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Abstract

We investigate a simple yet effective method
to introduce inhibitory and excitatory in-
teractions between units in the layers of a
deep neural network classifier. The method
is based on the greedy layer-wise procedure
of deep learning algorithms and extends the
denoising autoencoder (Vincent et al., 2008)
by adding asymmetric lateral connections be-
tween its hidden coding units, in a manner
that is much simpler and computationally
more efficient than previously proposed ap-
proaches. We present experiments on two
character recognition problems which show
for the first time that lateral connections can
significantly improve the classification perfor-
mance of deep networks.

1 INTRODUCTION

Recently, an increasing amount of work in the ma-
chine learning literature has been addressing the diffi-
cult issue of training neural networks with many layers
of hidden neurons. The motivation behind introduc-
ing several intermediate layers between the input of a
neural network and its output is that hard AI-related
learning problems, such as those addressing vision and
language, require discovering complex high-level ab-
stractions, which can be represented more efficiently
by models with a deep architecture (Bengio & LeCun,
2007). While deep networks are not novel, the discov-
ery of techniques able to train them successfully and
deliver superior generalization performance is recent.
This new class of algorithms, deep learning algorithms,
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have proved successful at leveraging the power of deep
networks in several contexts such as image classifica-
tion (Larochelle et al., 2007), object recognition (Ran-
zato et al., 2007), regression (Salakhutdinov & Hinton,
2008), dimensionality reduction (Hinton & Salakhut-
dinov, 2006) and document retrieval (Salakhutdinov &
Hinton, 2007).

Current deep learning algorithms are based on a
greedy layer-wise training procedure (Hinton et al.,
2006; Bengio et al., 2007) which decouples the algo-
rithm in two phases. The pre-training phase initializes
a deep network with a set of greedy modules by training
them sequentially in an unsupervised manner. Each is
trained on the representation produced by the greedy
module below, with the goal to discover a higher-level
representation of it, so that the representations be-
come more abstract as we move up the network. This
is followed by a fine-tuning phase which aims at glob-
ally adjusting all the parameters of the network ac-
cording to some (often supervised) criterion related to
the ultimate task of interest.

Most recent research has been focusing on the de-
velopment of good greedy modules, which play a
decisive role in the quality of the representations
learned by deep networks. A variety of greedy mod-
ules have been proposed: Restricted Boltzmann Ma-
chines (RBMs) (Hinton et al., 2006), autoassocia-
tors or autoencoders (Bengio et al., 2007), sparse au-
toencoders (Ranzato et al., 2008), denoising autoen-
coders (Vincent et al., 2008) and non-linear embed-
ding algorithms (Weston et al., 2008). These greedy
modules leverage unlabeled data to discover meaning-
ful representations and their training objectives span
a vast variety of motivations and properties of repre-
sentations.

All these previous greedy modules however share one
characteristic about the way they transform their in-
put into a new representation: given an input pattern,
all elements of the representation are computed in-
dependently and cannot interact in an inhibitory or
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excitatory fashion. However, there is a growing body
of work on introducing pairwise interactions between
the hidden units of models with latent representa-
tions (Garrigues & Olshausen, 2008; Hyvärinen et al.,
2001; Osindero et al., 2006; Hinton et al., 2005), which
show that they can be beneficial in modeling data such
as patches of natural images.

In this paper, we extend the basic denoising autoen-
coder (Vincent et al., 2008) by introducing lateral con-
nections between coding elements, which permit sim-
ple yet useful interactions between codes. We show ex-
perimentally that the lateral connections learn to im-
plement inhibitory and excitatory interactions which
allow discrimination between visually overlapping pat-
terns. We also demonstrate that such a denoising
autoencoder with interdependent codes (DA-
IC) outperforms the basic denoising autoencoder as
well as RBMs in training deep neural network classi-
fiers on two character recognition problems. Finally,
we show that interdependent codes tend to extract a
richer set of features which are less likely to be lin-
early predictable from each other (i.e. less correlated),
leaving it to upper layers to account for the remaining
non-linear dependencies between these features.

2 DENOISING AUTOENCODER

The present work builds on the denoising autoen-
coder (Vincent et al., 2008) as a greedy module for
deep learning. Denoising autoencoders are motivated
by the idea that a good representation enc(x) for some
input vector x should be informative of x and invari-
ant to induction of noise in the input. Given a cor-
rupted version x̃ of the input, such a robust representa-
tion should make it possible to recover x from enc(x̃),
through a decoding function dec(·).

A denoising autoencoder thus requires the following:

• enc(·): an encoder function which computes a
new representation for its input. This function’s
parameters should be adjustable given an error
gradient.

• dec(·): a decoder function which decodes a rep-
resentation and gives a prediction for the original
input. This function’s parameters should also be
adjustable.

• p(x̃|x): a conditional distribution used to gener-
ate corrupted versions x̃ of an input x.

• C(·, ·): a differentiable cost function that com-
putes the dissimilarity between two vectors or rep-
resentations.

The corruption process p(x̃|x) used originally (Vincent
et al., 2008) sets to zero (i.e. destroys all information

from) a random subset of the elements of x, corre-
sponding to a fraction α of all elements. This means
that the autoencoder must learn to compute a repre-
sentation that is informative of the original input even
when some of its elements are missing. This technique
was inspired by the ability of humans to have an ap-
propriate understanding of their environment even in
situations where the available information is incom-
plete (e.g. when looking at an object that is partly
occluded).

Training a denoising autoencoder is as simple as train-
ing a standard autoencoder through backpropagation,
with the additional step of corrupting the input. Given
a training input pattern xt, first we generate a noisy
version x̃t, compute its representation enc(x̃t), com-
pute a reconstruction dec(enc(x̃t)) and compare it
to the original input xt using the cost function
C(xt,dec(enc(x̃t)). Then we compute the error gra-
dient ∂

∂θk
C(xt,dec(enc(x̃t)) for all parameters θk of

the encoder and decoder functions, and update all pa-
rameters using stochastic gradient descent.

We consider the same corruption process p(x̃|x) and
encoder/decoder pair as proposed originally:

enc(x̃) = sigm(b + Wx̃) (1)
dec(enc(x̃)) = sigm(c + WT enc(x̃)) (2)

and use the same cross-entropy cost function:
C(x,y) = −

∑
i (xi log yi + (1 − xi) log(1 − yi)),

where the elements of x and y are assumed to be in
[0, 1].

We wish to use denoising autoencoders to train a deep
neural network classifier. In a network with l hidden
layers, we compute the activity hi(x) of the ith hidden
layer given some input x as follows:
hi(x) = sigm(bi + Wihi−1(x)) ∀i ∈ {1, . . . , l}, with
h0(x) = x.
Class assignments probabilities are computed at the
output layer as follows:
o(x) = softmax(bl+1 + Wl+1hl(x)) with

softmax(a) =
(

exp(ai)∑
k exp(ak)

)m

i=1

To use denoising autoencoders for deep learning, we
follow the general greedy layer-wise procedure (Hin-
ton et al., 2006; Bengio et al., 2007) and pre-train each
layer of a deep neural network as a denoising autoen-
coder. The procedure is depicted in Fig. 1. During
the greedy pre-training phase, when training the ith
layer, each input is mapped to its hidden represen-
tation hi−1(x) and is used as a training sample to a
denoising autoencoder with biases b = bi, c = bi−1

and weights W = Wi. Note that this requires the cor-
ruption of hi−1(x) into h̃i−1(x). A layer is pre-trained
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Figure 1: Illustration of the greedy layer-wise procedure for training a 2 hidden layer neural network with
denoising autoencoders. To avoid clutter, biases bi and ci are not represented in the figures.

for a fixed number of updates, after which the new
representation it learned is stored to be used as input
for the next layer. Greedy pre-training then moves
on to the next hidden layer. Once all layers have
thus been initialized, the whole network is fine-tuned1

by stochastic gradient descent using backpropagation
and the class assignment negative log-likelihood cost
L(~y,o(x)) = −

∑
k ~yk log o(x)k where ~y = (1k=y)m

k=1.

3 DENOISING AUTOENCODER
WITH INTERDEPENDENT
CODES (DA-IC)

As mentioned earlier, a denoising autoencoder is one
example of a deep network greedy module among oth-
ers in the literature where the elements of the hid-
den representations (or codes) are computed indepen-
dently. By this, we mean that the activation of a
hidden layer neuron is a simple direct function of its
input pattern only, and is not influenced by what
other neurons in its layer do. They are therefore un-
able to implement interactions between these codes,
such as inhibitory and excitatory interactions. Lateral
connections between elements of hidden representa-
tions have been used successfully to model natural im-
ages in sparse coding (Garrigues & Olshausen, 2008),
ICA (Hyvärinen et al., 2001) and energy-based (Osin-
dero et al., 2006) models.

In this work, we investigate whether such interactions
can also be useful in learning a deep neural network
classifier. One approach to introduce interactions be-
tween the units of a layer is to express their effect in
a recursive equation (Shriki et al., 2001; Osindero &

1without any data corruption

Hinton, 2008):

enc(x̃)j = sigm

bj +
∑

k

Wjkx̃k +
∑
k 6=j

Vjkenc(x̃)k


(3)

where each Vjk induces an interaction between hidden
neuron j and k, if Vjk 6= 0.

To compute an encoding, its elements are updated re-
cursively according to Equation 3 for a number of iter-
ations or until convergence. There are two disadvan-
tages to this approach. First, computing the encod-
ing becomes expensive for large layers or number of
iterations. Second, optimizing this encoding through
gradient descent is also expensive and hard. For these
reasons, we decided to take a different approach which,
while being much simpler conceptually and computa-
tionally, is able to implement the type of lateral in-
teractions that are expected from Equation 3. We
simply view the inhibitory and excitatory lateral con-
nections as performing an extra non-linear processing
step on the regular encoding, and model this step by a
standard linear+sigmoid layer. Thus our approach is
akin to simply adding a hidden layer to the encoding
function, ensuring that all computations will be fast.
The presence of simple constraints on the autoencoder,
specifically the encoding/decoding functions sharing
the same (transposed) weights, ensures that the role
of the additional set of weights V can be interpreted
as that of lateral connections, just like in Equation 3.

We extend the denoising autoencoder model by tak-
ing into account such lateral connections in the en-
coder function only, and propose to study their effect,
and verify that they indeed behave according to what
we expect from lateral connections. Introducing such
richer interactions only in the encoder function can



         315

Deep Learning using Robust Interdependent Codes
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Figure 2: Illustration of the denoising autoencoder
with interdependent codes.

be motivated by the view of the decoder function as
a generative model for which the encoder performs a
crude variational “inference” (Vincent et al., 2008). It
is well known that even very simple generative models
can yield a complicated posterior over the hidden rep-
resentation, due to “explaining away” effects. From
this perspective, the mapping from visible to hidden
is often more complex than the mapping from hidden
to visible. So it makes sense to have a higher capac-
ity encoder, with the ability to learn a more complex
non-linear mapping, than the decoder.

Formally, the denoising autoencoder is modified
by adding asymmetric lateral connections, whose
strengths are stored in a square matrix V, as follows:
given a pre-encoding of a corrupted input

ênc(x̃) = sigm(b + Wx̃)

a final encoding is computed by using the following
interaction between hidden units:

enc(x̃)j = sigm

dj + Vjj ênc(x̃)j +
∑
k 6=j

Vjkênc(x̃)k


where Vjj > 0. The same decoding function of Equa-
tion 2 is used. Though the constraint of a positive
diagonal for V could have required special attention,
using the same weight matrix W in the pre-encoding
and decoding implicitly favors this situation, a fact
that was observed to hold empirically. We also find
the diagonal elements of V to be usually larger than
other elements on the same column or row. This DA-
IC architecture is illustrated in Fig. 2.

To perform deep learning, we use a greedy layer-wise
procedure to pre-train all layers. In this case, each
layer hi(x) also has lateral connections Vi as well as
the additional set of biases di:

hi(x) = sigm
(
di + Visigm(bi + Wix̃)

)
Thus, for each layer, pre-training is using the previous
layer representations hi−1(x) as training samples to a
DA-IC with biases b = bi, c = bi−1, d = di and
weights W = Wi, V = Vi.

4 RELATED WORK

The idea of introducing pairwise connections between
elements in a hidden representation for unsupervised
learning is not new. They have been used in an in-
formation maximization framework to allow overcom-
plete representations (Shriki et al., 2001). One impor-
tant difference in our approach is that the computation
of the elements of the representation requires only one
quick pass through the lateral connections instead of
several recursive passes; the latter would render their
use in a deep network much more computationally ex-
pensive.

Lateral connections have also been used previously
in models with several layers of hidden representa-
tion (Hinton et al., 2005; Osindero & Hinton, 2008).
However, these connections are only used in the top-
down generative process of the model and approximate
bottom-up inference is done independently for each el-
ement of a hidden layer given the previous one. In-
terpreting the decoding function as the deterministic
equivalent of a top-down generative process, the DA-
IC takes the inverse perspective, where inference is
complicated and generation (reconstruction) is simple.

Several models of the primary visual cortex have also
integrated the concept of pairwise interactions, in-
cluding sparse coding (Garrigues & Olshausen, 2008),
ICA (Hyvärinen et al., 2001) and energy-based mod-
els (Osindero et al., 2006). One motivation often cited
for using such connections is that they permit to bet-
ter capture higher-order dependencies that would not
be modeled otherwise.

Our work is aimed at leveraging the use of lateral
connections in multi-layer neural networks for build-
ing competitive classifiers, in contrast to modeling the
distribution of images. To our knowledge, none of the
previously published approaches on introducing lat-
eral connections in deep networks has studied if they
did indeed yield a performance gain when used to
build a classifier. The discriminative power of sparse
codes (whose inference exhibit inhibitory interactions,
though without explicit lateral connections) has been
investigated previously (Raina et al., 2007), however
they are not applicable directly to deep learning, since
fine-tuning such representations according to a global
task presents a technical challenge. Moreover, though
the Sparse Encoding Symmetric Machine (Ranzato
et al., 2008) approach to sparse coding is appropriate
for deep learning, as mentioned earlier, the encoding
function in that case still computes the codes indepen-
dently given an input, a situation we try to improve on
here. Our simple approach for introducing interdepen-
dent codes in denoising autoencoders could however
easily be adapted to that framework.



         316

Larochelle, Erhan, Vincent

Weights of neurons in W:

Positively connected neurons by V: Negatively connected neurons by V:

Figure 3: Top: visualization of the input weights of the hidden units, corresponding to the rows of W. A variety
of filters were learned, including small pen strokes and empty background detectors. Bottom: visualization of a
subset of excitatory and inhibitory connections in V. Positively connected neurons have overlapping filters, often
shifted by few pixels. Negatively connected neurons detect aspects of the input which are mutually exclusive,
such as empty background versus pen strokes.

Table 1: Classification performance of deep networks and gaussian kernel SVMs for two character recognition
problems. The deep networks with interdependent codes statistically significantly outperform other models on
both problems. We report the results on each fold of the OCR-letters experiment to show that the improvement
in performance of interdependent codes is consistent.

Dataset SVMrbf DBN-3 SDA-3 SDA-6 SDAIC-3
MNIST-rot 11.11 9.01 9.53 9.68 8.07

OCR-letters (fold 1) 9.70 9.68 9.69 10.15 9.60

OCR-letters (fold 2) 9.36 9.68 9.92 9.92 9.31

OCR-letters (fold 3) 9.94 10.07 10.29 10.32 9.46

OCR-letters (fold 4) 10.32 10.46 10.42 10.51 9.92

OCR-letters (fold 5) 10.19 10.58 9.93 10.58 9.50

OCR-letters (all) 9.90 10.09 10.05 10.30 9.56

5 EXPERIMENTS

We performed experiments on two character recogni-
tion problems where the input patterns from different
classes are likely to be overlapping visually. This is
a setting where lateral connections ought to be use-
ful by using inhibitory connections to discern similar
but mutually exclusive features of the input. The first
problem, noted MNIST-rot (Larochelle et al., 2007),
consists in classifying images of rotated digits2. The

2This dataset has been regenerated since
its publication and can be downloaded here:
http://www.iro.umontreal.ca/∼lisa/icml2007. The
set of 28×28 pixel images was generated using random
rotations of digit images taken from the MNIST dataset,
and was divided into training, validation and test splits of
10000, 2000 and 50000 examples each.

second classification dataset, noted OCR-letters 3 cor-
responds to an English character recognition problem
where 16×8 binary pixel images must be classified into
26 classes, corresponding to the 26 letters of the En-
glish alphabet (see Fig. 4).

5.1 COMPARISON OF CLASSIFICATION
PERFORMANCE

We evaluated the performance of the DA-IC as a
greedy module for deep learning by comparing it with
two other greedy modules: basic denoising autoen-
coders and RBMs. For each type of greedy mod-
ule, deep neural network classifiers were initialized by

3This dataset is publicly available at
http://ai.stanford.edu/∼btaskar/ocr/. For our ex-
periments, we took the original dataset and generated 5
folds with mutually exclusive test sets of 10000 examples
each.
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Figure 4: Input samples from the OCR-letters dataset
of binary character images.

stacking three such greedy modules before fine-tuning
the whole network by stochastic gradient descent4.
The deep networks initialized with DA-ICs had 1000
hidden units in each layer. For fairness, since RBMs
and basic denoising autoencoders have fewer parame-
ters (hence less capacity) for the same size of hidden
layer, we also considered deep networks with larger lay-
ers of up to 2000 hidden units in model selection. We
chose networks with the same number of hidden units
at each layer, as we found this topology to work well.
Another fair comparison with a network with similar
number of parameters, is to stack 6 layers of either
RBMs or denoising autoencoders: both achieved about
the same performance, so we report results on denois-
ing autoencoders only. We denote by DBN-l, SDA-l
and SDAIC-l deep networks initialized by stacking l
modules of RBMs, denoising autoencoders, and DA-
IC, respectively. As a general baseline, we also report
the performance of a kernel SVM with Gaussian kernel
(noted SVMrbf ), which often achieves state-of-the-art
performance.

The results, reported in Table 1, confirm that the
interdependent codes are able to improve the
discriminative performance of a deep network
classifier. The addition of lateral connections also en-
ables deep networks to outperform an SVM classifier.
The fact that SDAIC-3 outperforms SDA-6 shows that
it is not simply the additional capacity of SDAIC-3
with respect to SDA-3 and DBN-3 that explains these
performance differences. We also tried to add a phase
of global unsupervised fine-tuning5 before the super-
vised fine-tuning of SDA-6, but it at best improved

4Model selection, based on the classification error ob-
tained on the validation set, was done over the number
of iterations of greedy pre-training as well as the value of
the learning rates for greedy pre-training and fine-tuning.
For denoising autoencoders, the fraction of masked or de-
stroyed inputs α also had to be chosen by model selec-
tion; we compared α = 0.1 and 0.25. Early-stopping based
on the validation set error determined the number of fine-
tuning iterations.

5Global unsupervised fine-tuning consists in optimizing
reconstruction error after a full up and down pass through
all the layers.

only slightly its performance, not reaching the perfor-
mance of SDAIC-3. This confirms the primary impor-
tance of pre-training with a DA-IC greedy module.

5.2 QUALITATIVE ANALYSIS OF
LEARNT PARAMETERS

To get a better idea of the type of interactions the
lateral connections are able to capture, we display in
Fig. 3 the values of the weights or filters learned for
each neuron, as well as the weights for pairs of neu-
rons which have strong positive or negative lateral con-
nections. Black, mid-gray and white pixels in the fil-
ters correspond to weights of -3, 0, and 3 respectively,
with intermediate values corresponding to intermedi-
ate shades. The DA-IC was trained for 2.5 million up-
dates on samples from the OCR-letters dataset, with a
learning rate of 0.005, α = 0.25 and a small L1 weight
decay of 0.0001. The learned filters detect various as-
pects of the input, such as small pen strokes, which
have localized positive weights and negative biases6

(thus will be active only if a pen stroke is present), and
regions of empty backgrounds, which have localized
negative weights and positive biases (thus will only be
active if no pen stroke is present). There are also filters
that can determine whether the width and height of
a character is smaller than a certain number of pixels
(see filters with wide horizontal or vertical bars).

The lateral connections also model interesting interac-
tions between these filters. Pairs of neurons that are
positively connected often have visually similar filters.
Also, pairs of neurons that are negatively connected
are sensitive to mutually exclusive patterns in the in-
put. For instance, pairs of pen-stroke and empty back-
ground detectors in the same region of the image usu-
ally inhibit each other. Another example is two filters
that detect whether the sides or the top and bottom
of the image are empty (see the first negatively con-
nected pair in Fig. 3), two events that cannot be true
simultaneously since all characters touch at least one
border of the image.

Next, we wanted to examine more closely the effect
of V. We presented a number of input patterns to
a DA-IC trained on OCR-letters and considered pairs
of neurons in the hidden layer with inhibitory lateral
connections between them (corresponding to a nega-
tive weight in V). We measured the activity of these
neurons before applying V and after. Fig. 5 shows two
examples, together with the filters associated to the
considered neurons. A typical inhibitory behaviour
can be observed: after applying V and a nonlinear-
ity, a clear winner emerges within pairs of negatively
connected neurons that have equally strong activities

6To simplify the visualization, the value of the biases
are not shown in Fig. 3
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Figure 5: Illustration of inhibitory behaviour. Two ex-
amples are shown: e and o. In each, from left to right:
the input pattern, the filters for two neurons of the first
hidden layer, the values taken by these neurons before
taking into account lateral connection weights V, and
their values after applying V and a sigmoid. As can be
seen, lateral connections allow to disambiguate situa-
tions in which we have equally strong initial responses
from the two neurons.

before applying V. In the e example, the competi-
tion is between detecting a vertical segments on the
left edge, or detecting it one pixel to the right. These
are unlikely to occur together. In the o example, the
choice is between detecting an empty spot in the lower
right corner or seeing a vertical segment on the right
edge that continues nearly to the bottom of the cor-
ner. Again, the two are contradictory. In both cases,
inhibitory connections appear crucial in choosing the
feature that better describes the input pattern. This
disambiguation between two conflicting aspects in the
input would not be possible with a simple layer that
does not correct for interdependencies.

5.3 COMPARISON WITH ALTERNATIVE
TECHNIQUES FOR LEARNING
LATERAL INTERACTIONS

Next, we wanted to see how our simple method for
learning lateral interactions (DA-IC) compared to al-
ternatives based on iterating a recursive equation, as
previously proposed. Due to these alternatives be-
ing very time consuming, we focused on unsupervised
training of a single layer (greedy module) to learn a
representation (code)7. We then measured the classifi-
cation performance obtained by a linear least squares
classifier that uses that learned code as input. We
specifically considered the following greedy modules:

• RBM: Restricted Boltzmann Machine with no
lateral connections.

• DA: Ordinary Denoising Autoencoder, no lateral
connections.

7We tested using both 10 and 30 iterations through
Equation 3. Notice that computing enc(ex) with these al-
ternative models requires 10 and 30 times (respectively)
as many multiply-add operations involving the H2 − H
lateral connections Vjk, where H is the number of hidden
units (the diagonal of V is not used in Equation 3).
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Figure 6: Test classification error (%) of a linear classi-
fier using the codes learned by different types of greedy
modules, for increasing size of hidden layer.

• SRBM: Semi-Restricted Boltzmann Machines
(Osindero & Hinton, 2008), but with lateral con-
nections between hidden units, instead of visible
units as originally proposed.

• DA-settling: Denoising Autoencoder with “set-
tling” lateral connections in the encoder: i.e. we
iterate several times through Eq. 3.

• DA-IC: Our proposed Denoising Autoencoder
with Interdependent Codes.

Fig. 6 gives the resulting classification performance as
a function of the size of the code (the number of hid-
den units). We emphasize that the codes were learned
in an entirely unsupervised fashion8. We observe that
DA-IC systematically outperforms both RBM and DA
(differences are statistically significant, except for 250
units on OCR-letters). When compared to the alter-
native techniques for introducing lateral interactions,
DA-IC outperforms them on MNIST-rot (differences
are statistically significant), and is also best (statisti-
cally equivalent to SRBM) on OCR-letters. We want
to emphasize here that, contrary to the alternative
techniques involving iterating a recursive equation,
DA-IC is very simple and computationally very cheap
(no iteration involved).

5.4 ANALYSIS OF CORRELATION

Finally, we provide a possible explanation as to why
DA-ICs are better suited for deep learning. The per-
formance of deep networks with 1, 2 and 3 stacked
DA-ICs is 10.33%, 8.91% and 8.07% respectively on
the MNIST-rot dataset, which confirms that the DA-
IC can leverage the addition of layers. Intuitively, a
necessary condition for a greedy module to be appro-
priate for deep learning is that it should compute rep-
resentations which, while being informative of the in-
put, are not too linearly correlated. Otherwise, some
of the coding elements would be easily predictable by

8Only the number of unsupervised training iterations
and the learning rate were selected based on classification
performance on the validation set
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Figure 7: Mean pairwise absolute correlation between
the coding elements of a basic denoising autoencoder
(squares) and a denoising autoencoder with interde-
pendent codes (circles), for different layer sizes.

others and therefore essentially useless. Since denois-
ing autoencoders use a log-linear decoder function,
training implicitly discourages highly correlated hid-
den units, which would waste some of the capacity of
the encoder. However, as the size of the hidden layer
grows, it is likely that adding uncorrelated units re-
quires more non-linear computations from the encoder.
So, by adding lateral connections to the encoder func-
tion, we would expect the encoder to be better able
to reduce the correlation in its code units. To verify
this claim, we computed the mean of pairwise abso-
lute correlations between the activities of the hidden
units of a denoising autoencoder and of a DA-IC for
several large sizes of hidden layers, on the MNIST-rot
dataset. Model selection was performed based on the
mean absolute correlations obtained on the validation
set. The result, reported in Fig. 7, confirms that inter-
dependent codes exhibit less correlation between their
elements.

6 CONCLUSION

We presented a simple extension of denoising autoen-
coders which allows learning inhibitory and excitatory
interactions between the hidden code units and demon-
strated their usefulness as greedy modules for deep
learning. Experiments on two character recognition
problems showed that using Denoising Autoencoder
with Interdependent Codes (DA-IC) outperforms
state-of-the-art learning algorithms for deep
networks classifiers and kernel SVMs. While
the technique we use for taking into account lateral
interactions is both simpler and computationally
much more efficient than previously proposed
alternative techniques (based on a recursive update
equation) we showed it does learn codes that yield
equivalent or better classification performance
than these more cumbersome alternatives.
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