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Abstract

We demonstrate a generalization of Maxi-
mum Entropy Density Estimation that el-
egantly handles incomplete presence-only
data. We provide a formulation that is able
to learn from known values of incomplete
data without having to learn imputed val-
ues, which may be inaccurate. This saves
the effort needed to perform accurate impu-
tation while observing the principle of max-
imum entropy throughout the learning pro-
cess. We provide analysis and examples
of our algorithm under different settings of
missing data.

1 INTRODUCTION

In this work we demonstrate a generalization of Max-
imum Entropy Density Estimation that handles in-
complete data without having to perform imputation.
Most machine learning work requires rectangular data
matrices with fully observable values for all entries.
When applying machine learning to the real world,
we expect to have incomplete features. Often, data
collection machinery, whether human-operated or au-
tomated, simply cannot practically fill in every value.
It is therefore desirable to find ways to apply machine
learning to incomplete data. Furthermore, most ex-
isting methods of handling incomplete data attempt
to recover the values of the missing features. In our
method, we avoid the extra work and possible cascad-
ing errors involved in estimating the missing features
and directly address the main goal of density estima-
tion.
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1.1 PREVIOUS WORK

There is a large history of analysis of missing data in
classical statistics literature. Missing data has been
classified as one of three types (Little & Rubin, 1986).
Data is either missing completely at random (MCAR),
missing at random (MAR) or not missing at random
(NMAR). When data is MCAR, whether a data sam-
ple is missing any features is truly random, and is inde-
pendent of the values of any of the sample’s other fea-
tures. When data is MAR, whether a sample is miss-
ing a feature is dependent on one or more of the sam-
ple’s other observable features. When data is NMAR,
whether the data is missing a feature is dependent on
the value of features that may be missing (possibly
including the missing feature itself).

Statistical analysis of incomplete data typically re-
quires one of two options: ignore the data points with
any missing values or attempt to estimate the missing
values. Both of these approaches can be problematic.
Throwing out incomplete data is a drastic measure, be-
cause we are unable to make predictions about those
data nor are we able to learn from the features that
we do know. Estimating the missing values, or im-
putation, causes the learning algorithm to learn from
the estimated values. This is reasonable if we expect
to make good estimates of the missing values; the up-
per bound outcome of imputation is that we perfectly
reconstruct the unknown values. The lower bound,
however, is unclear, and largely depends on the impu-
tation method and the actual data.

Of the multitude of imputation methods, perhaps the
simplest is mean imputation. Mean imputation re-
places missing values with the mean of the observed
values. One of the more sophisticated methods is
the Gaussian Expectation-Maximization (EM) impu-
tation, which iterates between regressing based on a
Gaussian model of the data and fitting a new Gaussian
to the estimated data (Ghahramani & Jordan, 1994;
Schneider, 2001) until convergence to a local optimum.
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In practice, data often exhibit Gaussian-like proper-
ties, so this method is rather effective. Another effec-
tive method stemming from classical statistical anal-
ysis is multiple imputation (Little & Rubin, 1986), in
which data is imputed multiple times to create multi-
ple versions of the entire data set. From this, better
confidence bounds can be obtained than with single
imputation.

The algorithm we are extending is one based on the
Maximum Entropy Principle, which says to choose
the probability distribution with the most uncertainty,
or with the maximum entropy subject to what is
known. The natural language processing commu-
nity used the maxent algorithm without regularization
(Berger et al., 1996), but the regularized maximum
entropy approach for learning with presence-only data
was made popular in (Phillips et al., 2004). This work
featured the usage of maxent for predicting the habi-
tats of animal species. The regularization functions
have since been generalized (Dudik & Schapire, 2006).
In (Phillips et al., 2006; Phillips et al., 2004), the au-
thors had to omit many coastal and island areas from
their study due to those localities’ missing data from
one or more features. Specifically, one of the species
had twelve (of 128) observed sightings at these miss-
ing locations. They lost a significant amount of labeled
information due to the limitations induced by incom-
plete data.

As an aside, the labels in the presence-only framework
can also be considered missing data. The training la-
bels are the observable values of the feature “class”,
and every other example is missing that feature. Con-
sidering the problem in this setting it becomes nec-
essary to require that the missing “class feature” is
MCAR for maxent’s assumptions to hold. This is be-
cause maxent requires that the sampled data is drawn
i.i.d. to justify that the expected value of the features
will be close to the empirical means. If the samples be-
ing missing is dependent on the features themselves,
the empirical means of the labeled examples will be
different from the true expectations. This problem is
addressed in (Dudik et al., 2006) where it is described
as sample selection bias. Our work does not attempt
to solve this problem and assumes the labeled data is
iid.

Maximum margin classification of incomplete data
following similar principles to ours was studied in
(Chechik et al., 2008). The authors derive a formu-
lation for separable linear max-margin classification
where the unknown dimensions of the data points are
dropped from the hyperplane weights. They globally
optimize the separable case but the non-separable case
becomes non-convex.

1.2 SUMMARY

In Section 2, we first review the presence-only frame-
work and maximum entropy as a viable algorithm to
learn from presence-only data. Then we introduce our
extension to handle missing data, and derive an opti-
mization algorithm. In Section 3, we discuss the be-
havior of maxent with our extensions and compare to
imputation. In Section 4, we report the results of some
synthetic and six real data experiments. Finally we
conclude with a brief discussion in Section 5.

2 FRAMEWORK AND
ALGORITHM DERIVATION

In the presence-only data framework, we are given a
sample space X, a finite set of data points. From this
sample space, we are given a set of positive labeled
points {z1,...,Z;,}. We assume these labeled points
are drawn i.i.d. from some unknown target distribu-
tion 7w over x. To estimate this target distribution we
have a set of features {f; : x — R} for j € {1,...,n}
(Phillips et al., 2004)?.

The maxent solution to the presence only problem en-
tails defining an empirical distribution 7, which puts
% probability over all labeled points and zero prob-
ability on all other points in x. While this empirical
distribution 7 is likely to be different from the true
distribution 7, the expectations of the features over
7 should be close to those over m. We adopt the fol-
lowing notation for expectations: =[f;] = E:[f;] =
> wex (@) fi(x), where f;(x) is the value of feature j
for example .

The empirical means grow exponentially close to the
true expectations, so the maxent algorithm only con-
siders distributions whose expectations are close to the
empirical means. Of these distributions, the maximum
entropy principle suggests that we choose the distri-
bution that fits the constraints with highest entropy:
closest to uniform. Given ¢; regularization parameters
{B1,...,Bn}, (Dudik et al., 2004; Phillips et al., 2004)

max  — > p(z)lnp(z) (1)
{ZweXp(x) =1
L] = 71 < B, Vi€ {L,...,n}

So far, we have reviewed previous work on maxent. In
the next section, we describe our extension.

The labeled samples can also be considered points in
the positive class of a classification problem in which the
learning algorithm is not given the labels of the negative
class.
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2.1 INCOMPLETE DATA

In addition to the standard information given for max-
ent in the presence-only framework, we are given cer-
tain features for which we do not know the values. We
indicate missing values with

1
0j(r) = {0

Without loss of generality, we set all unknown values
to fj(z) = 0. Then we can compute empirical means
and expectations with incomplete data with

if f;(z) is known @)

if f;(z) is missing.

7lf;] = (zm: (2:)f; :v) <Z 7(x)0; :v)
(;nllpirical mean) B (3)

mlfil = (Zw(x)f;—(x))/<Zw(x)oj(x)>
JfJQ expectation) - (4)

plfil" = Zp(x)h(w))/(Zp(w)oj(x))
(etimated expectation) ®)

Note that if all feature values are known, the formulas
above are equivalent to the actual expectations. We
can rewrite the constraints of the objective using the
incomplete data formulation.

—> pla)np(z (6)

TEX

{zmp@
Iplf;] —7lfi)'1 < By, Vje{l,...,n}

max
p

2.2 DUAL FORM

The expectation constraints can be written to remove
the fractions. The original constraint is as follows:

plfi] =7l < B
|§:x€xp T ($)

> ey P(T)0j () ptE I

We multiply both sides by the denominator.

Y p@)fi@) = 7[f;]" Y p(w)o;(x)

TEX TEX

B> p(x)o;(x)

TEX

Since entropy is convex and our proposed constraints
are still linear, we solve the convex program using La-

grange multipliers as in (Phillips et al., 2004). Equa-
tion (6) corresponds to the following Lagrangian:

LT, A7, Xo,p) =
= T ey P@) I p(x) = Ao (e, p(@)—1)
+ 35 )(Zaex @) f5 (@) =715 ey p(2)0;(2))
+ 305 (A +A7)85 Zacy p(2)0j (). (8)

Only one of the constraints corresponding to /\;r and
A; will be active in the solution because the estimated
expectation cannot be both at the upper bound and
the lower bound, we can assume only )\j or )\j_, but
not both, must be nonzero. We introduce a change of
variable \; = /\;r — A;, then /\;r + A7 =N We
can then simplify the above Lagrangian (Dudik et al.,
2004).

L(p, ) = — .o p@np@)—ro(T,e, pl@)-1)+  (9)
SN (aey @) i (@) =R L] X pc\ p(@)0)(2))
+ 23251185 2Xaex P(@)0; (2)

This Lagrangian is concave with respect to p. We can

simply take the derivative and solve for p(z) analyti-
cally. Then the optimal p(z) is

p(x) = e [>\j(fj(w)—ff[fj]loj(w))ﬂ)\j\ﬁjoj(fﬂ)]—ko—ll
(10)
Plugging this solution back into L, we get
L(p,\) = (11)
o + e~ to—1 Z i N (f5(@)=71£3) 05 (2))+|A; 18505 (<)

TEX

Solving the derivative with respect to g gives the op-
timal setting of Ag:

o =1In (Z e Aj(fj(f)ﬁ'[fj]loj(z))H)\j|ﬁj0j($)> _ 1.
TEX

In other words, A\g corresponds to the log partition
function, \y = InZ — 1, and the optimal p given A is
the following Gibbs-like distribution:

1 Y

plx) = Eezj (A (F5 (@) =71 f] Oj(z))+|>\j|ﬁj0j($)]. (12)

Plugging the new Ao back into the objective gives us
Z

LN = X+ = =InZ

Finally, observing the monotonicity of the natural log,
the unconstrained optimization is

ZH X (fi(@)=#[f3) 05 () +IA;1B505 (x)

TEX J

man =
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This unconstrained objective is convex; it is a sum
of convex functions when the (3;’s are non-negative
(which is true in all sensible settings). To see that
the inner function is convex, we can write the absolute
value as a maximum of two inner functions who touch
at their minima, A; = 0:

H i (£5 (@) =7[f51 05 (x) ) +max(X; 8505 (), ~X;B;0; () (13)
J

Algorithm 1 Dual Maxent for Incomplete Data. The
inputs to the procedure are sample means 7[f;], regular-
ization parameters §;, features f;(x) and missingness indi-

cators oj(z), for j € {1,...,n}, x € x.
1: A; < 0,Vj
2: repeat
3: forijtoDd? .
T e
5: NS AT - %ﬁ/%{see Eq. (14), (15)}
6: if )\j > (0 then
7 )\j — /\;r
8: else if A\, <0 then
9: Aj— AL
10: elsé ’
11: )\j —0
12: end if
13:  end for

14: until Convergence
15: plx) = %ezj [ (fj(r)*fr[fk]’og'(x))ﬂkj\ﬁjOj(r)], Vi

2.3 OPTIMIZATION

Since we have an unconstrained convex program, there
are a multitude of methods to optimize the \’'s. We
choose to greedily minimize along one dimension at
a time using a Newton optimization. The first and
second derivatives with respect to one dimension at a
time are

§Z* Y
vl D (fi(@) = 7lf5) 05(x) + Bjoj(x)) (14)
% He(xk(fk(z)—ﬂfk]'om))mkmok(w))
k
27+
2 Y () - #llos(a) £ By () (15)

% He(xk(fk(z)—ﬂfk]'om))mkmok(w))
k

To account for the absolute value, we try both signs
of the above derivatives. The correct optimal A; will
be the same sign as the £ in the derivatives. If both
optima are the wrong sign, the function is optimal at

0 and we set A\; = 0. The algorithm is summarized in
Algorithm 1.

o 5Zi/522i
ToaN o

J

Aj = (16)

3 EFFECT OF MISSINGNESS ON
MEANS AND EXPECTATIONS

In the NMAR missingness setting, the true expecta-
tion of the data can be quite distant from the ob-
servable expectation. However, since the labels are
ii.d., the missingness affects the observable training
and testing expectations the same way. In this section
we explore this idea more formally.

Using the shorthand f(z) = {fi(x),..., fu(z)}, we
have a prior p(o;(z)) and a conditional distribution of
missingness p(o;(z)|f(z)) (which can be MCAR, MAR
or NMAR) then by Bayes Rule

p(oj ()| f(x))p(f(x))
p(oj(z)) '

When considering any single feature we can absorb the
probability of observing the feature into the probabil-
ity of that sample being selected?.

plfil" = <Zp(af)fj(x)>/(ZMI)%(%))

rEX rEX

= <Zp($|0j () f; (fﬂ) / (Zp(:rlog' (I)))

reEX rEX

p(f(2)loj(z)) = (17)

= ZP(IM‘ (z) = 1)fi(x) = Epao; (2)=1)L1]]

TEX

In other words, the expectations on which we im-
pose constraints are no longer over p(z), but in-
stead over the conditional probability p(z|o;(z)).
Compare to what happens with imputation. Let
gi(z|x, (f1,01),- .., (fn,0n)), which we write as g,(x)
for brevity, represent any imputation method invoked
when f;(z) is missing. That is, if f;(z) is missing, it
is replaced by g;(z).

plfy)” = Y p@)fi@)+ Y p)g;(@)
Oj?mG)XZI o

_ Bralo,@=nlfil | Eptalo,@)=0)195] as)

>, 0(@) > (1 —04(x))
Expectations after imputation can therefore be written
as the weighted sum of two expectations, one of which

0;j(z)=0

ZNote that because we assume our label distribution to
be dependent on the features, p(f(x)) and p(x) are practi-
cally equivalent and therefore interchangeable.
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Figure 1: Mean running time over 100 random trials. Left:
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Running time with respect to number of features (n). Middle:

Running time w.r.t. size of sample space |x|. Right: Running time w.r.t. both n and |x|.

Missing Mean (all) Mean (positive) EM
MCAR | -261.96 £ 3.04 -262.02 £ 2.99 -262.07 &£ 3.05 -262.04 &+ 3.05
MAR | -258.58 &+ 3.90 -258.70 + 3.88  -258.75 £ 4.01 -258.63 &+ 3.86
NMAR | -258.79 + 4.02 -259.05 + 4.01  -258.88 + 4.22  -259.04 + 4.00
Full -254.99 £ 3.30

Table 1: Average log-likelihoods of estimated density over synthetic data. The average log-likelihood of maxent on the
full data was -254.99 + 3.30. “Missing”, which is our method, scores the highest average likelihood.

is over the conditional distribution as in our formu-
lation. The second, however, is the expectation over
another conditional distribution of some new feature
g;, which, may perfectly reconstruct f;, thus restoring
the original expectation, or may be completely arbi-
trary.

In both cases, the missingness of the data forces us
to learn using the expectations of the actual features
over some altered distribution, but with imputation,
we may also be perturbing our view of the data with
the imputed features.

4 EXPERIMENTS

In this section, we present the procedures and results
from a few experiments designed to help understand
the behavior of our method. In Section 4.1, we test
the empirical running time of our optimization rou-
tine. In Section 4.2, we compare the out-of-sample
likelihood performance of our estimate to popular im-
putation methods on synthetic data sampled according
to each of the three missingness regimes. In Section
4.3, we compare performance between our method and
the cases of accurate imputation versus inaccurate im-
putation. Finally, in Section 4.4, we compare perfor-
mance of our method to imputation on real data with
real missingess patterns.

4.1 RUNNING TIME

We sampled random test data by drawing data points
from two random Gaussian distributions and labeling

only a subset of one Gaussian as present. To test the
running time of our algorithm, we sampled such data
sets of various sizes |x| and feature dimensionalities
n. We ran our optimization until the dual variables
changed less than 10~!2 total. Running the optimiza-
tion beyond this produced almost no change in the
solution. We ran these tests using MATLAB on a 2.4
Ghz Intel Core 2 Duo Apple Macintosh running Mac
OS X 10.5. The results are plotted in Figure 1.

There are many black-box non-linear optimization
methods, including standard packages that implement
conjugate gradient descent or Quasi-Newton optimiza-
tion, to solve our objective. However, extra care would
be necessary to properly implement the absolute val-
ues. We report our running time to demonstrate that
our optimization method is effective for practical us-
age.

4.2 MISSINGNESS TESTS

In this experiment we created synthetic presence-only
data following the assumptions from the framework.
We created 5000 synthetic data sets by drawing 200
data points uniformly from the [0, 1]*°. For each data
set, we randomly drew ten A values from a 0O-mean
normal distribution of variance 1 and a random mean
p € [0,1]*° computed a Gibbs distribution over the
data using p(z) = + exp(>_; Ai(fj — ny)). We then
drew 100 samples from p(x), labeled half of those pos-
itive and left the remaining 50 as testing points.

Next we created missing versions of these data sets for
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Figure 2: Average log-likelihood of our proposed method versus maxent with mean imputation as we vary the number

of points with missing values in the positive class. “Missing” is our method.

each of the three types of missingness. To synthesize
MCAR data, we randomly hid half of the entries in
the feature matrix. To synthesize MAR data, we se-
lected a random number of features to have missing
values, then sampled yet another Gibbs distribution
over the remaining features. We then drew points from
that distribution and hid features from those points.
Finally, to synthesize NMAR data, we sampled our
Gibbs parameters for the features we were going to
hide. Note that for the more interesting settings, MAR
and NMAR, the fraction of missing features varies be-
tween our sampled data sets.

We compare our method (“Missing”) to three standard
imputation strategies: two variants of mean imputa-
tion and Gaussian EM imputation. For mean imputa-
tion, we fill in the missing values with either the means
of the whole data set (“Mean (all)”) or the means
of only the labeled points (“Mean (positive)”). For
EM imputation we use the author’s code from (Schnei-
der, 2001). On each data set, we run four-fold cross-
validation to find the regularization term and evaluate
the highest scoring model on the out-of-sample test
points. We choose the regularization terms by sweep-
ing through a single normalized parameter 3 and set-
ting the individual tolerances for each feature accord-
ing to

std({Fij; Os5 > 0})
Ve ui0y

The results are listed in Table 1.

Bj =0

Even with such a large number of random data sets,
the differences in performance are small. In general, it
is difficult to predict which method will be the most
accurate since one of the imputation methods can al-
ways be fortunate enough to estimate fairly accurate
feature values or the imputation could be completely
wrong, allowing our method’s agnosticism about the
missing features to be the dominant strategy.

4.3 QUALITY OF IMPUTATION

To demonstrate the effect of quality of imputation on
performance, we compare the two mean imputation
methods to ours. If we impute to the mean of the
whole sample space, we treat every data point equally
during the imputation step; we ignore the labels. If
we impute to the mean of the labeled samples, we give
the data points with missing features the benefit of the
doubt. This means the points with missing values will
pull the expected value toward the empirical mean. In
addition, 7[f;] using labeled-mean imputation is equal
to [ f;] using our method. Therefore, it is tempting to
expect labeled-mean imputation to behave much like
our method.

In fact, the difference between our method and imput-
ing to the labeled mean is subtle but important. Equa-
tions (3) and (12) using labeled-mean imputed features
are exactly equal to our method, but the expectation
over the full sample space, Equation (5) and subse-
quent formulas derived using Equation (5) are differ-
ent. Points missing values will add constraints that
prefer high probability over those points with missing
values. One example scenario in which this is unde-
sirable is when few missing values occur in true high
probability points.

We created 500 data sets using the same sampling
method as in Section 4.2. For each data set, we hid
values randomly on 100 of the 200 samples, varying
the ratio of the number of positive samples that have
missing values. Since we always had 100 data points
with missing values, if k£ points were true positives and
contained missing values, 100 — k£ non-positive points
had missing features.

The log-likelihoods resulting from this experiment are
shown in Figure 2. When the positive class has more
missing values, mean imputation over the whole sam-
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Missing Mean (all)  Mean (positive) EM p(o) p(ylo)
bands -711.1+£2.9 —-711.5+£2.8 -710.8+2.7 —711.5+£2.8 | 0.92 0.87
CTX -991.0+3.2 -990.9+3.2 -991.0+3.2 -990.8+3.3 | 0.99 0.42
echo -57.2+1.1 —573+£1.1 -57.1+1.0 —574£1.0 | 092 0.32
hep -74.8+2.6 —75.4+25 —752£23 -75.1+£2.5 | 0.90 0.27
horse-colic | -299.3+2.9 —-300.1+2.9 —304.7+2.2 -299.6+2.7 | 0.66  0.38
house-votes | -555.1+2.8 -555.11+2.8 -555.1+2.5 -555.0+2.8 | 0.91 0.42

Table 2: Log-likelihoods of out-of-sample positive data. Best performance and those not significantly worse via a two-
sample t-test with a rejection threshold 5% in bold. Far right columns give a simple picture of missingness in data sets.
p(0) represents the proportion of data not missing, while p(pos.|o) represents the proportion of points with missing values

in the positive class. “Missing” is our method.

ple space scores the lowest likelihood while imputa-
tion to the labeled mean scores the highest likelihood.
Conversely, when the missing values are mostly in the
non-positive points, labeled-mean imputation scores
the lowest likelihood while sample-space-mean impu-
tation scores the highest. Our method, as any proper
agnostic algorithm should, scores safely in the middle
of these two high-energy imputation methods.

4.4 INCOMPLETE REAL DATA

To test the behavior of our method on real missing
data, we downloaded some of the popular data sets
from the UCI Machine Learning Repository (D. New-
man & Merz, 1998) that contain missing values. These
are classification data sets that we cast as presence-
only by hiding the class with smaller cardinality and
treating the larger class as the only “present” class.
Unfortunately most popular data sets are mostly com-
plete due to the fact that missing data is difficult to
handle. To exacerbate the natural missingness of these
data sets, we ignore the most complete half of the fea-
ture columns. The missingness in these experiments is
therefore real and occurs in varying proportions.

On 500 random splits of 50% training and 50% testing,
we evaluated the same four methods as the synthetic
case above, measuring the log-likelihood on the out-
of-sample test points given the model that scored the
highest on four-fold cross-validation. In general, our
method was competitive with the imputation methods.
More importantly, comparing to the best performing
method, ours is never significantly worse according to a
two sample t-test with a rejection threshold of 5%.The
average log-likelihoods and some basic statistics on the
missingness of each set are listed in Table 2.

5 DISCUSSION

We have proposed a natural generalization of maxent
for incomplete presence-only data. Our formulation
learns from all the features that are observable without

having to learn from imputed features. We keep track
of the missing values and use constraints based only on
the observable features. The resulting algorithm fol-
lows the principle of maximum entropy throughout the
learning process, while standard imputation methods
deviate from the principle when the imputed means
are assumed to be true.

Many problems cast as classification make sense in the
presence-only framework: for example, the many data
sets using “death” as a class label (such as the hep-
atitis data set). Since everything eventually dies, it is
reasonable to consider samples labeled “death” to be
samples from an underlying density instead of consid-
ering all samples, dead or alive, to be drawn from two
distinct classes.

We derived this paper’s extension to maxent out of
necessity. We work with proprietary data where our
goal is to predict faults in system components (anal-
ogous to “death”) and our data features are very in-
complete. Much of our missing data is due to lim-
itations in sensor technology and convenience of the
human effort necessary to take measurements. This
implies a strong change of NMAR missingness. It was
therefore unlikely that a simple MCAR method such as
mean imputation could produce accurate results. Con-
versely, sophisticated methods that may perform bet-
ter in the NMAR setting were impractical because our
data set was so large. We expect other machine learn-
ing practitioners have similar experiences, and these
data sets never become popular public benchmarks
because their incompleteness (or their presence-only
nature) make them seem infeasible for machine learn-
ing. New methods for elegantly handling incomplete
data may attract attention to these data sets.

One possible future direction can exploit the fact that
typical maxent applications employ various expanded
features. For features generated by a function over in-
dividual original features, such as threshold features,
our method translates directly. However, for fea-
tures generated by combining two dimensions, such
as quadratic features, it may be possible to precisely
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model the range of possible values of the induced fea-
tures when a subset of the original features are known.
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