weights l′(ywT x)

q(|wT x|) used
in the update to ensure Equation 2 is satisfied are similar
to the importance resampling weights used in Monte Carlo
methods and by Beygelzimer et al. (2008). These ensure
the expected update for a particular data point is exactly
ηyxl′(ywT x). For non-differentiable loss functions, a sub-
gradient of the loss gives stochastic subgradient descent.

However, for arbitrary l and q, although the update function
is proportional to the gradient in expectation, the update
may have large variance. Intuitively, if l and q are mis-
matched, l′(ywT x)

q(|wT x|) could be arbitrarily large and the algo-
rithm could make very large steps. This could slow conver-
gence and negate any potential label savings. We therefore
suggest using a tight upper bound on the absolute value of
the loss derivative:

q(|wT x|) = min(max(|l′(+wT x)|, |l′(−wT x)|), 1)

This q is the smallest valid q such that the weight l′(ywT x)
q(|wT x|)

is never larger than max(1, l′(ywT x)). The example algo-
rithms we’ve presented all correspond to this choice of q.

With this choice of q, the algorithm is naturally suited
for non-convex losses for which limx→∞ q(x) = 0. For
convex losses the algorithm makes less sense since la-
bel queries would frequently occur for points with very
large margins. For example, with hinge loss, the algorithm
would query for every label. In addition to the ramp and
log-ramp loss functions, we implemented active learning
algorithms for two other losses using this general approach:
1) a ramp variant we call root-ramp loss

l(z) =





0 if z > 1,

1− z if −t <= z <= 1,

t + 1− 1/s + 1/s(1− t− z)s if z < −t.

with parameter s ∈ (0, 1) and 2) a sigmoid loss

l(z) =
1

1 + ez

We find root-ramp loss interesting because as s approaches
1 the loss approaches hinge loss. A different sigmoid loss
was used by Perez-Cruz et al. (2003).

2.4 Greedy Online Active Learning

A popular and effective alternative to margin based selec-
tive sampling rules we’ve discussed is to at each step sam-
ple a small set of points and then greedily query for the
label of the point with the smallest margin. This labeled
point can then be used to update the classifier using any
standard rule. This is the strategy used in an offline setting
by Schohn and Cohn (2000) and with dual optimization by
Bordes et al. (2005).

This kind of algorithm is not as easy to analyze because the
probability of querying for an example’s label is dependent
not only on that example’s margin but also on the margins
of the other examples. However, assuming we are sam-
pling from a fixed pool of examples, a sufficient statistic
for calculating the probability of querying for the label of
an example is that example’s rank in the list of examples



         205

Guillory, Chastain, Bilmes

Margin Based Online Active Learning
1: loop
2: Sample x
3: if Rand(0, 1) < q(|wT x|) then
4: Query y

5: w ⇐ w + η l′(ywT x)

q(|wT x|) yx

6: end if
7: end loop

Margin Based Offline Active Learning
1: U ⇐ {x1, x2, ...xn}
2: L ⇐ ∅
3: repeat
4: xi ⇐ argmin

xi∈U
|wT xi|

5: U ⇐ U \ {xi}
6: Query for yi

7: L ⇐ L ∪ {(xi, yi)}
8: Train f to minimize 1/n

∑
(xi,yi)∈L l(yiw

T xi)

9: until Stopping criteria met

Figure 3: Left: Online active learning algorithm for margin based loss l and selective sampling rule q. Right: Offline active
learning algorithm for margin based loss function l.

sorted by |wtx|. If an example has the ith smallest |wtx|
and we sample m of n points at each step then

Pr(Querying for the label of xi) =

(
n−i
m−1

)
(

n
m

)

With these probabilities it’s possible to give a piecewise
continuous objective function (continuous for regions for
which the sorted order is constant) which satisfies Equation
2. However, such an objective function only describes the
behavior of the algorithm within continuous regions. On-
line greedy algorithms can also be thought of as adaptive
threshold based algorithms.

3 Offline Active Learning and Non-Convex
Losses

Standard heuristic offline algorithms (Schohn and Cohn,
2000; Bordes et al., 2005; Tong and Koller, 2001) mini-
mize a convex loss over the labeled subset of the data set
and use an early stopping heuristic to avoid labeling the
entire data set. These methods converge to the convex loss
solution when they label the entire data set, but otherwise,
it’s not clear what solutions these methods find.

The right of Figure 3 gives the standard greedy offline al-
gorithm using the min-margin heuristic (Schohn and Cohn,
2000; Bordes et al., 2005; Tong and Koller, 2001). At each
step the algorithm minimizes a loss l over the labeled set.
In the standard SVM approach, this loss is hinge loss. The
unlabeled point selected is the point with minimum margin.

This greedy min margin heuristic was originally motivated
in terms of reducing the version space of the classifier
(Tong and Koller, 2001). However, when l is a non-convex
loss, the heuristic has an alternative interpretation. For non-
convex losses, it’s often the case that if xi = argmin

xi∈U
|wT xi|

then

max(|l′(+wT xi)|, |l′(−wT xi)|) =

max
xj∈U

max(|l′(+wT xj)|, |l′(−wT xj)|) (3)

In other words, the xi which minimizes the margin also
maximizes max(|l′(+wT xi)|, |l′(−wT xi)|). This is true
for all the non-convex losses we discuss. Then, for these
losses, the greedy min-margin heuristic can be seen as se-
lecting the unlabeled point which for worst case choice of
label has the largest loss function derivative. Viewed in this
way, the heuristic is very similar to working set selection
heuristics used in passive algorithms (Tsang et al., 2005).
These heuristics are designed to quickly minimize loss.

Equation 3 also holds for hinge loss but only trivially as
max(|l′(+wT xi)|, |l′(−wT xi)|) = 1 for every point (i.e.
every point maximizes max(|l′(+wT xi)|, |l′(−wT xi)|)).
For other standard convex losses (for example squared
hinge loss l(z) = (max(0, 1 − z))2), the con-
nection doesn’t hold. For convex losses, typically
max(|l′(+wT xi)|, |l′(−wT xi)|) increases as |wT xi| in-
creases. From the perspective of minimizing loss on the
full training set, the min-margin selection heuristic doesn’t
make as much sense for convex losses. This raises interest-
ing questions concerning the demonstrated practical effec-
tiveness of greedy active learning with convex losses—if
the min margin heuristic is not trying to quickly minimize
loss on the training set, what objective is it using?

4 Experiments

We illustrate the different losses on a synthetic data set
(Figure 4). Figure 5 shows loss surfaces for each loss. The
non-convex losses achieve lower zero-one loss as seen in
Figure 4, with the exception of log-ramp and root-ramp
functions which also have smoother error surfaces more
similar to hinge loss. In fact the smoother losses do no
better than guessing.

We also tested the online algorithms presented here on real
world data. We use the Covtype data set (Shalev-Shwartz
et al., 2007), the version of the USPS data set used by Tsang
et al. (2005), and the MNIST data set and the binary version
of RCV1 available from http://www.csie.ntu.
edu.tw/˜cjlin/libsvmtools/datasets/. For
the MNIST data set we classify the digit 8 against the other
classes and the digit 0 against 1. Table 1 lists these datasets.
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Figure 4: Left: a synthetic data set. Right: (zero-one) error rates for optimal classifiers for different loss functions.
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Figure 5: Loss surfaces for (clockwise from top-left) hinge loss, ramp loss, log-ramp loss, root-ramp loss, sigmoid loss,
and zero-one loss on the synthetic data set as a function of w.

As an active learning baseline we perform experiments
with a greedy online active learning algorithm that at each
step queries for the label of the point with the smallest ab-
solute margin out of m random samples (we use m = 5)
and uses the hinge loss update rule. As a passive base-
line we use stochastic subgradient descent on hinge loss;
Shalev-Shwartz et al. (2007) show a variation of stochastic
gradient descent with a different learning rate and a projec-
tion step is state of the art. For simplicity we use constant
learning rates η when training each classifier and use no
regularization. We leave the parameters of the loss func-
tions untuned (we use t = 1 for the loss functions with
thresholds and s = .5 for root-ramp loss). In all of the ex-
periments, if an active learning algorithm does not query a
label for 1000 steps, we terminate the algorithm early (this
can be seen as indicative of a small gradient norm at that
point). We initialize w to zero except where noted.

To evaluate the speed with which the active learning algo-
rithms reduce error, we use an experiment set up similar
to the one used by Monteleoni and Kaariainen (2007) who
compute the average number of labels it takes an algorithm
to reach a target error rate. We choose the target error rates
for each data set to be the average error given by stochas-
tic subgradient descent on hinge loss after 10000 training
steps on a held out validation set (using a 66/33 percent
train/validation split). We average over 50 trials and use

the fixed step size η which minimizes validation error out
of all powers of 10 between 10−6 and 102. Table 1 shows
these target error rates.

Then, having set the target error rates, for each data set and
algorithm we chose the η values which on average reaches
the target validation error using the fewest number of la-
bels. We evaluate validation error every 100 labels during
parameter fitting and again average over 50 trials and chose
η between 10−6 and 102. We limit the algorithms to 10000
labels and use 10000 as a label count if an algorithm fails to
reach the target on a trial. The ramp and sigmoid loss algo-
rithms failed to reach the target for any learning rate on the
MNIST-8 data set so for those data set / algorithms we arbi-
trarily chose the learning rates selected for hinge loss. This
tuning procedure (a variation of which is used by Mon-
teleoni and Kaariainen (2007)) is unrealistic in that it uses
more labels than the final testing procedure. However, it
allows for a fair comparison of the different methods—any
particular heuristic could favor particular loss functions. A
practical method for tuning remains an open problem.

We finally use these chosen parameters to train on the full
training set (including the validation set). We compute the
average number of labels it takes each algorithm to reach
the target error rate on the test set. For evaluation, we av-
erage over 100 trials for each algorithm and data set and
compute test error every 10 labels. We again limit each
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Data Set Training Size Test Size Dimensionality Target Error Rate
Cov 522911 58101 54 .235
MNIST-01 12665 2115 780 .001
MNIST-8 60000 10000 780 .063
RCV1 20242 677399 47236 .040
USPS 266079 75383 675 .109

Table 1: Real world data sets used in our experiments

Data set Passive Hinge Ramp Log Root Sigmoid Greedy R+H S+H
Cov 1588 577 1074 1269 460 550 1269 1231
MNIST-01 163 140 134 126 4609 57 305 176
MNIST-8 3030 10000 1888 2380 10000 1567 1503 10000
RCV1 10000 5324 10000 10000 7189 9095 5243 7665
USPS 6236 6120 1883 3310 8409 2599 1565 2428

Table 2: The average number of labels required to reach the target error rate. R+H and S+H are ramp and sigmoid loss
initialized with 1000 steps of hinge loss. We bold the best of the algorithms initializing w to zero.

algorithm to 10000 labels. Table 2 shows these results.

On all of the datasets an active learning algorithm achieves
the fewest number of average labels. On the MNIST-8 data
set the less smooth ramp and sigmoid loss functions fail to
reach the target error rate and in fact do no better than the
predicting the mode class. Log-ramp also sometimes failed
to reach the target on this data set but not frequently enough
to greatly increase the average label counts. This data set
is imbalanced (only about 10 percent is class 8). The ramp
loss and sigmoid loss algorithms also sometimes failed to
reach the target error rate on the USPS data set. We think
this is indicative of susceptibility to local minima. Figure
7 shows a histogram of the final error rates achieved by
the ramp loss algorithm. The bimodal distribution suggests
local minima. Schütze et al. (2006) observe other active
learning algorithms have problems with local minima .

To further test this, we tried running the ramp loss and sig-
moid loss algorithms with different initializations; we tried
initializing w with a zero mean Gaussian with unit vari-
ance and initializing w with 100 and 1000 steps of stochas-
tic gradient descent on hinge loss. We lack space for full
results and discussion. However, we give results for initial-
izing with 1000 steps of hinge loss training in Table 2 and
note this greatly improved performance on MNIST-8 and
USPS but hurt performance on Cov and MNIST-01.

On the RCV1 dataset, only the ramp loss, sigmoid and
greedy algortihms ever reach the target error rate and only
then inconsistently; on this data set the train test split is
chronological, so it is not surprising the validation error
rates do not match the test error rates. These two loss func-
tions possibly reach lower error rates because they optimize
tighter bounds on zero-one loss. However, the algorithms
were tuned to minimize label use not asymptotic error. We
have also performed some experiments tuning to minimize
error and found the non-convex losses did sometimes reach
lower error rates, although the differences are not often
dramatic, consistent with observations of Collobert et al.

Figure 7: Error histogram for ramp loss on USPS.

(2006). Figure 6 shows error vs label plots for each data
set (MNIST-01 is excluded, because convergence is very
fast on that dataset). In these charts we plot error rates up
to where the first run of an algorithm terminated. We also
exclude plots for which the algorithm sometimes converged
early with a high error rate (there are few points to plot).

We also ran experiments with the offline algorithm on the
right of Figure 3 with sigmoid loss and smooth variations
of hinge and ramp loss. We didn’t find a significant dif-
ference between resulting algorithms, except on MNIST-8
and the USPS data set, where the non-convex loss algo-
rithms often converged to higher error rates than the convex
loss algorithm—this is consistent with the problems exhib-
ited with the online algorithms. As in the online case, it
may also be possible to avoid these problems with smarter
initialization. We think the connection between the min
margin heuristic and non-convex losses is still interesting.

5 Future Work

There are some remaining practical issues with applying
these algorithms to real world data. As noted by Mon-
teleoni and Kaariainen (2007), online active learning algo-
rithms are not competitive with offline active learning algo-
rithms, limiting their usefulness to those applications that
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Figure 6: Test error rate vs label count for the real world data sets. We exclude plots for which the algorithm sometimes
converged early at a high error rate (there are too few points to plot).

require online learning. Also, practical applications would
require methods for setting parameters and choosing losses
with limited label use. Finally, we would like to see if this
intuition can be used to derive new theoretical results.
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