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Abstract

We study the problem of learning the topol-
ogy of an undirected network by observing
a random subsample. Specifically, the sam-
ple is chosen by randomly selecting a fixed
number of vertices, and for each we are al-
lowed to observe all edges it is incident with.
We analyze a general formalization of learn-
ing from such samples, and derive confidence
bounds on the number of differences between
the true and learned topologies, as a func-
tion of the number of observed mistakes and
the algorithm’s bias. In addition to this gen-
eral analysis, we also analyze a variant of the
problem under a stochastic block model as-
sumption.

1 Introduction

One of the most difficult challenges currently facing
network analysis is the difficulty of gathering complete
network data. However, there are currently very few
techniques for working with incomplete network data.
In particular, we would like to be able to observe a
partial sample of a network, and based on that sample,
infer what the rest of the network looks like. We call
this the network completion task.

In particular, in this paper we look at the network
completion task, given access to random survey sam-
ples. By a random survey, we mean that we choose a
vertex in the network uniformly at random, and we are
able to observe the edges that vertex is incident with.
Thus, a random survey reveals the local neighborhood
(or ego network) of a single randomly selected vertex.
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We assume the network is represented as an undirected
graph, with n vertices, and that the random samples
are performed without replacement. Thus, after m
random surveys, we can observe all of the edges among
the m surveyed vertices, along with any edges between
those m vertices and any of the n —m unsurveyed ver-
tices. However, we cannot observe the edges that oc-
cur between any two unsurveyed vertices. Thus, there
are precisely (",™) vertex pairs for which we do not
know for sure whether they are adjacent or not. We
measure the performance of a network completion al-
gorithm based on how well it predicts the existence or
nonexistence of edges between these pairs.

There has been a significant amount of work studying
various sampling models, including survey sampling,
in the social networks literature. For example, (Frank,
2005) provides an excellent overview and entry-point
to the relevant classic literature. These methods have
proven quite useful for analyzing social network data
sets collected in various ways that best suit the par-
ticular social experiment. However, to our knowledge
there has been no work studying the general problem
of learning the network topology from survey samples,
while providing formal statistical guarantees on the
number of mistakes in the learned topology.

There are two main challenges in learning the network
topology from survey samples. The first is that the
vertex pairs present in the observable sample are not
chosen uniformly, as would typically be required in
order to apply most known results from the learning
theory literature!, so that special care is needed to de-
scribe confidence bounds on the number of mistakes.
We address this issue by deriving confidence bounds
specifically designed for learning from survey samples,
in a style analogous to the PAC-MDL bounds of (Blum

! As the size of the graph grows, the assumption of sam-
pling uniformly at random essentially becomes the usual
i.i.d. assumption of inductive learning. Thus, much of this
work can be viewed as handling a certain type of non-i.i.d.
sampling method.
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& Langford, 2003). The second difficulty is the expo-
nential number of possible graphs; as is typically the
case in learning, this issue requires any learning algo-
rithm that provides nontrivial guarantees on the num-
ber of mistakes it makes for a given topology to have
a fairly strong learning bias.

In addition to the general confidence bounds men-
tioned above (which hold for any network topology),
we also analyze a special case in which the network
is assumed to be generated from a stochastic block
model. In this case, we propose a natural algorithm
for estimating the network topology based on survey
samples, and analyze its estimation quality in terms of
the differences between the estimated and true proba-
bility of an edge existing between any particular pair
of vertices.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce the notation that will be used
throughout the paper. This is followed in Section 3
with a derivation of confidence bounds on the num-
ber of mistakes made by an algorithm, as a function
of an explicit learning bias or “prior.” Continuing in
Section 4, we describe and analyze an algorithm for a
special case where the network is assumed to be gener-
ated from a stochastic block model. We conclude with
some general observations in Section 5.

2 Notation

To formalize the setting, we assume there is a true
undirected unweighted graph G = (V, E) on n dis-
tinguishable vertices, for which E is unknown to the
learner. However, the learner does know V' (and thus
also n). Let I',, denote the set of all graphs on the n

vertices; so |I'y| = 2(3). The ego network of a vertex
v is a partition of the n — 1 other vertices into 2 dis-
joint sets: namely, those adjacent to v and those not
adjacent to v. By a survey on a vertex v, we mean
that the ego network of v is revealed to the learner.
In other words, if we survey v, then we learn exactly
which other vertices are adjacent to v and which are
not.

The task we consider is that of learning the entire
graph topology based on information obtained by sur-
veying m vertices, selected uniformly at random from
V. This is therefore a transductive learning task.

Let G € T, represent some observed graph, and
G’ € T, be a reference graph; say G = (V, E) and
G' = (V,E'). Define T(G,G') = |E & E'|, where
A denotes the symmetric difference. If G = G, this
plays a role analogous to the “true error rate” in in-
ductive learning. However, we cannot directly measure
T(G,G) from observables if m < n.

For any set S C V of m vertices from V', define SxV =
{{s,v}:s€ S,veV} and let Ts(G,G) = |(Sx V)N
(E A E')|. If G = G, this plays a role analogous
to the “training error rate” in inductive learning. We
can always directly measure TS(G, G) after surveying
allv e S.

Let Go = (V, @) denote the empty graph. Define

Fropm(t) = Prs{Ts(G',Go) < t},

= max
G'=(V,E")eln:|E'|=T

where S C V is a set of size m selected uniformly
at random (without replacement). This is analo-
gous to the probability over the random selection of
the training set that the training error is at most ¢
when the true error is T. Essentially, G’ here repre-
sents the “mistakes graph” of edges in E A E when
T(G’, G) = T, except that since we do not know G,
we must maximize over all such mistakes graphs to be
sure the bound derived below will always apply.

Let Ng = {0,1,2, ...} denote the nonnegative integers,
and define

max

T(m) (¢, §) = max {T TNy, T< <”> , FT_,nym(t)25},

2

where dependence on n is implicit for notational sim-
plicity. This is analogous to the largest possible true
error rate such that there is still at least a d probability
of observing training error of ¢ or less.

We formalize the notion of a learning bias by a “prior,”
or distribution on the set of all graphs. Formally, let
p : 'y — [0,1] be an arbitrary function such that
> Ger, p(G) < 1. For instance, in the social networks

context, it may make sense to give a larger p(G) value
to graphs G that often have links between people that
are living in close geographic proximity, or have sim-
ilar demographic or personality traits, etc. We could
also define more complex p(-) distributions, for exam-
ple through a combination of vertex-specific attributes
along with global properties of the network, as pre-
scribed by certain models of real-world networks (e.g.,
(Leskovec et al., 2005; Wasserman & Robins, 2005)).

3 Confidence Bounds for Learning
From Survey Samples

Almost by definition of T},4., we get the following
bound.

Lemma 1.

vn € [0,1],YG € Ty,
Prs{T(G,G) > T{m,(Ts(G,G),m)} <.

max
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For completeness, a formal proof of Lemma 1 is in-
cluded in the appendix. By substituting op(G) for 7,
for § € [0, 1], we obtain the following. VG € T',,,

op(G))} < p(G).
(1)

Pro{T(G,G) > T\™) (T5(G, G),

max

Applying the union bound, this implies

Prs{3G e, : T(G,G) > T\ (Ts(G,Q),dp(G))}
< > pG) <
Gerl'y,

Finally, negating both sides, we have the following
bound holding simultaneously for all G € T',,.

Theorem 1. For any G € T, and m € {0,1,...,n},
with probability > 1 —§ over the draw of S (uniformly
at random from V without replacement) of size m,

VG €Ty, T(G,G) < T\ (Ts(G, G), 6p(G)).

3.1 Relaxations of the Bound

The only nontrivial part of calculating this bound is
the maximization in Fr, ., (t). For the special case
of Frpn.m(0), corresponding to zero training mistakes,
one can show that Fr,,(0) = (" *)/(), where z
is an integer such that (xgl) <T< (g) However, in
general it seems an exact explicit formula for Frp , n (t)
without any maximization required may be difficult to
obtain. We may therefore wish to obtain upper bounds
on Fr . m(t) (implying upper bounds on Tim) as well).
We derive some such bounds below.

Theorem 2.
FT,n,m(t) < efi:m/n,
where T is the smallest nonnegative integer x satisfying

2(T —t) <z(x — 1)+ (n— ) min{t + z, 2t}. (2)

Before proving Theorem 2, as an example of how the
bound on T,SJZ; implied by this behaves, suppose we
choose a hypothesis network G = (v, E) that is con-
sistent with the observations: that is, Ts(G,G) = 0.
Then we have the following result.

Corollary 1. For0 <m <n €{2,3,...}, with proba-
bility > 1 — 9§ over the draw of S (uniformly at random
from V' without replacement) of size m, VG e Iy,

T (0,6p(G))

2
L R
2(’” 5p(é)>'

=Tim (0,0p(G)). Then

Ts(G,G)=0=T(G,G) <

Proof of Corollary 1. Let T

5p(G) < Fropm(0) < e #m/n < g=V2Tm/n

This implies
1 1 ’
T<-(Zm— .
2\m  op(G)

Given a fairly strong prior p(-), this can be a rapidly
decreasing function of the number of samples (see the
example in Section 3.2).

O

To prove Theorem 2, the following lemma will be use-
ful.

Lemma 2.

Fr,i(t)<1- Eu

n

where T is the smallest nonnegative integer x satisfying

2T < z(z — 1) + (n — ) min{t + z, 2t} (3)
Proof of Lemma 2. The maximizing graph in the defi-
nition of Fr,1(t) maximizes the number of vertices
having degree at most ¢. Call this graph G. Say
there are x vertices in G having degree > t. Then
Frpn,a(t) = 1 — %. The total degree is 27, so the
sum of degrees of the x vertices with degree > ¢
is at least 2T — t(n — x). However, since this is
a simple graph, the total degree of these = vertices
is at most z(x — 1) + (n — ) min{z,¢}. Therefore,
2T —t(n —z) < z(x — 1) + (n — ) min{x, t}. This

means & < x, which implies Fr, () < 1 — &, as

)

claimed. O

We are now ready for the proof of Theorem 2.

Proof of Theorem 2.

m—1
FT,n,m (t) S H FTft,nfi,l(t)
=0
m z\" —am/n
< [Froina(®))" < (1- ~) =e

For nonzero values of Ts(G,G), the bound on

&GI(TS(G @), 5p(@)) implied by Theorem 2 may be-
have in ways more complex than Corollary 1. However,
we can still solve for  explicitly, in various ranges de-
pending on which term in the min dominates, as fol-

lows.
When 0 <t < %,

i= [max{%+t+%\/(1+2t)2+8(T— (n—l—l)t),%}—‘ .
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When
M —(n+2)t] _1 1 . —
[7n_t_1 ]§2+t 2\/(1—1—215) +8(T — (n+ 1)t),
and
T_t§t<

n
p 2=t 11 17 (R8T =
mm{ —n—3 2\/(271 1)2 — (8(T t)—|—1)},
or when

1 1 T—t

= 12 — — - ¢
n-g 2\/(271 DP=BT-0)+1) <t <2—7,
we have

~ 2T —(n+2)t
I:’V n—(t—l)-|'

If
M —(n+2)t] 1, 1 S -
[7n_t_1 -‘>2+t 2\/(1+2t) +8(T — (n+ 1)t)
and
T—-1
- <t< (4)
i M _1 1 —1)2 — _
mm{ —n= g 2\/(271 1)2 — (8(T t)—|—1)},
then

= B+t+§\/(1+2t)2+8(T—(n+1)tﬂ.

In the other cases (i.e., t > 2Z=L), we have & = 0.

We can also calculate bounds of intermediate tight-
ness, at the cost of a more complex description. The
following is one such example. Its proof is included in
Appendix B.

Theorem 3.

Fraom®) < [1-=2 1—2 min 20,
T (1) n H< nye{g,lll,r.l..,t} Ty >

i=2
where iy(j)
Tying

is the smallest nonnegative integer x satis-

2(T—y)<z(z—1)+(n—i+1—z) min{t—y+z, 2(t—y()}).
)

3.2 A Simulated Example

As an example application of this bounding technique,
we present the results of a simulated network learn-
ing problem in Figure 1. The simulated network is
generated as follows. First, we generate 1000 points
uniformly at random in [0,1]2. For each point, we

— Corollary 1
0.10

True Error

fraction of pairs

Figure 1: The true fraction of pairs that are incor-
rect and the bound on the fraction of pairs that are
incorrect.

create a corresponding vertex in the network, and we
connect any two vertices with an edge if and only if
the corresponding points are within Euclidean distance
0.1. This generates a graph where approximately 1%
of the pairs of vertices are adjacent. In the learning
problem, the prior value p(é) for a graph G = (v, E)
is uniform on those graphs such that there exists a
threshold # such that any two vertices in G are adja-
cent if and only if the corresponding points are within
distance 0, and it is zero elsewhere. Thus, there are
precisely 1+ (’2’) graphs with nonzero p(@) value, and

for these graphs p(G) = (1+ (g))_l The learning
algorithm simply outputs the graph corresponding to
the sparsest of these 1 + (72’) that is consistent with
the observed pairs. Since the true graph is among
these, we can use Corollary 1, which implies a bound
on the fraction of pairs for which the prediction is in-
-1q

correct of (g) 5| =

N 2
In #) . The plotted values

use 6 = 0.1, and are averaged over ten repeated runs.
The true fraction of pairs for which the algorithm pre-
dicts incorrectly is less than 0.0012, even for m = 1.
Note that the bound can be rather loose for small m
values, but becomes increasingly informative as m in-
creases.

4 Learning with a Block Model
Assumption

In this section, we provide an analysis of a particular
algorithm, under a generative model assumption. As
we will see, survey sampling is particularly well suited
to the needs of this estimation problem. These re-
sults are entirely distinct from those in the previous
section, except that they also involve learning from
survey samples.
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The particular modeling assumption we make here is
a stochastic block model assumption. That is, every
vertex ¢ € {1,2,...,n} belongs to a group g; € G,
where |G| < n. We assume that the g; values are
unknown, except for the m surveyed vertices. That
is, for a random survey in this setting, the learner is
informed of which other vertices that vertex is linked
to and which group it is in.

Additionally, there is a known symmetric function
f(-,-) such that, for every ¢ and j, f(4,7) € {0,1}; this
will indicate the possibility for interaction between 14
and j (e.g., f could be a function of known features
of the vertices, such as geographic proximity). We
make the further assumption that for g, h € G, there
is a value pgp € [0, 1], such that for any ¢ and j, the
probability there is a link between ¢ and j is precisely
Pgig; f(i,7), and that these “link existence” random
variables for the set of (i, 7) pairs are independent.

As before, our task is to predict which of the unknown
vertices are linked, based on information provided by
m random surveys. However, given that edge existence
is random, we may also be interested in estimating the
probability pi; = pg,q; f(i,7). We suggest the strategy
outlined in Figure 2 to get an estimate p;; of the prob-
ability that ¢ and j are linked.
Let 6 € (0,1), f = minl Y f(i,j), and m =
R
mf — 1/2mfln 4nT|g\' The following theorem might
be thought of as a coarse bound on the convergence of
Dij to pij.
Theorem 4. Let p;; be defined as in Figure 2, and
let m € {1,2,...,n} be the number of random sur-
veys. With probability > 1 — §, for all unsurveyed
1,7 €4{1,2,...,n},

In(8n|G|/d0
bij — pij| <9 %
Proof of Theorem 4. For each g,h € G, let my, =
|Qgn| denote the number of pairs (7, j) of surveyed ver-
tices such that g; = g and g; = h. Given the sample
vertices, we have by Hoeffding’s inequality that with
probability > 1 —§/2,

1 4GP
In .
ngh 5

Vg,h € G, |15qh _pgh| <

Again by Hoeffding’s inequality, with probability >
1—14/4, for every i € {1,2,...,n} and g € G, if my,
is the number of surveyed vertices j (with j # i) that
have group g and f(i,j) =1, and p;, is the fraction of
these to which i is linked, then

1 8n|G|
Dig — Daro| < 1
|p g pgzg — 2mig n 5

Thus, with probability > 1— %(5, everyi € {1,2,...,n}
and g € G has

R . 1 8n|G| 1 4|G|?
io — Da.ol < | 1 .
|p g pgmgl > \/2mig n S + \/2mgig n B

Let us suppose that this event occurs. Let m =
min;ev,geg Mig. Clearly we have every mg, > m and
every m;, > m. Now let i,j € {1,2,...,n} be unsur-
veyed vertices. Then

bij — Dgig, f(is 3)| = 1Pg.g; — Pgig, 11 (i, )

|ﬁ§i9j _pgi9j| < |ﬁ§i§j - ﬁgi79j| + |ﬁgi9j _p9i9j|
Pgig; — Digs| + [Dig; — Doigs |

+|Dg;9: — Pigi| + [Pig; — Pgsail + [Pgig; — Paug,|

1 . 8n|g| \/1 41G|2
< 4] —1 —1
= \/2mn 5 TV oat s

< 9 ln(8n|~g|/5)'
- 2m

VANVAN

All that remains is to lower bound m. Note that
for each i and g, E[m;,] > fm. By a Chernoff and
union bound, for any e € (0,1), with probability
> 1 —nlGle=™ /2 for every i € {1,2,...,n} and
g € G, miyy > fm(l —¢). In particular, by tak-

ing € = 1/%}9‘/5), we have that with probability

>1—46/4, m > m. A union bound to combine this
with the results proven above completes the proof. [

After running this procedure, we must still decide how
to predict the existence of a link using the p;; values.
The simplest strategy would be to predict an edge be-
tween pairs with p;; > 1/2. However, one problem
for network completion algorithms is determining the
right loss function. Because most networks are quite
sparse, using a simple “number of mispredicted pairs”
loss often results in the optimal strategy being “always
say ‘no edge’.” However, this isn’t always satisfactory.
In many situations, we are willing to tolerate a rea-
sonable number of false discoveries in order to find a
few correct discoveries of unknown existing edges. So
the need arises to trade off the probability of false dis-
covery with the probability of missed discovery. We
can take this preference into account in our network
completion strategy, simply by altering this threshold
for how high p;; must be before we predict that there
is an edge. An appropriate value of the threshold to
maximize the true discovery rate while constraining
the false discovery rate can be calculated using Theo-
rem 4.

5 Conclusions

The problem of learning the topology of a network
from survey samples has an interesting and subtle
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Let §; = argmingeg maxneg |[Pgh — Pin|

Let Qgn be the set of pairs (i, j) of surveyed vertices having g; = g, g; = h, and f(i,j) =1
Let pyn be the fraction of pairs in Qg that are linked in the network
For each unsurveyed i, let ;4 be the set of surveyed j having f(i,j) =1and g; =g

and let p;4 be the fraction of vertices j € Q;4 such that ¢ and j are linked in the network

For each pair (4, 7) of unsurveyed vertices, let p;; = pg,4, f (4, 7)

Figure 2: A method for estimating the probability of edge existence, given a stochastic block model assumption

and survey samples.

structure, which we have explored to some extent in
this paper. In the first perspective we examined the
problem from, we made essentially no assumptions
other than the sampling method, and were able to de-
rive general confidence bounds on the number of mis-
takes, in the style of PAC-MDL bounds. The main
challenge was to account for the fact that the observ-
able pairs of vertices are not chosen uniformly at ran-
dom, as would be required for most of the known re-
sults in the learning theory literature to apply. The
bounds we derived have several noteworthy proper-
ties. They indicate that, as usual, a strong prior is
necessary in order to make nontrivial guarantees on
the number of mistakes. Given such a strong prior,
we can compare the rate of decrease of the bounds to
some other rates we might imagine. For instance, in
order to reduce this problem to a problem with uni-
form sampling of vertex pairs, we could simply retain
only one of the observed pairs from each survey sam-
ple. In the simple zero training mistakes scenario, this
would yield a bound on the fraction of predictions that
are mistakes, decreasing as ©(m~!) for a given hy-
pothesis; comparing this to the ©(m~=2) bound proven
above for using the full survey sample shows improve-
ment. At the other extreme, perhaps the fastest rate
we might conceive of for any type of sampling might
be on the order of k=1, where k is the number of ver-
tex pairs we have observed in the sample. In our case,
k = (") + m(n — m). The explicit bounds we derive
seem not to achieve this ©((mn)~1) rate, indicating
that each observed pair carries less information under
the non-uniform sampling compared to independent
samples.

In the second perspective, we studied the convergence
of a specific estimator of the probability any given
edge exists, under a stochastic block model genera-
tive model assumption. The type of estimation we
describe is particularly well suited to survey sampling,
as it allows us to estimate the group memberships of
the unsurveyed vertices based on how they interact
with the surveyed vertices (whose group memberships
are known). As they are a first attempt at this type
of analysis, the rates we derive for this problem are
admittedly coarse, and there may be room for further

progress.

A  Proof of Lemma 1

Proof. Let G = (V,E), and for t € R let Foo(t) =
Prs{Ts(G,G) < t}. Let G' = (V,E o E) = (V,E').
Then Ts(G,G) = |(S x V)N E'| = Ts(G', Gyp), and
thus

FG‘,G(t) = 'Pf‘s{Ts(G/, Go) <t}

| PTs{Ts(GN, Go) < t}

IN

max
G'"=(V,E")eT :| B |=|E/

= FT(G,G),n,m(t)'

Given 7 € [0, 1], we have that

n > Prs{Feq(Ts(G,Q) <n}
> Prs{Fr.aynm(Ts(G,G)) < n}
>

'Prs{T(G, G) > max{T‘T €N, T < (;‘)

Fropm(Ts(G,G)) > n}}

= Pr{T(G.G) > T\.(Ts(G,G),n)}. O

max

B Proof of Theorem 3

Proof. Let G be a maximizing graph in the definition
of Fr . m(t). Define f}t)nl(y) = Prs{Ts(G,Go) =y},
where S C V is a set of size i selected uniformly at ran-
dom. The theorem follows immediately from Lemma 2
if m = 1. Suppose m > 1.

t
t
FT,n,m(t) < § FTfy,nferl,l(t - y) '](‘Lﬁm,l(y)
y=0

t ~(m)
Z t
< () o

y=0
(6)
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where (6) follows from Lemma 2. Clearly,

2(m) m
O-g})g@—%m%amwﬂﬁ))mmm@)

is at most

t
1 : (m) ) (0)
1 - - ’
y;o ( n y/e{%ljr,l...,t} ‘ry ) T,n,mfl(y)

n y'€{0,1,...,t}

i\ 11 1 (i)
<120 1—— min #®).
- n H ( n ye{g}ll,r.l..,t} Ty )

=2

1 m
< (1 — = min 567(!, )) Frpm-1(t)

The final inequality follows by induction on m (with
base case m = 2), and Lemma 2. O
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