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Abstract

The Nystdm method is an efficient technique
to generate low-rank matrix approximations and
is used in several large-scale learning applica-
tions. A key aspect of this method is the dis-
tribution according to which columns are sam-
pled from the original matrix. In this work, we
present an analysis of different sampling tech-
niques for the Nystim method. Our analysis
includes both empirical and theoretical compo-
nents. We first present novel experiments with
several real world datasets, comparing the perfor-
mance of the Nystim method when used with
uniform versus non-uniform sampling distribu-
tions. Our results suggest that uniform sam-
pling without replacement, in addition to being
more efficient both in time and space, produces
more effective approximations. This motivates
the theoretical part of our analysis which gives
the first performance bounds for the Nystir
method precisely when used with uniform sam-
pling without replacement.
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can be in the order of tens of thousands to millions, leading
to difficulty in operating on, or even storing the matrix.

An attractive solution to this problem involves using the
Nystrdm method to generate a low-rank approximation of
the original matrix from a subset of its columns (Williams
and Seeger, 2000). A key aspect of the Nipstrmethod is
the distribution according to which the columns are sam-
pled. This method was first introduced to the machine
learning community (Williams and Seeger, 2000) using
uniform sampling without replacement, and this remains
the sampling method most commonly used in practice (de
Silva and Tenenbaum, 2002; Fowlkesal., 2004; Platt,
2003; Talwalkaret al., 2008). More recently, the Ny$m
method has been theoretically analyzed assuming a non-
uniform sampling of the columns: Drineas and Mahoney
(2005) provided bounds for the Ny8tn approximation
while sampling with replacement from a distribution with
weights proportional to the diagonal elements of the input
matrix.

This paper presents an analysis of different sampling tech-
niques for the Nystim method. Our analysis includes both
empirical and theoretical components. We first present
novel experiments with several real-world datasets, com-
paring the performance of the Nytn method when used
with uniform versus non-uniform sampling distributions.
Although previous works have compared uniform and non-
uniform distributions in a more restrictive setting (Drase

A common problem in many areas of large-scale machingy 51, 2001; Zhanget al, 2008), our results are the first
learning involves deriving a useful and efficient approxi- 1o compare uniform sampling with the sampling technique
mation of a large matrix. This matrix may be a kernel for which the Nystom method has theoretical guarantees.
matrix used with support vector machines (Boseral, oy results suggest that uniform sampling, in addition to
1992; Cortes and Vapnik, 1995), kernel principal compo-peing more efficient both in time and space, produces more
nent analysis (Sdikopf et al, 1998) or manifold learing  effective approximations. We further show the benefits of
(Platt, 2003; Talwalkaet al, 2008). Large matrices also sampling without replacement. These empirical findings
naturally arise in other applications such as clusterimg. F mqtivate the theoretical part of our analysis. We give the
these large-scale problems, the number of matrix entrieg,s; performance bounds for the Ny@tn method as it is
used in practice, i.e., using uniform sampling without re-

o . h .
Appearing in Proceedings of the"" International Confe-rence placement.

on Artificial Inte_IIigence and Statistics (AISTATS) 2009, Clear_wa-
ter Beach, Florida, USA. Volume 5 of IMLR: W&CP 5. Copyright The remainder of the paper is organized as follows. Sec-
2009 by the authors. tion 2 introduces basic definitions and gives a brief presen-
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tation of the Nystbm method. In Section 3, we provide an Name Type n d Kernel
extensive empirical comparison of various sampling meth- | PIE-2.7K || faces (profile)| 2731 | 2304 | linear
ods used with the Nygtm method. Section 4 presents our PIE-7K faces (front) | 7412 | 2304 | linear

novel bound for the Nystfim method in the scenario of uni- MNIST digitimages | 4000 | 784 | linear
form sampling without replacement, and provides an anal- ESS proteins 4728 | 16 RBF
ysis of the bound. ABN abalones | 4177 8 RBF

Table 1: Description of the datasets and kernels used in our
experiments (Asuncion and Newman, 2007; Gustafson

nxn . o . ... al, 2006; LeCun and Cortes, 2009; Senal,, 2002). d’
Let G € R be a symmetric_positive semidefinite denotes the number of features in input space.
(SPSD) Gram (or kernel) matrix. For any such Gram ma-

trix, there exists afX € R™*" such thaiG = X " X. We

defineXV), j = 1...n, asthejth column vector of and  accuracy of approximation. Thus, in this section we discuss

X(i), i =1...m, astheth row vector ofX, and denote by  various sampling options used to select columns féém
||| thels norm of a vector. Using singular value decom-

position (SVD), the Gram matrix can be written @s=
UXUT, whereU is orthogonal and = diag(oy, ..., 0,)

is a real diagonal matrix with diagonal entries sorted in de-The most basic sampling technique involvasform sam-
.creas.ing order. Far = rankl(G), the pseudo-inverse @f pling of the columns. Alternatively, thé&h column can
is defined a&i* = 3=, oy U Uy. Further, fork <7, he sampled non-uniformly with weight proportional to ei-
Gy, = Y1, o.UMU,,y is the ‘best’ rankk approximation  ther its corresponding diagonal eleméh (diagonal sam-
to G, or the rankk matrix with minimal||-|| » distance to  pling) or thel, norm of the column dolumn-norm sam-
G, where||-|| r denotes the Frobenius norm of a matrix.  pling) (Drineas and Mahoney, 2005; Drinestsal., 2006b).
There are additional computational costs associated with
these non-uniform sampling method3(n) time and space
requirements for diagonal sampling ao»?) time and
space for column-norm sampling. These non-uniform sam-
pling techniques are often presented using sampling with
replacement to simplify theoretical analysis. Columnmnor
sampling has been used to analyze a general SVD approxi-
énation algorithm. Further, diagonal sampling with replace
ment was used by Drineas and Mahoney (2005) to bound
the reconstruction error of the Nysm method though
- the authors of that work suggest that column-norm sam-
G = { W Gy ] and C = [ w ] @ pling would be a better sampling assumption for the analy-
G Go G sis of the Nystdm method.
The Nystbm method useB” andC from (1) to construct a
rank+ approximatiorék to G for k < [. When used with
uniform sampling, the Nystm approximation is:

2 Preliminaries

3.1 Description of Sampling Methods

The Nystbm method generates low-rank approximations
of G using a subset of the columns of the matrix (Williams
and Seeger, 2000). Suppose we randomly saingie n
columns ofG uniformly without replacemerit. Let C' be
then x [ matrix of these sampled columns, aWid be the

I x I matrix consisting of the intersection of thdsslumns
with the correspondingrows of G. SinceG is SPSD,W

is also SPSD. Without loss of generality, we can rearrang
the columns and rows aff based on this sampling such
that:

Two other techniques have also been introduced for
sampling-based techniques to generate low-rank approxi-
mations. The first method adaptively samples columns of
G = CW]jCT ~QG. (2) G while the second performis-means clustering as a pre-
) . ~ ~ ) processing step to construct informative columns (Desh-
The Frobenius distance betwe@randGy, |G — G|, 1S handeet al, 2006; Zhanget al, 2008). Although these
one standard measurement of the accuracy of the b;ylstr methods show good empirical accuracy on small datasets,
method. The runtime of this algorithm is©¢-nik): O(I)  hey are both computationally inefficient for large-scale
for SVD onW andO(nlk) for multiplication withC' problems. Adaptive sampling requires a full pass through
G on each iteration, whilé-means clustering quickly be-
3 Comparison of Sampling Methods comes intractable for moderately large For this reason,
in this work we focus on fixed distributions — either uni-
Since the Nystim method operates on a subset®fi.e.,  form or non-uniform — over the set of columns.

C, the selection of columns can significantly influence the . . .
In the remainder of this section we present novel exper-

1Other sampling schemes are also possible as we discussin
Section 3. The formulation of the Nystmn method under these 2Although Drineas and Mahoney (2005) claimed to weight
sampling schemes is identical to the one presented here, moduach column proportional t6%;, they in fact use the diagonal
an additional step to normalize the approximation by the probasampling we present in this work, i.e., weights proportional to

bilities of the selected columns (Drineas and Mahoney, 2005). G;; (Drineas, 2008).
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Uniform vs Non-Uni Sampling: PIE-7K l/n || Dataset||Uniform+Rep Diag+Rep |Col-Norm+Rep
100 PIE-2.7K|| 38.8 (£1.5) [38.3 (£0.9)| 37.0 (+0.9)
= o0 et 4 PIE-7K || 55.8 (£1.1) |46.4 (£1.7)| 54.2 (+0.9)
8 AT 5% || MNIST || 47.4 (£0.8) [46.9 (£0.7)| 45.6 (£1.0)
3% gt ESS || 45.1 (+2.3) - 41.0 (£2.2)
< 70 'qz,"I/I—" ABN | 47.3 (+3.9) - 44.2 (£1.2)
£ o0l -~ Uni+Rep PIE-2.7K][ 72.3 (£0.9) [65.0 (£0.9)| 63.4 (£1.4)
T A - - - Diag+Rep PIE-7K || 83.5 (£1.1) |69.8 (£2.2)| 79.9 (+1.6)
-~ Col-Norm+Rep 20%]|| MNIST || 80.8 (£0.5) |79.4 (+0.5)| 78.1 (£0.5)
% of Columns Sampled (I/n) ABN || 77.1 (+3.0) - 66.3 (£4.0)

(@) (b)

Figure 1: (a) Nystim relative accuracy for various sampling techniques onE(b) Nystiom relative accuracy for
various sampling methods for two valuesigh with k¥ = 100. Values in parentheses show standard deviationg(for
different runs for a fixed. ‘+Rep’ denotes sampling with replacement. No error (‘s)yéported for diagonal sampling
with RBF kernels since diagonal sampling is equivalent tibonm sampling in this case.

imental results comparing the performance of these santhe spectral energy for each dataset. We first compared the
pling methods on several data sets. Previous works haveffectiveness of the three sampling techniques using sam-
compared uniform and non-uniform in a more restrictivepling with replacement. The results for PIE-7K are pre-
setting, using fewer types of kernels and focusing only orsented in Figure 1(a) and summarized for all datasets in
column-norm sampling (Drinea al., 2001; Zhanget al,, Figure 1(b). The results across all datasets show that uni-
2008). However in this work we provide the first compar- form sampling outperforms all other methods, while be-
ison that includes diagonal sampling, the sampling teching much cheaper computationally and space-wise. Thus,
nigue for which the Nystim method has theoretical guar- while non-uniform sampling techniques might be effective

antees. in extreme cases where a few columnsédtiominate in
terms of||-||, this situation does not tend to arise with real-
3.2 Datasets world data, where uniform sampling is most effective.

We used 5 datasets from a variety of applications, e.g.\?'\\llﬁﬁté\gs @%ﬁg&rfgpﬁgieﬁ:r?{mﬁ%ﬁeogl(]g)lfﬁlgtrs;?spltlﬁg
computer vision and biology, as described in Table 1, ect of replacement for the PIE-7K dataset for different

SPSD kernel matrices were generated by mean centerin ratios. Similar results for the remaining datasets are
the datasets and applying either a linear kernel or RBF ker= ) I :
bPyIng summarized in Figure 2(b). The results show that uni-

nel. The diagonals (respectively column norms) of thes§ rm samoling without replacement improves th )
kernel matrices were used to calculate diagonal (respec9 sampiing outreplaceme proves the accuracy

tively column-norm) distributions. Note that the diagonal gflé?]ewl;gitg;nmmlﬁfh?gsg\;ﬁra%ag?T::g%o\;\gn(;ﬁjprﬁcsemem’
distribution equals the uniform distribution for RBF kelsie piing '

since diagonal entries of RBF kernel matrices always equal
one. 4 Improved Nystrom Bound

3.3 Experiments The experimental results from Section 3 show that uni-

. . . . form sampling is the cheapest and most efficient samplin
We used the datasets described in the previous schonJ: ping P Ping

h N ¢ h i h 8Chnique across several datasets. Further, it is the most
testthe apprommgﬂon accuracy for each sampiing metho ommonly used method in practice. However, there does
Low-rank approximations off were generated using the

NSt thod al ith th ! thod ot currently exist a formal analysis of the accuracy of
ystrom method along wi ese sampling methods, angy,q Nystbm approximation when using uniform sampling
accuracies were measured relative to the best kaap-

L without replacement. We next present a theoretical analy-
proximation () as follows: sis of the Nystdm method using the more reasonable as-
|G — Gillr sumption ofuniform sampling without replacementVe
A A first introduce a general concentration bound for sampling
|G = Gkllr - : - -

without replacement (Section 4.1), and use it to derive a
Note that relative accuracy is upper boundeditand ap-  general bound on approximate matrix multiplication in the
proachesl for good approximations. We fixed = 100  setting of sampling without replacement (Section 4.2). In
for all experiments, a value that captures more W@ of  Section 4.3, following Drineas and Mahoney (2005), we

relative accuracy=
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Effect of Replacement: PIE-7K

>

Q

5 [ Dataset | 5% | 10% | 15% | 30% |
< PIE-2.7K [ 0.8 (£.6) | 1.7 (%.3) 3(£.9) | 4.4 (x4
z PIE-7K || 0.7 (£.3) 5(£.3) 1(£.6) | 3.2(+.3)
< MNIST 0(+5) | 1.9(£6) | 2.3(£4) | 3.4(+4)
g, ESS 0.9 (+.9) 8(£.9) | 2.2(£.6) | 3.7(£.7)
81 ABN 0.7 (£1.2) | 1.3 (£1.8) | 2.6 (£1.4) | 4.5 (£1.1)
(@)

10 20 30 40
% of Columns Sampled (1/n)

(@) (b)

Figure 2: Comparison of uniform sampling with and withoyilemement measured by the difference in relative accuracy.
(a) Improvement in relative accuracy for PIE-7K when samgplvithout replacement. (b) Improvement in relative accyra
when sampling without replacement across all datasetsafiows!/n percentages.

show the connection between the Ngsirmethod and ap- Theorem 2. Supposed € R™*" B € R"*P 1 <[ < n.

proximate matrix multiplication and present our main re- Choose a setS) of sizel uniformly at random without re-

sult: a general bound for the Ny8t method in the sce- placementfror{1...n}, andletC (R) equal the columns

nario of uniform sampling without replacement. of A (rows of B) corresponding to indices i scaled by
m. ThenC R is an approximation toA B, i.e.,

4.1 Concentration Bound for Sampling Without

n l
Replacement AB=> AYUB, ~Y CYR = ? > AYBy) =CR,
t=1 t=1

We will be using the following concentration bound for tes

sampling without replacement shown by Cortesal. and,
(2008) which holds fosymmetric functions A function
¢: X™ — R defined over a sek’ is said to be sym-
metric if ¢(z1,...,2m) = d(xr1),...,Trm)) fOr any
Z1,..., 2, € X and any permutation of (1,...,m).
Theorem 1. Letm andu be positive integers;, ..., z,,  Further, lets € (0,1), t* = argmax,||A® ||| By, and
a sequence of random variables sampled from an underly; _ /log(2/6)la(l,n—l) ,witha (i, — 1) defined in Theorem

ing setX of m + u elements without replacement, and let 1. Th , .
) . . Then, with probability at least — ¢,
¢ : X™ — R be a symmetric function such that for al& P y

n n
E[IAB - CRllp] < | 7 D_IAOIRIBw|2 ()
t=1

[1,m]andforallxy,...,z,, € X anda),... .z, € X, -

_ ﬁ t)||2 2
|¢($1,...7l’m)—¢($17...,xi,17x27x7;+17...,$m)| SA, ||AB CRHF = l ;HA()H HB(t)H +
whereA is a positive real number. Théne > 0, VoM AT 1Byl (5)

Vi
—2¢2 3
alm,u)A2 )’ 3) We note that for even moderately sizedndn, a(l,n —
I) ~ (1 —1/n) and thus) ~ /log(2/0)(1 — I/n).
mu 1
wherea(m, u) = =7 - T Emar - Corollary 1. If A = BT andt* = argmax, | A" ||, then

Prfl6— B[] = < 2exp(

4.2 Concentration Bound for Matrix Multiplication

E[|AAT - 0CT|r) < |7 D 14®[L (6)
t=1

To derive a bound for the Ny€tm method using uniform
sampling without replacement, we first present a general-
ization of a bound on approximate matrix multiplication Further, let§ € (0,1) andn = \/M. Then,
given by Drineaset al. (2006a) to the more complex set- with probability at leastl — 6,

ting of uniform sampling without replacement. This gen-

eralization is not trivial since previous inequalities dpn

upon a key i.i.d. assumption which clearly does not hold |AAT —CCT|F <
when sampling without replacement.

n o nn *
T2 A0 A @)
t=1
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In this special case, we use the tighter Lipschitz conditior‘(AitBtj)2 term is%. Further, to find the coefficients for
defined in (26). Further, since_, ||A®||* < the cross terms, we calculate the probability that two dis-

we can simplify Corollary 1 as follows: tinct elements appear in the same set. If we fix elements
Corollary 2. If A= BT then and¢’ with ¢ # t’ and define se$), such that € Sy, then
Pr[t’ € Sk] = -—==. Thus,

n
E[lA4T - CCTlIr] < (8) .
R 2]] =7 Z(AitBtj)2+ (16)
Further, leté € (0,1), t* = argmax,||A®|, andn = t=1

log(2/8)ax(l,n—1) i o _ I—1 n e
\/17_ Then, with probability at least — 6, T Z Z Ay Bij Ay By

n t=1t'#t
|AAT = CCTllp < (L4 m)Z[ADI2 () n

\ﬂ 7 Z ZtBtj (17)
The proof of this theorem and its corollaries involves -1 n )
bounding an expectation, determining a Lipschitz condi- Tn 1 ((AB) —> (AuBy)) )
tion and using the concentration bound of Theorem 1. t=1
These three steps are presented in detail below. n -1

7 z_: ZtBtJ T(AB)1]7 (18)

Bound on Expectation
where the inequality follows sinde:||; < v/njz| for z €

To obtain a bound foE [||AB — CR||r|, we first calcu- R” We can now bound the variance as:

late expressions for the mean and variance of(thg)th

component olCR, i.e., (CR);;. For any setS of distinct Var[(CR);;] = [(03)2,] —E[(CR);;)? (19)
elementsin{1...n}, |S| =, we definer(S) as the prob- n
ability that a randomly chosen subset/@lements equals < Z i Bij)? 1 AB) (20)
S. There are a total of’) distinct sets and in the uni- T A

form case(S) = 1/(7). Furthermore, each element in
{1...n} appears in/n of these distinct sets. Thus, the
following equalities hold: m

Now, we can bound the expectation as:

p
- E[|AB - CR|z] =Y ) E[(AB - CR)}]
1 i=1 j=1
n
E[(CR)i;] =) 7(Sk)- [Z lAitBtj] (10) m
k=1 tesy, = ZVar [(CR)j]
n n l n i=1 j=1
=1 > %Ait&j (11) W 1 )
) t=1 < 72 ZA ZBtj)*jnAB”F
= (AB)U (12) t=1 J
Further, we have < %Z [AD)2 By |1

n 2
E[(CR);;)* = (AB)}; = (Z AitBtj) (13) By the concavity of,/~ and Jensen’s inequalitf, [|| AB —
CR|r] < \/E [IAB — CRI3]. Thus,

and
(1) 2
AB —CR A(t) Buyl?. (21

k=1 teSk

(1) 2 inschi
2 Lipschitz Bound
- % > m(Sk) { 3 Al-tBt]} . (15)

=1 tes,, Consider the functio® defined by®(S) = | AB—CR]|| r,

whereS is the set of indices chosen uniformly at random
Since all sets ) have equal probability and each el- ithout replacement fronjl ... n} to constructC' and R.
ement appears in; of these sets, when we expand | we create a new set’ of indices by exchanging € S

[Yies, A tBt]]Q we find that the coefficient for each for somei’ ¢ S, then we can construct the corresponding
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C’ and R’ from this new set of indices. We are interested Theorem 3. Let G € R™*™ be an SPSD matrix. Assume

in finding aA such that that! columns of# are sampled uniformly at random with-
, out replacement, lef7), be the rankk Nystiom approxima-
[2(S) — (5] < A. (22)  tiontoG as described in (2), and l&t;, be the best rank-k

. . : . imation taG. Fo ,if1 > 64k/e* , th
Using the triangle inequality, we see that approximation to7. For e >0, if | = 64k/¢ en

|AB — CR||r — |AB — C'R||¢| < |CR — C'R/||p. E[IG ~ Gillr] < IIG — Gllr +
We next observe that the difference betwé&R andC’ R’ € {(7; Z G) n Z G|,
depends only on indicesandi’,® and thus i€D(l) i=1
A<[[CR-C'R||r where Y, 1, ) Gi is the sum of the largest diagonal

G il . . _ .
= 7\\A()B(i) — A B | r (23)  entries of G. Further, if = /8@l © yjth

o 46) ‘ @) , a(l,n — 1) defined in Theorem 1 and if> 64k /e* then
I (A B | + 114 B ) with probability at leastl — 4,

IN

IN

2n *
AN B, (24)

|G — Gillr <|IG — Gillr+

where we use the triangle inequality and the identity " n
HA(i)B(i) ||F = ||A(i) HHB(Z)H to obtain (24). € |:(l Z Gii) < TLZ Gzzi + nmax (nGii))
i=1

ieD(l)

1
2

Further, if A = BT, we can obtain a tighter bound. If

—_ AG) 1A . .
a= A" anda’ = A"), we have: Recall that for even moderately sizedndn, a(l,n—1) ~

T Ty T TNT (T ot T (1 —1/n) and thusy ~ /log(2/5)(1 —1/n). To prove
llaa aa|lr \/Tir [(aa da’T)! (aa a'a'™)] this theorem, we use Corollary 1 (see proof for further de-

— \/||a||4 + a4 — 2(aT )2 tails). If we instead use Corollary 2, we obtain the follow-
ing weaker, yet more intuitive bourtd.
< Vllall* + fla’]|*. (25) Corollary 3. LetG € R"*"™ be an SPSD matrix. Assume
Combining (23) with (25) we get: that/ columns of> are sampled uniformly at random with-
out replacement, |7, be the rankk Nystibm approxima-
A< @“A(t*) 2 (26) tiontoG as described in (2), and I€k,. be the best rank-k
- approximation ta. For e > 0, if [ > 64k /€%, then

Concentration Bound ~
E[|G = Gillr] <G = Gillr + € max (nGii). (28)

Using the bound on the expectation and the Lipschitz
bound just shown, by Theorem 1, for any- 0 andd > 0, Further, ifr) — /10g(2/6)la(l,n—l) witha(1, n—1) defined in

the following inequality holds: Theorem 1 and if > 64k(1 +n)?/e* then with probability
at leastl — 4,

n n
Pr|||AB - CR||lr > ,| - AWD|2||B 2—}—6] -
[ EENED SERIREN 16— Gulr <10~ Guls + <o (nCa) (29
—2¢2 . .
<2-exp| ——x5 |- (27)  Proof. The theorem and its corollary follow from applying
all,n—1)A : . ;

_ _ _ _ Lemma 2 to Lemma 1 and using Jensen’s inequality. Note
Settingd to match the right-hand side and choosing=  that when using these lemmas to prove Theorem 3, we use
A/ 2Cl)alnl) yig|ds the statement of Theorem 2. thefactthatiiG = XTX then} . p) Gis = [ XT3,

where X (1) are the largest columns of X with respect
4.3 Bound for Nystrom Method to||-||. We next state and prove these lemmas. O

Lemma 1. LetG € R™*™ be an SPSD matrix and define
X € R™*" such thatG = X T X. Further, letS, |S| =

") be any set of indices chosen without replacement from
{1...n}. LetG} be the rankk Nystibm approximation

We now present a bound on the accuracy of the Nystr
method when columns are chosen uniformly at rando
without replacemertt.

3A similar argument is made in Drineas al. (2006a) using T — )
the assumption of sampling independently and with replacement. “Corollary 3 can also be derived from Theorem 3 by not-

n 2
“Bounds for thel, norm can obtained using similar tech- NG that 3=, ) Gii < Imax(Gi) and 357, G <
niques. They are omitted due to space constraints. n max (G7;).
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of G constructed from the columns 6f corresponding to
indices inS. DefineCy € R™*! as the columns inX
corresponding to the indices ifi scaled by,/n/l. Then

IG = Gill3 < |G — Gl 3+
WE|XXTXXT — CxCYCxCY | p.

Proof. The proof of this lemma in Drineas and Mahoney
(2005) does not require any assumption on the distributio

n

Using the triangle inequality we have:
1B < (IXIE +1Cx]3) - IXXT = CxCx v
2n s
< TIIX(” NE - IXXT = CxCx |
]

The lemma now follows by applying Corollary 1.

4.4 Analysis of Bound

from which the columns are sampled and thus holds inthq:n the previous section we presented a new bound for

case of uniform sampling without replacement. Indeed, th
proof relies on the ability to decompose = X' X. To

&he Nystbm method, assuming columns are sampled uni-

formly without replacement. We now compare this bound

make this presentation self-contained, we next review th?vith one presented in Drineas and Mahoney (2005), in

main steps of the proof of this lemma.

Let X = USVT andCx = USVT denote the the singu-

lar value decompositions ok and C'x. Further, letU;,
denote the topk left singular vectors o’y and define

E=[XX"XX" - CxC}CxCy| r. Then the follow-
ing inequalities hold:

IG = GillF = 1X "X = X TUD, X%
= [1X "X |E — 21X X "Okllz + 10 XX " O|%

k
<X X[ =Y 0l (Cx) + 3VE|E|lr

t=1

k
<IXTX|E =D ot (X TX) + 4VE|E||r

t=1

= |G = Gil|% + 4VE| E| 7.

Refer to Drineas and Mahoney (2005) for further details.
O

Lemma 2. SupposeX € R™*" 1 < | < n and con-
struct C'x from X as described in Theorem 2. Lé&t =
XXTXXT — OxC{CxC} and definex (1:1*) ¢ Rmx!
as the largest columns ofX with respect td|-||. Then,

2n e
E[IE]r] < TIXE3

n n
T IXOJL (30)
t=1

Further, lets € (0,1) andn =
with probability at leastl — o,

2n 1 n o nn *
] < 2 >|%-<4 S ECIRRAP )||2>.
t=1

(31)

log(2/5)la(l,n—l) _ Then

Proof. We first expand® as follows:
E=XX"XX" - XXTCxCy + XX "OxCy—
CxCxCxCy
=XXT(XXT - OxCy)+ (XX - CxCy)CxCx.

which columns are sampled non-uniformly with replace-
ment using a diagonal distribution. We compare the rela-
tive tightness of the bounds assuming that the diagonal en-
tries of G are uniformly distributed, in which case Theorem

3 reduces to Corollary 3. This is the case for any normal-
ized kernel matrix ') constructed from an initial kernel
matrix (K) as follows:

K(z,y) .
K(z,z)K(y,y)

K'(z,y) = (32)

The diagonals of kernel matrices are also identical in the
case of the RBF kernels, which Williams and Seeger (2000)
suggests are particularly amenable to the Nystmethod
since their eigenvalues decay rapidly. When the diagonals
are equal, the form of the bound in Drineas and Mahoney
(2005) is identical to that of Corollary 3, and hence we can
compare the bounds by measuring the value of the minimal
allowablee as a function of the fraction of columns used for
approximation, i.e., thé/n ratio. Both bounds are tightest
when the inequalities involving e.g.,l > 64k(1 +n)?/e*

for Corollary 3, are set to equalities, so we use these equal-
ities to solve for the minimal allowable epsilon. In our
analysis, we fix the confidence paramefer= 0.1 and
setk = .01 x n. The plots displayed in Figure 3 clearly
show that the bound from Theorem 3 is tighter than that of
Drineas and Mahoney (2005).

5 Conclusion

The Nystbm method is used in a variety of large-scale
learning applications, in particular in dimensionalitdue-

tion and image segmentation. This method is commonly
used with uniform sampling without replacement, though
non-uniform distributions have been used to theoretically
analyze the Nystim method.

In this work, we gave a series of clear empirical results sup-
porting the use of uniform over non-uniform sampling, as
uniform sampling tends to be superior in both speed and
accuracy in several data sets. We then bridged the gap
between theory and practical use of the Ngstrmethod
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