
 232

An Expectation Maximization Algorithm for Continuous Markov
Decision Processes with Arbitrary Rewards

Matt Hoffman, Nando de Freitas, Arnaud Doucet
{hoffmanm,nando,arnaud}@cs.ubc.ca

Univ. of British Columbia, Computer Science
Vancouver, B.C., Canada

Jan Peters
jan.peters@tuebingen.mpg.de

Max Planck Inst. for Biol. Cybernetics
Tübingen, Germany

Abstract

We derive a new expectation maximization
algorithm for policy optimization in linear
Gaussian Markov decision processes, where
the reward function is parameterized in terms
of a flexible mixture of Gaussians. This ap-
proach exploits both analytical tractability
and numerical optimization. Consequently,
on the one hand, it is more flexible and gen-
eral than closed-form solutions, such as the
widely used linear quadratic Gaussian (LQG)
controllers. On the other hand, it is more ac-
curate and faster than optimization methods
that rely on approximation and simulation.
Partial analytical solutions (though costly)
eliminate the need for simulation and, hence,
avoid approximation error. The experiments
will show that for the same cost of computa-
tion, policy optimization methods that rely
on analytical tractability have higher value
than the ones that rely on simulation.

1 Introduction

A large variety of techniques have been proposed to
attack the problem of optimal control in continuous
action and state spaces. At one end of the spectrum,
one encounters techniques that heavily exploit ana-
lytical tractability, such as linear quadratic Gaussian
controllers (Bertsekas, 1995; Maciejowski, 2002). The
restrictions of linear-Gaussian transition models and
quadratic reward functions result in elegant and ef-
ficient recursions. However, these restrictions often
prove to be too unrealistic in many practical domains.

At the other end of the spectrum, one finds tech-
niques that rely on approximation and numerical com-
puting. These include direct simulation and approx-

Appearing in Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS)
2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

imate dynamic programming; see for example (Bax-
ter and Bartlett, 2001; Ng and Jordan, 2000; Thrun,
2000). The simulation approach is simple and very
general, but can lead to poor results when the re-
wards are rare events or when there is a lack of a
priori knowledge for constructing parameterized poli-
cies. Dynamic programming approaches, relying either
on function approximation with stochastic approxima-
tion or naive discretization of the continuous states
and actions, have not been found to perform well in
high-dimensional settings despite recent developments
and many years of research in the field of reinforce-
ment learning. The strategy of mapping the control
problem to one of statistical inference, as described in
this paper, provides a fresh plan of attack on this hard
problem.

Techniques in the middle of the spectrum, which take
advantage of both analytical tractability and approx-
imation methods, are very rare. One notable excep-
tion is the value iteration algorithm proposed in (Porta
et al., 2006) for solving partially observed Markov deci-
sion processes (POMDPs) with a linear-Gaussian tran-
sition model and a mixture of Gaussians reward model.
This specific representation enabled the authors to ob-
tain closed-form alpha-function updates in the classi-
cal style of (Smallwood and Sondik, 1973). However,
the approach requires that the action space be dis-
cretized. For many practical problems, where the ac-
tion space is large, this discretization will suffer from
the curse of dimensionality. If one adopts Monte Carlo
discretization to avoid the curse, one is still subject to
approximations errors: typically high variance. In this
paper, we present an algorithm that uses a similar rep-
resentation for the transition and reward models, but
that does not require that the action space be dis-
cretized. The distributions over the action and state
spaces will be obtained analytically.

Our approach follows from a recently proposed for-
mulation of the stochastic planning and control prob-
lem as one of parameter estimation for suitable artifi-
cial statistical models (Toussaint and Storkey, 2006).
There the authors propose a solution using the EM al-
gorithm. This idea seems to have originated in (Dayan
and Hinton, 1997), where only immediate rewards are

 233

An EM algorithm for continuous MDPs with arbitrary rewards

considered. This formulation has since been applied
to operational space control (Peters and Schaal, 2007)
and in the sequential setting it has been studied by
(Attias, 2003; Verma and Rao, 2006). Perhaps the
most complete and clear formulation is the one of
(Toussaint et al., 2006), which presents impressive re-
sults for finite state space models.

In (Toussaint et al., 2006), the authors also consider
continuous state spaces, unlike most previous works
which focus on the discrete case. However, the au-
thors only consider a single Gaussian reward function.
More importantly, the technical details for these con-
tinuous models are unfortunately incorrect and rely
on a fairly common misunderstanding in the optimal
smoothing literature. Namely, the paper uses the in-
verse of the dynamic process (in particular the in-
verse unscented transformation) to obtain the back-
ward transition model p(xn|xn+1) from the forward
transition model p(xn+1|xn). To see why this is er-
roneous, consider the following simple auto-regressive
process example, taken from (Klaas et al., 2006):
xn+1 = axn + σνn+1 and x1 ∼ N (0, σ2(1 − a2)−1),
where |a| < 1. Through the application of Bayes
rule the backward transition kernel can be written as
p(xn

∣

∣xn+1) = N (xn; axn+1, σ
2). On the other hand,

inversion of the dynamics xn = a−1(xn+1 −σνn+1) in-
correctly leads to an unstable model: p(xn

∣

∣ xn+1) =

N (a−1xn+1, a
−2σ2).

In sections 2 and 3 of this paper we will introduce
the basic formulation of a sequential decision prob-
lem as one of statistical inference and outline an EM
algorithm for estimating the policy parameters while
analytically marginalizing over the states and actions.
Section 4, is where the technical contribution of this
paper begins: A new algorithm for arbitrary rewards
that can be approximated with mixtures of Gaussians.
After demonstrating how well the new algorithm per-
forms on synthetic (but hard) MDPs, the paper con-
cludes with a motivating robotics example that shows
how to map a nonlinear control problem to a linear
control problem with an arbitrary reward. Hence, if
we can solve linear MDPs with arbitrary rewards, we
can attack a large class of difficult nonlinear control
problems.

2 Model specification

The goal is to perform policy optimization for discrete-
time Markov decision processes (MDPs) defined by the
X -valued state-process {Xn}n≥1 and U-valued action-
process {Un}n≥1. The initial-state, transition, and
policy densities are given by:

X1 ∼ µ(x1),

Xn+1

∣

∣ (Xn = xn, Un = un) ∼ f(xn+1|xn, un), and

Un

∣

∣ (Xn = xn) ∼ πθ(un|xn)

respectively. In order to ease notation later, we will
also note that this model induces a Markov chain

{Zn}n≥1 over the extended state-space Z = X × U .
We will refer to realizations of this chain as state-action
paths, and denote their generative densities as

Z1 ∼ µθ(z1) and Zn+1

∣

∣ (Zn = zn) ∼ fθ(zn+1|zn)

where µθ(z1) = µ(x1)πθ(u1|x1) and

fθ(zn+1|zn) = f(xn+1|xn, un)πθ(un+1|xn+1).

Similarly, we can also define the short-hand notation
πθ(zn) = πθ(un|xn).

The policy πθ as introduced earlier is assumed to have
some parameterized form governed by θ. Given an
immediate reward function r(z) = r(x, u) the prob-
lem of solving an MDP then reduces to finding the
values θ∗ that maximize some measure of the total ex-
pected reward induced by this policy. For this work
we will maximize the infinite-horizon, discounted, ex-
pected reward

J(θ) = Eµθ(z1) fθ(z2|z1) ···

[°∞
k=1 γk−1 r(Zk)

]

. (1)

The objective function J(θ) defined in (1) can also be
reinterpreted as the objective function associated with
an infinite mixture of finite horizon MDPs (where the
reward only happens at the last time step). This was
noted by (Toussaint and Storkey, 2006) and also used
in (Doucet and Tadic, 2004) to solve integral equa-
tions. In order to discuss this interpretation we will
first introduce the density

pθ(z1:k|k) = µθ(z1)
k¹

n=2

fθ(zn|zn−1), (2)

which represents the probability of a k-length state-
action path. We can notice from Eq. (1) that use of the
discount factor γ is very similar to putting a geometric
distribution over path lengths k. Using this intuition
we can write

pθ(k, z1:k) = (1 − γ)γk−1 pθ(z1:k|k) (3)

as the joint distribution over both paths and path
lengths. We should note that this is a trans-
dimensional distribution defined on

�∞
k=1{k} × Zk,

i.e. a distribution where the dimensionality of the dis-
tribution (k in this case) is also a random variable.
Given this formulation, the following proposition then
holds:

Proposition 1. The objective function J(θ) is pro-
portional to the expected reward obtained at the last
step under pθ. More precisely,

J(θ) = (1 − γ)−1
Epθ

[r(ZK)]. (4)

Proof. We can expand J(θ) from (1) as

J(θ) =

»
h

µθ(z1)
∞¹

n=2

fθ(zn|zn−1)
ih

∞

ķ=1

γ
k−1

r(zk)
i

dz1:∞,

=
∞

ķ=1

»
(1 − γ)−1 (1 − γ) γ

k−1
pθ(z1:k|k) r(zk) dz1:k

= (1 − γ)−1
Epθ

[r(ZK)],

 234

Hoffman, de Freitas, Doucet, Peters

from which our claim follows.

Here the discount-factor γ induces a distribution to
mix over finite time MDPS, where the stopping time
is given by K. One benefit of this formulation is that
the reward function is only “evaluated” at time K, i.e.
we need only compute rewards that occur at the last
time step. This representation will prove particularly
useful later when performing inference as we will only
need to evaluate the reward function at the end of the
chain and then propagate this backwards in time.

3 Policy Search as Inference

The reformulated objective of Section 2 presents a
new way of evaluating the expected reward which de-
fines J(θ). In this section we will discuss an alter-
native method of optimizing this objective function,
namely using methods originally developed for infer-
ence problems. We follow the approach of (Toussaint
and Storkey, 2006) in this section and hence omit
proofs. We will begin by constructingrp(k, z1:k|θ) =

pθ(k, z1:k) r(zk)

Epθ
[r(ZK)]

, (5)

which we can easily see is the normalized density re-
sulting from multiplying the reward r(z) with the
trans-dimensional distribution pθ(k, z1:k). We should
note that this formulation does require that r(z) be
strictly positive in order to ensure that the density
is well defined1. This distribution was crucial to the
development in (Hoffman et al., 2008) of a Markov
Chain Monte Carlo (MCMC) procedure to sample
from rp(k, z1:k, θ) = p(θ)rp(k, z1:k|θ), where p(θ) is a
prior on the unknown parameters θ. By construction,
this yields a marginal rp(θ) ∝ J(θ) p(θ), resulting in
higher probability mass where the expected reward is
higher, and therefore samples which concentrate on
these high reward areas. Instead of using this approx-
imate integration method, in this paper we focus on
developing a more efficient exact integration method
for the specific mixture reward model presented in Sec-
tion 4.

We will treat (k, z1:k) as hidden data, and maximize
the likelihood of θ via an Expectation Maximization
(EM) algorithm. Using the standard EM terminology
we can define the following terms:

• the complete data likelihood is given by
pθ(k, z1:k) r(zk), i.e. the combined likelihood
of our observed data (of which there is none) and
hidden data;

• the incomplete data likelihood is the integral over
our complete data likelihood with respect to our
hidden data, and is thus given by Epθ

[r(ZK)];

1We will later show how to eliminate this assumption
in some situations.

• the predictive distribution of our hidden data is
the normalized distribution over hidden data, and
thus rp(k, z1:k|θ).

The EM algorithm is particularly useful in situations
where it is difficult to directly optimize the incomplete
data likelihood—often because of the existence of hid-
den data. Instead, we can iteratively maximize

Q(θ, θi−1) = Erp[log{pθ(k, z1:k) r(zk)}
∣

∣θi−1

]

, (6)

θi = argmax
θ

Q(θ, θi−1). (7)

Intuitively, at every iteration the previous values θi−1

are used to calculate the expected complete data like-
lihood in the E-step (6) which is then maximized in
the M-step (7). It is well known that this iterative
technique is guaranteed to produce a local maximum
of the incomplete data likelihood, which in our case is
a maximum of Epθ

[r(ZK)] as desired.

Since we will be maximizing the Q-function with re-
spect to θ, we can drop any additive constants which
don’t depend on θ, simplifying the function to

Q(θ, θi−1) h

∞

ķ=1

rp(k|θi−1)
ķ

n=1

» rp(zn|k, θi−1) log πθ(zn) dzn

where ‘h’ denotes ‘equal up to an additive constant’.
From this equation we can also see that the computa-
tional complexity of the E-step is O(k2

max) per itera-
tion for some maximum time-horizon kmax. The hope,
however, is that the analytic nature of these updates
will allow for a fewer number of iterations. The follow-
ing two sub-sections will describe the resulting E-step
and the M-step in more detail.

3.1 The E-step

In order to construct the necessary E-step distribu-
tions we will utilize a technique similar to that used
for parameter estimation in Hidden Markov Models
(HMMs) and Linear Dynamical Systems (LDS). First,
we will introduce the forward messages αθ(zn) which
will denote the distribution over state-action pairs af-
ter n steps. This can be defined recursively as

αθ(zn) =

»
αθ(zn−1) fθ(zn|zn−1) dzn−1, (8)

where messages are initialized with the initial-state
distribution, αθ(z1) = µ(z1). Next, given some finite
path length k, we can introduce the backward messages
βθ(zn|k) which we will use to denote the expected re-
ward in n − k steps; here we can recursively define

βθ(zn|k) =

»
βθ(zn+1|k) fθ(zn+1|zn) dzn+1 (9)

where these messages are initialized with the immedi-
ate reward, βθ(zk|k) = r(zk). In a standard HMM-
context the backward messages would be used to rep-
resent the likelihood of all observed events from time

 235

An EM algorithm for continuous MDPs with arbitrary rewards

n + 1 to k, but in our situation we have no observa-
tions other than the reward term. In essence we are
treating the reward r(zk) as if it were the likelihood of
some observed data that only happens at the end of
our state-action path at time k.

Another useful property of these messages is that, un-
like in an HMM-context, the α- and β-messages are
independent of each other so long as the backward
messages are parameterized using the form

βθ(z|τ) = βθ(zn|k) for τ = k − n. (10)

In other words the β-messages denote the expected
reward in τ steps, starting from state z. This was first
observed by (Toussaint and Storkey, 2006), and allows
us to compute these distributions in parallel. For the
rest of this section we will continue using the notation
given in (9) purely for reasons of exposition.

The forward and backward messages introduced above
now provide us with an efficient means of calculating
the expected reward for a given θ as well as the distri-
butions required for the E-step.

Proposition 2. The k-step reward is given by

Epθ
[r(Zk)|k] =

»
αθ(zn) βθ(zn|k) dzn (11)

for any n, and the infinite-horizon reward is given by

Epθ
[r(ZK)] =

∞̧

k=1

(1 − γ) γk−1
Epθ

[r(Zk)|k]. (12)

Proposition 3. The product of α- and β-messages
gives us the unnormalized distribution over zn,rp(zn|k, θ) =

1

Epθ
[r(Zk)|k]

αθ(zn) βθ(zn|k), (13)

where the normalizing constant is the k-step reward.
The distribution over k is given byrp(k|θ) = (1 − γ)γk−1 Epθ

[r(Zk)|k]

Epθ
[r(ZK)]

. (14)

3.2 The M-step

In order to solve for θi at each iteration we must com-
pute the gradient ∇Q(θ, θi−1), which is equal to

∞

ķ=1

rp(k|θi−1)
ķ

n=1

» rp(zn|k, θi−1)∇ log πθ(zn) dzn. (15)

We can then analytically find the zeros of ∇Q(θ, θi−1)
if this function is concave with respect to θ. If an
analytical solution is not possible a generalized EM
(GEM) algorithm can be employed, where the gradi-
ent is evaluated at the current parameter values to
obtain ∇Q(θi−1, θi−1). Steps can then be taken in the
direction of this gradient, a technique that is similarly
guaranteed to converge to a local maximum (Lange,

1995). For this work we will use a quasi-Newton op-
timization approach, the LBFGS-B algorithm (Byrd
et al., 1995).

It is also possible to make a direct connection between
EM-based algorithms and the policy gradient, ∇J . By
rearranging terms we can write the Q-function’s gra-
dient as

∇Q(θ, θi−1) =

» rp(k, z1:k|θi−1)∇ log pθ(k, z1:k) dz1:k dk

=

»
pθi−1

(k, z1:k) r(zk)

E[r(ZK)|θi−1]
·
∇pθ(k, z1:k)

pθ(k, z1:k)
dz1:k dk,

and by evaluating this gradient at θi−1, we obtain

∇Q =
1

E[r(ZK)|θi−1]

»
∇pθi−1

(k, z1:k) r(zk) dz1:k dk

=
1

E[r(ZK)|θi−1]
· (1 − γ)∇J(θi−1)

where the second line follows directly from Equa-
tion (4). This equivalence has several implications,
the first of which is simply that a GEM algorithm com-
putes a gradient in exactly the same direction as the
policy gradient. Secondly, it shows how we can use
the methods of this section to calculate the gradient
even for reward-models that may not necessarily be
positive, i.e. the gradient can be written as

∇J(θ) =
E[r(ZK)|θ]

(1 − γ)
· ∇Q(θ, θ)

=
ķ

γk−1
ķ

n=1

»
αθ(zn)βθ(zn|k)∇ log πθ(zn) dzn.

This is well defined so long as the above integral exists.
By performing this calculation we can obtain an an-
alytical estimate of the gradient ∇J(θi−1), and hence
we need not rely on simulation.

4 A mixture-of-Gaussians model

We will now describe a particular instance of the gen-
eral EM algorithm described earlier. Consider state
and action spaces given by X = R

nx and U = R
nu .

We will assume a linear-Gaussian2 transition model
and policy,

µ(x1) = N (x1; µ0, Σ0),

f(xn+1|xn, un) = N (xn+1; Axn + Bun, Σ), and

πθ(un|xn) = N (un; Kxn + m, σ2I).

Here the policy is parameterized by θ = (K, m, σ), the
model itself is paramaterized by (µ0, Σ0, A, B, Σ), and
I is the identity matrix. We will further assume a re-
ward model which is a combination of P unnormalized

2We will let N (x; µ, Σ) denote a Normal distribution in
x with mean µ and covariance Σ, and let N denote the
unnormalized distribution.

 236

Hoffman, de Freitas, Doucet, Peters

State-action transition parameters:

F =

»

A B
KA KB

–

, m =

»

0
m

–

, Σ =

»

Σ ΣKT

KΣ KΣKT + σ2I

–

Initial state-action parameters:

µ0 =

»

µ0

Kµ0

–

, Σ0 =

»

Σ0 Σ0K
T

KΣ0 KΣ0K
T + Σ

–

Figure 1: Definition of the transition parameters.

Gaussian functions

r(z) =
P̧

j=1

wj N (yj ; Mjz, Lj), z = [x; u] (16)

each parameterized by (wj , yj , Mj, Lj). It should be
emphasized that these functions are only used for their
functional form, and in particular each yj is a parame-
ter and should not be interpreted as a random variable.
It is also worth noting that even were it normalized
this is not strictly a Gaussian density in z because of
the presence of Mj. Under this model the state-action
transition model is also linear-Gaussian, given by

µθ(z1) = N (z1; µ0, Σ0) and

fθ(zn+1|zn) = N (zn+1; Fzn + m, Σ). (17)

Although the parameters (µ0, Σ0, F , m, Σ) depend on
θ, we have left this dependency implicit in order to
simplify the notation. The exact form of the param-
eters is given in Figure 1, and we give these terms
without proof as they are relatively simple to derive.

With our model specified, we can now write the for-
ward and backward messages for this problem:

αθ(zn) = N (zn; pµn, pΣn),

βθ(z|τ) =
j̧

wj exp
{

− 1
2 (qcj

τ + zTqΩj
τz − 2zTqµj

τ)
}

.

The full recursive definition can be seen in Figure 2.
The updates for the forward message parameters are
relatively simple, and are essentially the same as those
given in the update phase of the discrete-time Kalman
filter. The derivation of the backward messages is a
more complicated (and tedious) process. Here we have
reparameterized the individual Gaussian components
of the reward model in canonical form and written the
backward messages in the time-to-go notation.

For a given k and n, and τ = k − n, the unnormalized
distribution over zn is given by the product of forward-
and backward-messages

αθ(zn) βθ(zn|τ) =
j̧

wj rwj
nτ N (zn; rµj

nτ , rΣj
nτ), (18)

where the parameters (rwj
nτ , rµj

nτ , rΣj
nτ) are defined in

Figure 3. Further, via Proposition 3 we can obtain

Forward message recursion:pµ1 = µ0,pΣ1 = Σ0;

pµn = F pµn−1 + m,pΣn = F pΣn−1F
T + Σ.

Backward message recursion:qΩj
0 = M

T
j L

−1

j Mj ,qµj
0 = M

T
j L

−1

j yj ,qcj
0 = log |2πLj | + y

T
j L

−1

j yj ,qΩj
τ+1 = F

T
(Σ

−1
− Σ

−1rΣΣ
−1

)F ,qµj
τ+1 = F

T
Σ

−1
(rΣΣ

−1
m + rΣqµj

τ − m),qcj
τ+1 = qcj

τ + log |ΣrΣ−1| + m
TΣ

−1
m

− (qµj
τ + Σ

−1
m)T rΣ(qµj

τ + Σ
−1

m),

where rΣ−1 = qΩj
τ + Σ

−1
.

Figure 2: The α- and β-message recursions for the mix-
ture of Gaussians model. In order to ease notation as
much as possible we mark the statistics of the forward
messages with a hat (e.g. pa) and mark the backward
pass statistics with a check (e.g. qa).

both the k-step reward and the predictive distribution,

Epθ
[r(Zk)|k]=

»
αθ(zn) βθ(zn|τ) dzn =

j̧

wj rwj
nτ

△
= rwnτ ,rpθ(zn|k)=

j̧

νj
nτ N (zn; rµj

nτ , rΣj
nτ) (19)

where νj
nτ = wj rwj

nτ

/ rwnτ . We can then write the mean
and covariance of zn given k as

E[Zn|k] = rµnτ =
j̧

νj
nτ rµj

nτ , and

cov[Zn|k] = rΣnτ =
j̧

(νj
nτ)2 rΣj

nτ . (20)

Finally, by referring to Equation (14) we can easily ob-
tain the discrete distribution rp(k|θ) ∝ (1−γ) γk−1 rwnτ .
Given θi−1 = (Ki−1, mi−1, σi−1) we can now calcu-
late the partial derivatives of log πθ(u|x) with respect
to each policy parameter and plug these directly into
Equation (15) to obtain ∇Q(θ, θi−1), i.e.

∂Q

∂K
=

ķ

rp(k|θi−1)
ķ

n=1

σ
−2

i−1

`

E[UnX
T
n] − mi−1E[XT

n]

− Ki−1E[XnX
T
n]

´

,

∂Q

∂m
=

ķ

rp(k|θi−1)
ķ

n=1

σ
−2

i−1(E[Un] − Ki−1E[Xn] − mi−1),

∂Q

∂σ
=

ķ

rp(k|θi−1)
ķ

n=1

σ
−3

i−1E[CT
C] − nuσ

−1

i−1, (21)

where C = Un − Ki−1Xn − mi−1. We have also left
the dependency on k in the above expectations im-
plicit in order to shorten the notation. By setting this

 237

An EM algorithm for continuous MDPs with arbitrary rewards

Parameterization of the predictive distr.:rΣj
nτ = (pΣ−1

n + qΩj
τ)−1rµj

nτ = rΣj
nτ (pΣ−1

n pµn + qµj
τ)rwj

nτ = |pΣ−1
n
rΣj

nτ |
1

2 exp
n

− 1

2

hqcj
τ + pµT

n
pΣ−1

n pµn

− (rµj
nτ)T(rΣj

nτ)−1(rµj
nτ)

io

Figure 3: Parameterization of rp(zn|k, θ) as in (19).

gradient equal to 0 and solving for θ we can obtain
the EM update. Given the fact that Zn = [Xn; Un],
the expectations needed to perform these calculations
can be trivially obtained from the sufficient statistics
in (20), where

E[ZnZT
n] = rΣnτ + rµnτ (rµnτ)T and

E[CTC] = Tr(Ki−1cov[Xn]KT
i−1 + cov[Un])

+ ‖E[Un] − Ki−1E[Xn] − mi−1‖
2.

The gradient ∇J can also be calculated, where

∇J(θi−1) =
ķ

γk−1
ķ

n=1 j̧

(wj rwj
nτ) ·»

N (zn; rµj
nτ , rΣj

nτ)∇ log πθi−1
(zn) dzn.

The integral in this formulation can be evaluated using
sufficient statistics similar to those in (20). And here
we have made no assumptions as to the sign of wj .

5 Results on synthetic data

In this section we will empirically observe the behav-
ior of EM on Gaussian MDPs of the form introduced
in Section 4. The simplest way to test these meth-
ods involves randomly generating the parameters of
an MDP model and observing their convergence be-
havior. We generated transition parameters Aij and
Bij from a standard uniform and components of the
initial-state mean µ0 uniformly in the range [0, 5]; co-
variance terms for these models were initialized diag-
onally with standard-deviations uniformly sampled in
the range (0, 5]. The reward terms wj and yj were ini-
tialized similarly, Mj was the identity, and the “covari-
ances” Lj were initialized using a random SPD matrix
with eigenvectors uniformly distributed in (0, 5].

As an aside, it is also worth noting that although
we know the optimal policy will be deterministic,
by allowing the exploration term σ to vary we ob-
tain annealing-like behavior where local maxima are
smoothed out by a large initial value of σ. The plot
in Figure 4 contains the average convergence behavior
of the two EM variants on a series of 100 simple, 1-
dimensional MDPs (a 3-dimensional parameter space).

0 5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Computational time (in s)

N
o
rm

a
liz

e
d
 e

x
p
e
c
te

d
 r

e
tu

rn
,
J
(θ

)

generalized EM

PEGASUS

p.gradient

p.gradient, baseline

natural actor−critic

standard EM

Figure 4: Convergence results on 100, randomly sam-
pled 1-dimensional MDPs (for which the policy space
is R

3). For each algorithm we use the same tuning
parameters (i.e. learning rate, number of trajectories,
etc.) across different models. Also shown is the varia-
tion of this performance between different models.

The trace of each optimization process is normalized
to be in the range [0, 1] and averaged across all models.
The first thing to note is the poor performance of the
standard EM algorithm as compared to the GEM algo-
rithm. This behavior results from the high proportion
of hidden data and is a situation that only worsens as
the dimensionality increases.

We also contrast the EM-based approach to policy gra-
dient methods including: (i) a gradient-free approach
using finite-differences and common random numbers
for variance reduction (i.e. PEGASUS (Ng and Jor-
dan, 2000)); (ii) stochastic gradient ascent using the
vanilla policy-gradient and the vanilla policy-gradient
combined with the optimal baseline; (iii) the natural
actor-critic (Peters and Schaal, 2008). The conver-
gence rates of these different algorithms can also be
seen in Figure 4. Given a well chosen learning rate—
and if the reward model induces a nice, broad sur-
face with well-defined gradients—the policy-gradient
methods perform quite well. It is worth noting, how-
ever, that these algorithms are greatly affected by the
choice of learning rate. For most models it seemed pos-
sible to vary the learning rate of the policy-gradient
methods in order to achieve performance comparable
with GEM, but these learning rates did not general-
ize across multiple models and required multiple runs
to obtain. One other tradeoff, however, is the time-
complexity of these two classes of algorithms. Each it-
eration of the policy gradient algorithms runs in time
O(pkmax) where p is the number of trajectories, and
kmax is the time-horizon; the EM-based algorithms are
O(k2

max). As a result, even accounting for the issue of
learning rates, the fact that these algorithms are lin-
ear in kmax may make them seem more attractive for
problems with a large time-horizon.

The differences in performance, however, are much

 238

Hoffman, de Freitas, Doucet, Peters

0 50 100 150 200 250 300 350 400

0

0.2

0.4

0.6

0.8

1

Computational time (in s)

N
o
rm

a
liz

e
d
 e

x
p
e
c
te

d
 r

e
w

a
rd

,
J
(θ

)

generalized EM

PEGASUS

p.gradient

p.gradient, baseline

natural actor−critic

0 100 200 300 400
0

0.5

1
M

o
d
e
l
1

θ
0
 far from optimum

0 100 200 300 400
0

0.5

1

θ
0
 near optimum

Figure 5: Convergence for 20 randomly selected MDPs
(3D states and 3D actions, with policy space being
R

13). The policy gradient algorithms did not have
enough gradient information to make any progress in
all but a few of the models. The two plots on top show
the change in this behavior when the initial policy θ0

is initialized closer to the optimum.

greater when the reward function is rare, i.e. with sup-
port limited to only a small region of the state space.
Figure 5 shows the convergence behavior of the al-
gorithms on a set of larger, 3-dimensional state- and
action-space models (policies in these models are pa-
rameterized by θ ∈ R

13). In particular we see that the
policy-gradient algorithms perform very poorly, and
are for the most part unable to make any progress
towards the goal. This is because in this space the
reward model is much more rare than in lower dimen-
sions, resulting in little-to-no gradient information ex-
cept in a small region around the optimum and what
little gradient exists is also likely washed out by the
noise in the system. The GEM algorithm does not suf-
fer from this problem not only because the iterations
are analytic, but also because of the backward mes-
sages. In contrast, the policy gradient algorithms only
perform a noisy forward pass, and so are much less
likely to get good information about a rare reward.
We also experimented with starting the initial value
of θ closer to the optimum, as can be seen from the
top plots of Figure 5, and we see that the the policy
gradients are able to make progress in this situation.
This is not, however, an effective strategy: in order
to find a closer value for θ0 we were forced to initially
solve the system using the GEM algorithm.

6 Robotic applications

Consider an n-jointed robotic system such that
q, q̇, q̈ ∈ R

n denote the joint angles, velocities, and
accelerations respectively. Most such systems can be
described by the rigid-body dynamics

q̈ = M−1(q)(τ − c(q, q̇) − g(q)), (22)

x
hole

q
1

q
2 q

3

end effector, f(q)

Figure 6: Model of a robot arm “peg-in-hole” task.

where M(q) denotes the inertia matrix, c(q, q̇) de-
notes the coriolis and centripetal forces, g(q) is the
force due to gravity, and τ the torques generated by
the motors. The objective is then to control the evo-
lution of the joints [q; q̇; q̈] ∈ R

3n with actions given
by some sequence of torques τ ∈ R

n. It is easy to see
from (22), however, that the dynamics of this system
are highly non-linear and as a result we cannot apply
the techniques of Section 4. But the system can in-
stead be reformulated in a different action-space that
enforces linear dynamics.

A system can be called feedback-linearizable if there
exists some function pτ (q, q̇, q̈) that cancels the natu-
ral dynamics of the system in some local neighborhood
of (q, q̇, q̈), where q̈ is some desired joint-space accel-
eration. That is, we want a function pτ that locally
approximates the torque required to maintain some
acceleration q̈ from the state (q, q̇). In general this
function can be obtained via an estimate of the in-
verse dynamics (Lewis et al., 2004). Given the in-
verse dynamics, we can control the evolution of states
x = [q; q̇] via actions u = q̈ where the dynamics are
linear.

While it is often possible to linearize the dynamics of
such a system, this can drastically change the reward
model necessary to induce some desired behavior. It
is also frequently the case that the reward model de-
pends on non-linear terms such as the end-effector po-
sition z = f(q). The function f denotes the forward-
kinematics of the system, and depends on parameters
such as the link lengths l and masses m (Lewis et al.,
2004). Again, although the reward may be a simple
quadratic in z, this will in general be non-linear in
x and u. These are precisely the situations where
the mixture-of-Gaussians approach presented earlier
should prove useful. On one hand this formulation
immediately allows us to tackle multimodal regulation
tasks whose rewards can be specified in the form of
Equation (16). Another possibility, though, would be
to fit the model either to some known functional form
or to data.

One simple application of this technique on a robotic
model is the “peg-in-hole” task, a depiction of which
is shown in Figure 6. The goal of this task is to move

 239

An EM algorithm for continuous MDPs with arbitrary rewards

0 10 20 30

0

10

20

30

40

50

60

70

80

90

100

Computational time (in hrs)

E
x
p

e
c
te

d
 r

e
tu

rn
 J

(θ
)

Learned GP reward

generalized EM

Natural actor−critic

0 100 200 300 400 500

0

10

20

Rare reward with k
max

=50

0 50 100 150 200 250

0

2

4

6

8

Computational time (in s)

Rare reward with k
max

=20

Figure 7: A trace of the optimization process for the
3-jointed robot arm model using the learned reward
(left) and a rare reward (right).

the end-effector into some position xhole and regulate
about this point. We can specify the reward as

r(x, u) = exp
˘

−λ1‖f(q) − xhole‖
2 − λ2‖q̇‖

2 − λ3‖q̈‖
2
¯

.

Rather than attempting to fit this entire model, we can
instead restrict ourselves to the reward-terms depend
on q. In this paper we fit the model using sparse,
psuedo-input Gaussian Processes regression (Snelson
and Ghahramani, 2006). The regression process re-
sults in a linear-combination of Gaussians with param-
eters (wj , mj , Sj) that can be used to approximate the
full reward model:

r(x, u) ≈
j̧

wj N (q;mj , Sj) · exp
˘

−λ2‖q̇‖
2 − λ3‖q̈‖

2
¯

=
j̧

wj N ([x; u]; yj , Lj),

for yj = [mj ;0;0] and Lj = blkdiag(Sj ,
1

λ2

I, 1
λ3

I).
Given this information we can now perform policy
search over the 22-dimensional space of all policies.
Here we use a maximum time-horizon kmax = 100.
Figure 7 shows a trace of the resulting optimization
process; the resulting policy is successfully able to
move the arm’s end-effector to the position xhole and
from there regulates about this point. Here, although
not a simple problem, the reward is relatively broad,
and the natural actor-critic was able to do well. Due to
the analytic nature of the GEM approach, however, we
are still able to improve on this policy in the long-run.
The GEM algorithm actually converges quite quickly,
but each iteration is adversely affected by the O(k2

max)
time complexity. Based on these results we also ex-
perimented with putting a single, very peaked reward
at the resulting target joint angles. These results are
also shown in Figure 7, and we can see that the ana-
lytic GEM algorithm greatly outperforms the natural
actor-critic with rare rewards.

7 Conclusion

In this paper we derived an analytic approach to con-
trol problems whose rewards are modeled by a linear
combination of Gaussians. We have also shown that
when the reward is rare, a backwards pass is crucial to
solving these types of problems.

References

H. Attias. Planning by probabilistic inference. In UAI,
2003.

J. Baxter and P. Bartlett. Infinite-horizon policy-gradient
estimation. JAIR, 15:319–350, 2001.

D. Bertsekas. Dynamic Programming and Optimal Control.
Athena Scientific, 1995.

R. Byrd, P. Lu, J. Nocedal, and C. Zhu. A Limited Memory
Algorithm for Bound Constrained Optimization. SIAM
Journal on Scientific Computing, 1995.

P. Dayan and G. Hinton. Using EM for reinforcement learn-
ing. Neural Computation, 9:271–278, 1997.

A. Doucet and V. Tadic. On solving integral equations
using Markov Chain Monte Carlo methods. Technical
Report CUED-F-INFENG 444, Cambridge University
Engineering Department, 2004.

M. Hoffman, A. Doucet, N. de Freitas, and A. Jasra.
Bayesian policy learning with trans-dimensional
MCMC. In NIPS, 2008.

M. Klaas, M. Briers, N. de Freitas, A. Doucet, and
S. Maskell. Fast particle smoothing: If I had a million
particles. In ICML, 2006.

K. Lange. A quasi-Newton acceleration of the EM algo-
rithm. Statistica Sinica, 5(1):1–18, 1995.

F. Lewis, D. Dawson, and C. Abdallah. Robot Manipulator
Control: Theory and Practice. CRC Press, 2004.

J. Maciejowski. Predictive control with constraints. Pren-
tice-Hall, 2002.

A. Ng and M. Jordan. PEGASUS: A policy search method
for large MDPs and POMDPs. In UAI, 2000.

J. Peters and S. Schaal. Natural Actor-Critic. Neurocom-
puting, 71(7-9):1180–1190, 2008.

J. Peters and S. Schaal. Reinforcement learning for opera-
tional space control. In ICRA, 2007.

M. Porta, N. Vlassis, M. Spaan, and P. Poupart. Point-
based value iteration for continuous POMDPs. JMLR,
7:2329–2367, 2006.

R. Smallwood and E. Sondik. The optimal control of par-
tially observable Markov processes over a finite horizon.
Operations Research, 1973.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes
using pseudo-inputs. In NIPS, 2006.

S. Thrun. Monte Carlo POMDPs. In NIPS, 2000.

M. Toussaint and A. Storkey. Probabilistic inference for
solving discrete and continuous state Markov Decision
Processes. In ICML, 2006.

M. Toussaint, S. Harmeling, and A. Storkey. Probabilis-
tic inference for solving (PO)MDPs. Technical Report
EDI-INF-RR-0934, University of Edinburgh, School of
Informatics, 2006.

D. Verma and R. P. N. Rao. Planning and acting in un-
certain environments using probabilistic inference. In
IROS, 2006.

