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Abstract

We consider the task of dimensionality reduc-
tion for regression (DRR) informed by real-
valued multivariate labels. The problem is
often treated as a regression task where the
goal is to find a low dimensional represen-
tation of the input data that preserves the
statistical correlation with the targets. Re-
cently, Covariance Operator Inverse Regres-
sion (COIR) was proposed as an effective so-
lution that exploits the covariance structures
of both input and output. COIR addresses
known limitations of recent DRR techniques
and allows a closed-form solution without re-
sorting to explicit output space slicing of-
ten required by existing IR-based methods.
In this work we provide a unifying view of
COIR and other DRR techniques and relate
them to the popular supervised dimensional-
ity reduction methods including the canoni-
cal correlation analysis (CCA) and the linear
discriminant analysis (LDA). We then show
that COIR can be effectively extended to a
semi-supervised learning setting where many
of the input points lack their corresponding
multivariate targets. A study of benefits of
proposed approaches is presented on several
important regression problems in both fully-
supervised and semi-supervised settings.

1 Introduction

Dimensionality reduction is a basic problem in mod-
ern machine learning, driven by applications such as
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the data visualization and compression. A large liter-
ature on dimension reduction is devoted to the unsu-
pervised setting where one is given a set of data sam-
ples alone. Within this setting, discovering a low di-
mensional structure of the data can be accomplished
by either extracting a global statistical information
(e.g., PCA) or exploiting the geometric nature of data
(e.g., LLE (Roweis and Saul, 2000), ISOMAP (Tenen-
baum et al., 2000)). In the supervised setting, on the
other hand, data is accompanied with additional la-
bel information that guides the formation of the low-
dimensional embedded space. The labels often take
discrete class values, indicating which data points have
to be grouped together or far apart from one another
in the embedded space. This class-labeled supervised
dimension reduction framework, sometimes referred to
as metric learning, has received considerable attention
in the community. The well-known (kernel) Linear
Discriminant Analysis and its generalizations (Glober-
son and Roweis, 2005; Weinberger et al., 2005) are
some examples of this framework.

In certain situations, however, grouping data into a
finite number of classes may be inappropriate. In
many applications is reasonable to regard the label as
a smoothly varying response (of the underlying phe-
nomenon) in a real-valued multivariate domain. Ex-
isting class-labeled techniques may not be well suited
for this setting. Instead, one can treat the problem
in a regression framework where the targets (output
responses) are regressed from data points (input co-
variates). In such a setting the task of dimension
reduction, termed dimension reduction for regression
(DRR), is formally defined as finding a low dimen-
sional representation z ∈ Rq of the input x ∈ Rp
(q � p) for regressing the output y ∈ Rd. DRR is
well-suited for visualization of high-dim data, efficient
regressor design with a reduced input dimension, and
eliminating noise in data x through uncovering the es-
sential information z for predicting y.

A crucial notion related to DRR is the sufficiency in
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dimension reduction (SDR) (Cook, 1998; Fukumizu
et al., 2004; Li, 1991). Formally, SDR states that find-
ing the low-dimensional representation is equivalent
to recovering the subspace bases (or basis functions in
a nonlinear case) B = [b1, . . . ,bq] such that y and
x are conditionally independent given z = B>x, i.e.,
y ⊥ x | z. This, in turn, implies that the dimension re-
duction is achieved with no loss of information for the
purpose of predicting y from x. A (minimal) subspace
with this property is called the central subspace1.

A number of methods originating in the statistics
community have tackled the task of recovering the
central subspace. The kernel dimension reduction
(KDR) (Fukumizu et al., 2004) and the manifold KDR
(mKDR) (Nilsson et al., 2007) directly reduces the
task of imposing conditional independence to the opti-
mization problem of minimizing the conditional covari-
ance operator in RKHS (reproducing kernel Hilbert
space). However, both methods introduce non-convex
objectives, potentially suffering from existence of lo-
cal minima. Alternatively, the inverse regression (IR)
approach (Li, 1991) exploits the fact that the inverse
regression E[x|y] can lie on the central subspace, lead-
ing to the possibility of estimating B (bases for the
central subspace) from the slice-driven covariance es-
timates of the IR, the Sliced IR (SIR). While its kernel
extension, KSIR (Wu, 2006), overcomes the linearity
of SIR its performance may still suffer from the need
to slice y, which is suboptimal and can be unreliable
for high dimensional outputs.

Covariance Operator Inverse Regression (COIR), a
nonlinear method for DRR that jointly exploits the
covariance structure of both input and output while
preserving the input-output dependency, was recently
proposed in (Kim and Pavlovic, 2008). COIR avoids
explicit slicing of targets through an effective use of
the covariance operators in RKHS. (Kim and Pavlovic,
2008) showed that COIR generalizes KSIR and allows
a closed-form solution to the nonlinear central sub-
space estimation problem. In this paper we further
study the properties of COIR and present a unifying
view of COIR and other DRR techniques. We demon-
strate that despite the apparent difference in their mo-
tivating tasks, the central subspace of COIR is iden-
tical to those recovered by KCCA (Hardoon et al.,
2004), the kernelized canonical correlation analysis,
and a generalization of the linear discriminant analysis
(LDA), a method traditionally framed in classification
settings.

We also extend the COIR framework to a semi-
supervised setting, making it feasible to use large sub-
sets of unlabeled data points in conjunction with a

1Although a subspace is usually meant for a linear case,
we abuse it for referring to both linear and nonlinear cases.

few labeled data. We follow the manifold regulariza-
tion of (Belkin et al., 2005; Zhu et al., 2003) to affect
the underlying geometry of the central subspace In ad-
dition, we introduce a nonlinear extension that admits
arbitrary output kernel functions.

The paper is organized as follows. In Sec. 2 we briefly
review related DRR approaches: KDR/mKDR and
SIR/KSIR. We present COIR in Sec. 3, and establish
a unifying relationship among different DRR meth-
ods in Sec. 4. We then discuss semi-supervised ex-
tensions of COIR in Sec. 5. In Sec. 6 the benefits of
the proposed approaches are demonstrated on several
regression problems in both fully-supervised and semi-
supervised settings, followed by conclusion in Sec. 7.

2 Previous Approaches

Throughout the paper (except Sec. 5), we assume fully
labeled data {(xi ∈ Rp,yi ∈ Rd)}ni=1, n i.i.d. samples
from the (unknown) distribution P (x,y). All expec-
tations and (co)variances that appear in the paper are
w.r.t. P (x,y). We assume that the data points are
centered at 0 without loss of generality.

2.1 Kernel Dimensionality Reduction

The kernel dimensionality reduction (KDR) (Fuku-
mizu et al., 2004) finds a q-dimensional linear embed-
ding matrix B = [b1, . . . ,bq] (bl ∈ Rp for l = 1, . . . , q)
by directly reducing the SDR criterion (i.e., the task
of imposing y ⊥ x | z = B>x) to an optimization
problem. The main idea is to quantify the notion
of conditional dependency by a positive definite or-
dering of the expected covariance operators in what
is called the probability-determining RKHS (e.g., the
Hilbert space induced by the RBF kernel). More
specifically, for two RKHS mappings, y→ φ(y) ∈ Hy

and x → φ(x) ∈ Hx induced by RBF kernels ky(·, ·)
and kx(·, ·), respectively, we have the following theo-
rem (Fukumizu et al., 2004):

Theorem 1. E[V(φ(y)|x)] � E[V(φ(y)|B>x)], where
the equality holds if and only if y ⊥ x | z = B>x.

In KDR we minimize E[V(φ(y)|z = B>x)], the uncer-
tainty in predicting y from z, which can be formulated
as the following optimization problem:

min
B

tr
[
Ky(Kz + nεIn)−1

]
s.t. B>B = Iq, (1)

where Ky and Kz are (n× n) (centered) kernel Gram
matrices computed over {yi}ni=1 and {zi = B>xi}ni=1,
respectively. Ia is the (a × a) identity matrix, and ε
is a kernel regularizer. Although KDR does not as-
sume any particular restriction on the underlying dis-
tribution P (x,y), the optimization of Eq.(1) is non-
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convex, resorting to computationally demanding gra-
dient search (every step requires inversion of Gram
matrices). Moreover, despite its formulation in RKHS,
KDR’s final embedding is linear in the original space.

For a nonlinear extension of KDR, the manifold KDR
(mKDR) has been proposed (Nilsson et al., 2007). It
first learns m-dimensional nonlinear manifold maps
{ti}ni=1 for the input data {xi}ni=1 (e.g., by the Lapla-
cian Eigenmap (Belkin and Niyogi, 2003)). Then KDR
is applied to the learned (nonlinear) manifold. Even
though it generalizes KDR to the input space that lives
in a nonlinear manifold, mKDR introduces a tight cou-
pling between the central subspace and the separately
learned input manifold, which restricts its applicabil-
ity to transductive settings. Like KDR, mKDR still
involves a non-convex optimization, potentially suffer-
ing from existence of local minima.

2.2 Inverse Regression

Inverse Regression (IR) is another interesting frame-
work for DRR. The following theorem (Li, 1991) plays
a crucial role in the IR framework.

Theorem 2. If (i) there exists a q-dim central sub-
space with bases B = [b1, . . . ,bq], i.e., y⊥x|B>x,
and (ii) for any a ∈ Rp, E[a>x|B>x] is linear in
{b>l x}ql=1, then E[x|y] lie on the subspace spanned by
{Σxxbl}ql=1, where Σxx is the covariance of x.

From Thm.2, B can be obtained from q principal di-
rections of E[x|y]. That is, the column vectors of B
coincide with the q largest eigenvectors of V(E[x|y]),
pre-multiplied by Σ−1

xx . Given the data, (Li, 1991)
suggests to slice down (cluster) y so as to compute
the sample estimate of V(E[x|y]), thus named Sliced
Inverse Regression (SIR). More specifically, after clus-
tering {yi}ni=1 into J slices, S1, . . . , SJ , and computing
slicewise data means, mj = 1

|Sj |
∑
i∈Sj

xi, to approxi-
mate E[x|y ∈ Sj ], the sample estimate is

∑
j pjmjm>j ,

where pj = |Sj |/n is the j-th slice proportion.

It is known that the condition (ii) in Thm.2 equiv-
alently imposes an elliptically-symmetric distribution
(e.g., a Gaussian) of x. In fact, SIR makes two as-
sumptions: the linearity of the central subspace and
the elliptical-symmetry of the marginal distribution of
x. These assumptions can be strong in certain situa-
tions, leading to SIR’s failure if the conditions are not
met. To relax the restrictions, (Wu, 2006) has sug-
gested a fairly straightforward kernel extension of SIR
(called KSIR) via the RKHS mapping x→ φ(x) ∈ Hx.

Letting Φx = [φ(x1), . . . ,φ(xn)] and C be the (n×J)
0/1 cluster indicator matrix whose i-th row has all 0’s
but 1 at the j-th position for i ∈ Sj , KSIR estimates

the central subspace comprised of the basis functions:

b = Φxβ, (2)

where β = [β1, . . . , βn]> is the solution2 to:

1
n2

CP−1C>K2
xβ = λKxβ. (3)

Here, Kx = Φ>x Φx is the (n × n) Gram matrix, and
P = diag(p1, . . . , pJ) is the (J × J) diagonal matrix
whose entries are the column sums of C, the propor-
tions pj = nj/n of points in Sj (nj = |Sj |).

KSIR allows a nonlinear central subspace with less re-
striction on the marginal distribution for x. However,
KSIR’s slicing-based estimation of V(E[φ(x)|y]) would
be unreliable for high-dim y, which restricts KSIR to
single-output (d = 1) regression or classification set-
tings only (Wu, 2006). Below, we look into an alterna-
tive estimation method that avoids slicing by exploit-
ing the kernel matrices of both input and output.

3 Covariance Operator IR (COIR)

COIR (Kim and Pavlovic, 2008) avoids explicit output
space slicing by estimating V(E[φ(x)|y]) using the co-
variance operator theorems (Baker, 1973; Fukumizu
et al., 2004). Let Σxx, Σyy, Σxy, and Σyx be the
covariance operators3 in and between the correspond-
ing RKHSes of x and y. (Kim and Pavlovic, 2008)
showed that the covariance of the inverse regression
V(E[φ(x)|y]) can be expressed as:

V(E[φ(x)|y]) = ΣxyΣ−1
yyΣyx. (4)

Given the data {(xi,yi)}ni=1, the sample estimate
of Eq.(4), can be written as V̂(E[φ(x)|y]) =
Σ̂xyΣ̂−1

yyΣ̂yx, The sample covariance operators (Σ̂)
can be estimated in a similar manner as the sample co-
variance matrices. E.g., Σ̂xy = 1

nΦxΦ>y , where Φx =
[φ(x1), . . . ,φ(xn)] and Φy = [φ(y1), . . . ,φ(yn)].
Then V̂(E[φ(x)|y]) is:

(
1
n

ΦxΦ>y )(
1
n

(ΦyΦ>y + nεI))−1(
1
n

ΦyΦ>x )

=
1
n

ΦxΦ>y Φy(Φ>y Φy + nεIn)−1Φ>x

=
1
n

ΦxKy(Ky + nεIn)−1Φ>x .

Here I is the (dim(Hy)× dim(Hy)) identity operator,
and In is the (n×n) identity matrix. A small positive

2We take q largest eigenvectors for q basis functions.
3The RKHS extension of the covariance matrix. For

instance, Σyx is defined as follows: For ∀g ∈ Hy and ∀f ∈
Hx, 〈g, Σyxf〉 = E[(g(y)− Eg(y))(f(x)− Ef(x))].
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ε was added to the diagonal entries of ΦyΦ>y to cir-
cumvent potential rank deficiency in estimating Σyy

and its inverse. ε plays an important role as a kernel
regularizer in smoothing the affinity structure of y. Fi-
nally, using the kernel trick similar to that of kernel
PCA (Schölkopf et al., 1998), it is easy to show that
finding β corresponds to solving the eigensystem,

1
n

Ky(Ky + nεIn)−1K2
xβ = λKxβ. (5)

Given β’s, COIR’s central subspace basis functions can
be obtained from Eq.(2).

As a consequence, COIR has a closed-form solution
(Eq.(5)) to the nonlinear central subspace, and makes
few assumptions on the input distribution due to the
nonlinear RKHS feature mapping. It also removes a
potential risk of being caught at locally optimal solu-
tions, the critical drawback of KDR/mKDR. In par-
ticular, COIR is a general case of KSIR (see (Kim and
Pavlovic, 2008) and Sec. 4.1) where the explicit slic-
ing is incorporated in a smooth output kernel. This
makes COIR not only handle high dimensional out-
put reliably, but also robust to potential noise in the
output data. We next discuss important theoretical re-
sults that relate COIR to other supervised dimension
reduction methods.

4 Relation to SIR, CCA, and LDA

In this section, we show that COIR generalizes the
slice-driven IR techniques SIR/KSIR. Then we further
investigate a relationship between COIR and other su-
pervised dimensionality reduction techniques, namely
CCA (canonical correlation analysis) and LDA (linear
discriminant analysis). Despite apparent difference in
motivating tasks, COIR’s notion of SDR (sufficiency
in dimension reduction) shares the main intuition with
CCA which aims at dimensionality reduction based on
input/output correlation. Indeed, we prove that COIR
and the kernelized CCA (KCCA) are equivalent, yield-
ing the same central subspace. Furthermore, we show
that both COIR and KCCA can be identically de-
rived from a generalization of kernelized LDA (KLDA)
which extends traditional LDA’s discrete (class) target
space to a real multivariate domain.

4.1 KSIR as a special case of COIR

The equivalence between KSIR (Eq.(3)) and COIR
(Eq.(5)) can be made, as in (Kim and Pavlovic, 2008),
by setting:

Ky(Ky + nεIn)−1 =
1
n

CP−1C>. (6)

Consider an ideal case where the output data {yi}ni=1

are collapsed to J distinct points that are infinitely

far apart from one another4. We show that under this
ideal case, Eq.(6) is indeed true when ε→ 0.

Assuming an RBF kernel, Ky becomes a 0/1 block
diagonal matrix, namely Ky = diag(E|S1|, . . . ,E|SJ |),
where Em denotes the (m × m) matrix with all 1’s.
Then it is easy to see that Ky(Ky + nεIn)−1 =
diag(c1E|S1|, . . . , cJE|SJ |), where cj = 1

|Sj |+nε . Also,
1
nCP−1C> = diag( 1

np1
E|S1|, . . . ,

1
npJ

E|SJ |), which re-
duces Eq.(6) to:

|Sj |+ nε = npj , for j = 1, . . . , J. (7)

As ε → 0, Eq.(7) implies that pj = |Sj |/n, which is
exactly the maximum likelihood (ML) estimate of the
cluster proportion employed by KSIR. That is, KSIR
is a special case of COIR having 0/1 Gram matrix Ky

(from the assumed J-collapsed perfect clustering) with
a vanishing ε. For a non-negligible ε, the equivalence
turns into pj = |Sj |/n+ε, where ε now serves as a reg-
ularizer (or a smoothing prior) in the ML estimation.
For a general (non-0/1) kernel matrix Ky, COIR can
be naturally viewed as a smoothed extension of KSIR.
Hence, COIR exploits the kernel structure of the out-
put space through an effective use of covariance oper-
ators in RKHS, where ε acts as a kernel regularizer.

4.2 COIR and Kernel CCA

For two random vectors x ∈ Rp and y ∈ Rd, CCA
finds embeddings w ∈ Rp and u ∈ Rd such that
Corr(w>x,u>y) is maximized. This reduces to solv-
ing the eigensystem:

ΣxyΣ−1
yyΣyxw = λΣxxw. (8)

CCA can be easily extended to a nonlinear setting,
called the kernel CCA (KCCA) (Hardoon et al., 2004),
using feature (Hilbert) space mappings on both input
and output, x→ φ(x) ∈ Hx and y→ φ(y) ∈ Hy.

From Eq.(4), it is not difficult to see that COIR’s cen-
tral subspace basis functions b can be obtained from:

ΣxyΣ−1
yyΣyxΣxxb = ηΣxxb. (9)

Although the equivalence between KCCA and COIR is
not immediately obvious from Eq.(8) and Eq.(9), we
prove that they indeed give rise to the same central
subspace. We first introduce the following lemma on
generalized eigensystems. The proof is rather straight-
forward using the spectral decomposition theorem,
and skipped due to the space limit.

Lemma 3. For two (p×p) symmetric PSD matrices V
and R, where R is invertible, let {(λj ,wj)}pj=1 be the

4Without loss of generality, we assume the data points
are arranged according to their cluster indices.
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eigenvalue/vector pairs of the generalized eigensystem
Vw = λRw. Then V = RWΛW>R, where Λ =
diag(λ1, . . . , λp) and W = [w1, . . . ,wp].

By denoting ΣxyΣ−1
yyΣyx in the KCCA eigensystem

(Eq.(8)) as V in Lemma 3, we have:

V = ΣxxWΛW>Σxx, (10)

where W = [w1, . . . ,wp] has the eigenvectors of
Eq.(8) as its column vectors. Similarly, from the
COIR eigensystem (Eq.(9)), letting u = Σxxb and
U = [u1, . . . ,up] (= ΣxxB) yields:

V = UHU> = ΣxxBHB>Σxx, (11)

where B = [b1, . . . ,bp] and H = diag(η1, . . . , ηp)
are the eigenvectors and eigenvalues of Eq.(9), respec-
tively. Hence, the following relationship holds:

WΛW> = BHB>. (12)

Let q1 and q2 be the numbers of non-zero eigenvalues
for Eq.(8) and Eq.(9), respectively. We denote the
non-zero eigenvalue/vector pairs by {(λj ,wj)}q1j=1 for
Eq.(8), and {(ηj ,bj)}q2j=1 for Eq.(9). Then we will
show that {w1, . . . ,wq1} and {b1, . . . ,bq2} span the
same (central) subspace (so, q1 = q2 automatically
follows), which would complete the proof.

For any a ∈ Rp orthogonal to wj for all j = 1, . . . , q1,
0 = a>WΛW>a = a>BHB>a =

∑q2
j=1 ηj(b

>
j a)2,

which implies that a is also orthogonal to bj for all
j = 1, . . . , q2. Since the other direction also trivially
holds, they share the same orthogonal subspace and,
hence, the same subspace.

4.3 COIR and Generalized Kernel LDA

The Linear Discriminant Analysis (LDA) finds a linear
embedding direction w ∈ Rp for the input x ∈ Rp that
maximizes the between-class scatter (SB), and at the
same time, minimizes the within-class scatter (SW ),
that is, maxw

w>SBw
w>SW w

. This reduces to solving the
generalized eigensystem: SBw = λSWw.

Although LDA assumes a discrete class label y, it
is possible to extend it to a real-multivariate la-
bel (Barker and Rayens, 2003). The extension gen-
eralizes the notion of between/within-class scatter,
namely SB = V(E[x|y]) and SW = E[V(x|y)]. We
denote this the generalized LDA. It is easy to see that
the standard LDA (with discrete labels) is a special
case since V(E[x|y]) =

∑
c
nc

n (xc − x)(xc − x)> and
E[V(x|y)] = 1

n

∑
c

∑
i∈c(xi − xc)(xi − xc)>, where n

(nc) and x (xc) are the (class-wise) cardinality and
data mean, respectively.

The kernelization of the generalized LDA (KLDA) is
also fairly straightforward. Using the E-V-V-E iden-
tity, the generalized KLDA entails the eigensystem:

V(E[φ(x)|y])w = λV(φ(x))w, (13)

which simply turns into Eq.(8), meaning that the gen-
eralized KLDA is equivalent to KCCA (and COIR).

5 Semi-Supervised Extension of COIR

In the semi-supervised setting, we are given the la-
beled data L = {(x1,y1), . . . , (xl,yl)} and the unla-
beled data U = {xl+1, . . . ,xn}. The unlabeled data
can be exploited to estimate the unknown entries of
the output kernel matrix, Ky(i, j) for i ∈ {l+1, . . . , n}
and/or j ∈ {l + 1, . . . , n}. Once we have Ky, we can
readily find the COIR central subspace from Eq.(5).

We extend the manifold regularization (Zhu et al.,
2003; Belkin et al., 2005), a semi-supervised regression
framework that propagates labels along the manifold
whose structure is discovered from both labeled and
unlabeled data points. Admitting an RKHS mapping
in the y space (i.e., y → φ(y) ∈ Hy), we minimize
the kernel-weighted L2 difference in the output feature
space, namely tr(KyLx) = 1

2

∑
i,j kx(xi,xj)||φ(yi) −

φ(yj)||2Hy
, an objective similar to the one used in man-

ifold regularization. Here, Lx is the graph Laplacian
of the input data (e.g., Lx = Dx − Kx, where Dx

is the diagonal matrix having row sums of Kx in its
entries). We estimate Ky by solving:

minKy�0 tr(KyLx),
s.t. Ky(i, j) = ky(yi,yj), 1 ≤ i, j ≤ l. (14)

Eq.(14) is an instance of semidefinite programs that
can be solved by general SDP solvers. Note that the
manifold regularization is a special case of Eq.(14) with
a linear output kernel Ky = YY>, where we general-
ize it to an arbitrary nonlinear output kernel.

6 Evaluation

We evaluate the performance of different DRR meth-
ods on synthetic and real data for both fully- and
semi-supervised settings. We highlight COIR’s reli-
ability in estimating a central subspace compared to
the previous IR techniques based on output slicing
(i.e., SIR/KSIR). We also contrast it with the non-
convex KDR/mKDR. We finally show how the semi-
supervised COIR (denoted by SS-COIR) discussed in
Sec. 5 can benefit from unlabeled data when data are
partially labeled. For baseline comparison, we often
demonstrate the results of unsupervised dimension re-
duction techniques such as PCA, kernel PCA (KPCA),
and LLE (Roweis and Saul, 2000).
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Figure 1: 2D subspace embeddings for Noisy Curves.

Unless stated otherwise, the kernel-based methods
(i.e., KDR, mKDR, KSIR, and COIR) employ the
RBF kernel. In mKDR, the (Laplacian Eigenmap)
manifold map of a test point is estimated by a near-
est neighbor search in train data. We use k-means for
output slicing in SIR/KSIR. Model parameters such
as the RBF kernel width, #slices in (K)SIR, and the
manifold dimension in mKDR, are estimated by cross
validation.

6.1 Synthetic Noisy Curves

The dataset called curves (Wu, 2006) is generated from
the equation, y = sign(b>1 x + ε1) · log(|b>2 x + a0 +
ε2|) for some b1,b2 ∈ R15, x ∼ N (0, I15), ε1, ε2 ∼
N (0, 1), and a constant a0. The input is 15-dim, but
the central subspace is at most 2-dim as y is decided by
{b>l x}2l=1. To simulate the noisy nature of real-world
data, we additionally introduce 4 Gaussian white noise
dimensions to the label y (5-dim in total). The task is
to reduce the 15-dim x to 2-dim.

Fig. 1 shows the dimension-reduced input spaces es-
timated by the competing methods. To visualize the
goodness of data layout, each point is colored by its
true (noise-removed) y value: higher as warmer (red-
dish) and lower as cooler (bluish). Note that the ad-
joining points in highly different colors would signif-
icantly increase uncertainty in estimating predictors
based on the dimension-reduced input data. Although
two linear embeddings, KDR and SIR, yield similar
data layouts that look well separated, some points
with highly different output values (blue and red) ad-
join one another too closely. In mKDR, data points
are overall intermingled, probably due to the manifold
learning on the isotropic Gaussian input data that can
cause severe information loss for regression. In KSIR,
we see several separated clusters, each of which con-
tains data points mixed with different output values.
This can be attributed to the slicing (clustering) error
due to the noise in the output. On the other hand,
COIR lays out data along the output values smoothly
and discriminatively from blue/left to red/right. The

t=56 t=62 t=68 t=73 t=85 t=97 t=105 t=110 t=120

Figure 2: Example 3D human body poses (depicted as
skeletons) and silhouette images for walking motion.

Table 1: Test errors for human body pose estimation.

Input
COIR

mKDR KSIR
KPCA

x
Space (KDR) (SIR) itself

NN
6.178

8.068 8.351
8.659 6.515

Regr. (8.277) (8.496)

GP
5.863

7.204 7.311
8.083 5.954

Regr. (7.456) (7.554)

unsupervised PCA, KPCA, and LLE produce random
clutters since they ignore labels and simply project the
isotropic Gaussian data onto a 2D plane.

6.2 Human Body Pose Estimation

We consider a regression problem to estimate the hu-
man body pose from a silhouette image. The task is
particularly interesting for the supervised dimension
reduction techniques as we may expect to find a more
accurate intrinsic low-dim subspace of the human fig-
ure, guided by the pose information. We use the se-
quence of walking motion (about 3 walking cycles) ob-
tained from the CMU motion capture database5. The
output y is composed of 59 3D joint angles at 31 artic-
ulation points of the body. The input x is the silhou-
ette image of size (160×100), i.e., a 16000-dim vector,
taken at a side view (Fig. 2).

The first 80% frames of the sequence are used for
training, and the rest for testing. The central sub-
space dimension is set to 2, the widely believed mani-
fold dimension for the walking motion. Once the sub-
spaces are learned, we conduct regression estimation
using the dimension-reduced data as input. We em-
ploy two most popular regression methods: the nearest
neighbor (NN) and the Gaussian Process (GP) regres-
sion (Williams and Rasmussen, 1996). Table 1 shows
the test errors. Unlike other approaches, COIR rarely
entails information loss in terms of pose prediction (the
performance is even slightly better than that based on
the silhouette image x itself as input), while achieving
significant reduction of the data dimensionality.

6.3 Scratched USPS Digit Image Denoising

To test the behavior of COIR on high-dim output
data we devise an image denoising experiment with
the USPS hand-written digit images (LeCun et al.,

5http://mocap.cs.cmu.edu.



         286

Kim and Pavlovic

(a)
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(g)

(h)

(i)

Figure 3: NN prediction examples for USPS test im-
ages. (a) Noise-free target images (y), (b) Scratched
input images (x), (c) NN prediction on COIR sub-
space, (d) KDR, (e) mKDR, (f) SIR, (g) KSIR, (h)
LLE, and (i) NN on x itself.

Table 2: Test errors for USPS image denoising.

Input
COIR

mKDR KSIR
LLE

x
Space (KDR) (SIR) itself

NN
8.533

9.375 11.491
11.275 9.361

Regr. (9.133) (10.962)

GP
8.145

9.132 10.726
10.792 9.104

Regr. (9.031) (10.614)

1989). By adding random scratch lines with varying
thickness and orientation on the normalized (16× 16)
digit images, the task is to denoise the corrupted im-
ages. The regression problem is to predict the original
unscratched image (output y) from the scratched in-
put (x). Both y and x are of 256-dim.

From the USPS database, we use 2000 images for
training and other 2000 images for testing. The central
subspace dimension is chosen as 30. The test recon-
struction (denoising) RMS errors are shown in Table 2,
while some of the denoised test images by the NN re-
gression are depicted in Fig. 3. We see that COIR
outperforms non-convex KDR/mKDR which can eas-
ily get caught at local optima. Moreover, COIR is ro-
bust to noise with improved prediction accuracy com-
pared to the regression based on the image input itself.
SIR/KSIR again suffer from unreliable slicing-based
estimation in the high-dim output space.

6.4 Head Pose Estimation

The dataset6 consists of about 700 face images of size
(64 × 64), rendered from different views with varying
lighting direction. The relevant regression task is to
predict a 2D pose (horizontal and vertical rotation an-
gles) from a 4096-dim image. We randomly partition
the data into train/test sets with equal sizes. Fig. 4(a)
shows the projection of test images onto a 2D central
subspace estimated by COIR on the fully-labeled train
data. For visualization, each point is colored by the

6http://isomap.stanford.edu/datasets.html.
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Figure 4: COIR subspaces for head pose estimation.

Table 3: Test errors for head pose estimation.

Fully-Supervised

COIR mKDR KSIR

0.263 0.380 0.575

10% Labeled

SS-COIR COIR

0.418 1.294

true label (i.e., horizontal and vertical poses). We see
that COIR lays out the data points along the head
pose quite obviously, where X and Y axes roughly cor-
respond to horizontal and vertical angles, respectively.

Then we form a semi-supervised setting by revealing
the labels of only 10% of the train data which are
randomly chosen. We compare the central subspace
estimated by our semi-supervised COIR (SS-COIR)
(Fig. 4(b)) with that trained on the labeled data only
(Fig. 4(c)). As shown, the semi-supervised COIR dis-
covers a well-discriminated central subspace similar to
the fully-labeled case, while using only a small number
of labeled data makes it severely mixed. We also es-
timate a linear regressor using the dimension-reduced
input data. The test errors are shown in Table 3.

6.5 Temperature Map

We test on the globe temperature data obtained from
the satellite measurement of temperatures in the mid-
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Figure 5: (Temperature Map) Prediction by linear regression trained on different embedded spaces.

Table 4: (Temperature Map) Test errors.

Fully-Supervised

COIR
mKDR KSIR

(KDR) (SIR)

1.080
2.578 1.287

(8.0733) (8.0732)

Semi-Supervised

SS-COIR COIR

(20%/10%) (20%/10%)

1.145 / 3.008 /

2.417 8.858

dle troposphere (http://www.remss.com/). We take
the map of Dec. 2004 (Fig. 5(a)), which was also used
in (Nilsson et al., 2007). The map is a (72 × 144)
matrix, where each element has a temperature (in K)
at its position (latitude, longitude). We consider the
regression problem with y = temp. and x = (lat-
itude,longitude). We randomly split the data into
60%/40% train/test sets. In the fully-supervised set-
ting, as shown in Fig. 5(b), the prediction by linear re-
gression using nonlinear embeddings (mKDR, KSIR,
and COIR) is good. On the other hand, the linear
embeddings (KDR and SIR) fail due to the nonlinear
ellipsoidal manifold structure of the input space. See
also Table 4 for the test errors by linear regression.

In the semi-supervised setting, we randomly choose
subsets of the train data with two different sizes (20%
and 10% of the train data), where only their labels
are used. As shown in Fig. 5(c) and 5(d), SS-COIR
exhibits prediction results almost similar to the fully-
supervised case (distorted a bit for 10% labeled case).
However, when we use only the labeled data, the pre-
diction results are much worse. Table 4 quantitatively
demonstrates this as well.

7 Conclusion

In this work we presented a unifying view of COIR and
other DRR techniques while relating them to CCA and
LDA, traditionally formulated in discrete label out-
put spaces. We also derived an extension of COIR to
a semi-supervised setting, which allows the family of
central subspace regression methods to effectively han-
dle large datasets with partially known targets. Exper-
iments on several synthetic and real datasets compared
different related methods, and showed that COIR and
its semi-supervised extension outperform competing
DRR methods.
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