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Abstract

We extend the `2-consistency result of (Mein-
shausen and Yu 2008) from the Lasso to the
group Lasso. Our main theorem shows that
the group Lasso achieves estimation consis-
tency under a mild condition and an asymp-
totic upper bound on the number of selected
variables can be obtained. As a result, we can
apply the nonnegative garrote procedure to
the group Lasso result to obtain an estimator
which is simultaneously estimation and vari-
able selection consistent. In particular, our
setting allows both the number of groups and
the number of variables per group increase
and thus is applicable to high-dimensional
problems. We also provide estimation con-
sistency analysis for a version of the sparse
additive models with increasing dimensions.
Some finite-sample results are also reported.

1 Introduction

Recently many regularization-based methods have
been proposed for the purpose of variable selection in
high-dimensional regression. The Lasso (Tibshirani,
1996; Chen et al., 1998) is the most popular one due
to its computational feasibility and amenability to the-
oretical analysis. One well-known result is that the
Lasso estimator is not variable selection consistent if
the irrepresentable condition fails (Meinshausen and
Bühlmann, 2006; Zhao and Yu, 2007), which means
the correct sparse subset of the relevant variables can
not be identified asymptotically with large probabil-
ity. However, a recent result from Meinshausen and
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Yu (2009) shows that even the variable selection fails,
the Lasso estimator can still be `2-consistent in estima-
tion. Which means, even if the exact sparsity pattern
might not be recovered, the estimator can still be a
good approximation to the truth. This also suggests
that, for Lasso, estimation consistency might be easier
to achieve than variable selection consistency.

In this paper we are interested in building similar
results for the grouped variable selection problems.
Grouped variables often appear in real world appli-
cations. For example, in many data mining problems
we encode categorical variables using a set of dummy
variables and as a result they form a group. An-
other example is additive model, where each compo-
nent function can be represented using its basis expan-
sions which can be treated as a group. For such prob-
lems, it is more natural and suitable to select groups
of variables instead of individual ones.

One of our contributions is to extend the fixed de-
sign consistency analysis in (Meinshausen and Yu,
2009) from the Lasso to the group Lasso (Yuan and
Lin, 2006), which can be viewed as an extension of
the Lasso for the grouped variables by replacing the
`1-regularization with the sum of `2-norm regulariza-
tion. This extension is non-trivial since the analysis
in (Meinshausen and Yu, 2009) utilizes several proper-
ties only hold for the `1-regularization, e.g. piecewise
linear solution path and the number of nonzero en-
tries is bounded by the sample size etc. Besides the
`2-consistency result proved in Theorem 1, the optimal
rate of convergence and an upper bound of the number
of selected variables are also obtained in Corollary 1
and Lemma 6. Furthermore, we use the group Lasso
as an initial estimator and apply the nonnegative gar-
rote (Yuan and Lin, 2007) to obtain an estimator in
Definition 3 which is simultaneously estimation and
variable selection consistent. Since our analysis allows
both the number of groups and the number of variables
per group increase with the sample size, these results
can be extended to the infinite-dimensional cases to
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provide consistency results for a version of the Sparse
Additive Models (Ravikumar et al., 2007) from Defi-
nition 4.

Some related work on the group Lasso include (Bach,
2008; Meier et al., 2007; Obozinski et al., 2008), which
provide either risk analysis or variable selection results
using random design. Our fixed design estimation con-
sistency result is complementary to them. A previ-
ous work on the nonnegative garrote has been done
by Yuan and Lin (2007), but they mainly focus on
fixed dimension instead of the increasing dimension as
in our case. The sparse additive models proposed in
(Ravikumar et al., 2007) focus more on the consistency
analysis of risk and variable selection, which are com-
plementary to our estimation consistency analysis.

2 The Group Lasso

We consider the problem of recovering a high-
dimensional vector β ∈ Rmn using a sample of inde-
pendent pairs (X1•, Y1), . . . , (Xn•, Yn) from a multiple
linear regression model,

Y = Xβ + ε.

Here Y is the n× 1 response vector and X represents
the observed n×mn design matrix whose i-th row vec-
tor is denoted byXi•. β is the true unknown coefficient
vector that we want to recover, and ε = (ε1, . . . , εn) is
an n× 1 vector of i.i.d. noise with εi ∼ N (0, σ2).

We are interested in the situation where all the vari-
ables are naturally partitioned into pn groups. Sup-
pose the number of variables in the j-th group is
dj , then by definition we have mn =

∑pn
j=1 dj . We

can rewrite this linear model as Y = Xβ + ε =∑pn
j=1Xjβj + ε, where Xj is an n × dj matrix cor-

responding to the j-th group (which could be either
categorical or continuous) and βj is the correspond-
ing dj × 1 coefficient subvector. Therefore, we have
X = (X1, . . . , Xpn) and β = (βT1 , . . . , β

T
pn)T . Both

X and Y are assumed to be centered at zero to sim-
plify notation. We also use Xj to represent the j-
th column in the design matrix X and assume that
all columns in the design matrix are standardized, i.e.
1
n
‖Xj‖2`2 = 1, j = 1, . . . ,mn. Similar to the notation

of Xj , we use βj (j = 1, . . . ,mn) to denote the j-th en-
try of the vector β. Since we are mainly interested in
the high-dimensional setting, we assume pn � n. Fur-
thermore, we also allow the group size dj to increase
with n at a rate dj = o(n) and define d̄n = maxj dj to
be the upper bound of the group size for each n. In the
following we suppress the subscript n if no confusion.

Given the design matrix X and the response vector Y ,
the group Lasso estimator is defined as the solution of

the following convex optimization problem:

β̂λn =arg min
β

1

2
‖Y −Xβ‖2`2 +λn

pn∑
j=1

√
dj‖βj‖`2 (1)

where λn is a positive number which penalizes com-
plex model, and

√
dj is multiplied over each group to

compensate for different group sizes.

The following proposition is directly obtained from
(Yuan and Lin, 2006), which provides the Karush-
Kuhn-Tucker (KKT) optimality condition for convex
optimization problems.

Proposition 1 The necessary and sufficient condi-
tion for β̂=(β̂T1 , . . . , β̂

T
pn)
T to be a solution to (1) is

−XT
j (Y −Xβ̂) +

λn
√
dj β̂j

‖β̂j‖`2
= 0, ∀β̂j 6= 0, (2)

‖XT
j (Y −Xβ̂)‖`2 ≤ λn

√
dj , ∀β̂j = 0.

It is well-known that under mild conditions, the Lasso
solution has no more than n nonzero entries even if
pn > n (Osborne et al., 2000). This is no longer true
for the group Lasso. However, a slightly different result
can be obtained.

Lemma 1 In equation (1) with λn > 0, a solution
β̂λn exists such that the number of nonzero groups
|S(β̂)| is upper bounded by n, the number of data
points, where S(β) = {j : β̂j 6= 0}.

Proof: Suppose there is a solution β̂ which has
|S(β̂)| > n number of nonzero groups, in the follow-
ing we will show that we can always construct another
solution β̃ such that |S(β̃)| = |S(β̂)| − 1.

Without loss of generality, we assume the first |S(β̂)|
groups of variables in β̂ are nonzero, i.e. β̂j 6= 0 for j =

1, . . . , |S(β̂)|. Since Xβ̂ =
∑|S(β̂)|
j=1 Xj β̂j ∈ Rn×1 and

|S(β̂)| > n, the set of vectors X1β̂1, . . . , X|S(β̂)|β̂|S(β̂)|
are linearly dependent. No lose of generality assume

X1β̂1 = α2X2β̂2 + . . .+ α
|S(β̂)|

X
|S(β̂)|

β̂
|S(β̂)|

.

Now define β̃j = 0 for j = 1 and j > |S(β̂)|, and
β̃j = (1+αj)β̂j for j = 2, . . . , |S(β̂)|, and it is straight-
forward to check that β̃ satisfies the KKT condition in
Proposition 1 and thus is also a group Lasso solution.

Remark 1 Even though the solution of the group
Lasso may not be unique especially when p > n, a
compact solution β̂ with |S(β̂)| ≤ n can always be con-
structed as in the proof of Lemma 1.
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3 `2-Consistency of the Group Lasso

Recall that for linear models, an estimator β̂ is called
`2-consistent if ‖β̂ − β‖`2 = oP (1). In this section we
obtain the `2-consistency result for the group Lasso es-
timator. The main result is Theorem 1, which builds
an upper bound for the `2-distance ‖β̂ − β‖`2 . Equa-
tion (17) from Corollary 1 establishes the concrete
rate. Another result on the asymptotic upper bound
of the number of selected variables and its implications
is provided in Lemma 6 and Remark 2.

We mainly consider the case when pn � n but sn =
|S(β)| = o(n), let C = 1

nX
TX be the sample covari-

ance matrix, and we start with some definitions which
are useful in the proof.

Definition 1 The m-sparse minimum and maximum
eigenvalues of C are φmin(m) = minβ:‖β‖`0≤m

βTCβ
βT β

and φmax(m) = maxβ:‖β‖`0≤m
βTCβ
βT β

. Also, denote
φmax as φmax = φmax

(
(sn + n)d̄n

)
.

Definition 2 Denote Y (ξ) = Xβ + ξε as a de-noised
model with level ξ (0 ≤ ξ ≤ 1), we define

β̂λ,ξ = arg min
β

‖Y (ξ)−Xβ‖2`2 + λn

pn∑
j=1

√
dj‖βj‖`2 (3)

to be the de-denoised estimator at noise level ξ.

The key assumption is given below, more detailed dis-
cussion of such a condition can be found in (Mein-
shausen and Yu, 2009).

Assumption 1 There exists a positive sequence en,
the so-called sparsity multiplier sequence, such that

lim inf
n→∞

enφmin

(
e2
nsn
)
≥ 18φmax.

Theorem 1 (Convergence in `2-norm) Under as-
sumption 1 with a positive sequence en. If λn �
σen

√
n logmn. For the group Lasso solution con-

structed in Lemma 1, There exists a constant M > 0
such that, with probability tending to 1 for n→∞,

‖β̂λn − β‖2`2≤M
snd̄n logmn

n

e2n
φ2

min(e2nsnd̄n)
.

Proof: Our proof extends (Meinshausen and Yu,
2009) to the case of grouped variables. Let βλ = β̂λ,0,
the variance related part is ‖β̂λ − βλ‖2`2 and the bias
related part is ‖βλ − β‖2`2 . The `2-consistency can be
obtained by bounding the bias and variance terms. i.e.

‖β̂λ − β‖2`2 ≤ 2‖β̂λ − βλ‖2`2 + 2‖βλ − β‖2`2 .

Let K = {k : βk 6= 0, k = 1, ..., pn} represent the
set of index for all the groups with nonzero coefficient

vectors. The cardinality of nonzero groups is again
denoted by sn = |K|. Then, the solution βλ can, for
each value of λ, be written as βλ = β + γλ, where
γλ = arg minη f(η) with f(η) defined as

f(η) = nηTCη + λ
∑
k∈Kc

√
dk‖ηk‖`2

+ λ
∑
k∈K

√
dk (‖ηk + βk‖`2 − ‖βk‖`2) (4)

The next lemma bound the `2-norm of γλ.

Lemma 2 Under assumption 1 with a positive se-
quence en. The `2-norm of γλn , as defined in (4), is
bounded for sufficiently large values of n by ‖γλ‖`2 ≤
17.5λ

√
snd̄n/(nφmin(ensnd̄n)).

Proof : For the notational simplicity, we use γ in-
stead of γλ. Let γ(K) be the vector with sub-vectors
γk(K) = γk1{k ∈ K}. That is, γ(K) is the bias of
the coefficients from the truly nonzero groups. And
similarly for γ(Kc) = γk1{k /∈ K}. Therefore, we
have that γ = γ(K) + γ(Kc). Since f(η) = 0 in
(4) when η = 0, we have f(γλ) ≤ 0. Together
with the fact that ηTCη ≥ 0 for any η, we have∑
k∈Kc

√
dk‖γk‖`2 ≤

∑
k∈K
√
dk‖γk‖`2 . Also, we have

∑
k∈K

√
dk‖γk‖`2≤

√∑
k∈K

dk‖γ(K)‖`2≤
√
snd̄n‖γ‖`2 (5)

From (5) and its previous inequality, we have

pn∑
k=1

√
dk‖γk‖`2 ≤ 2

√
snd̄n‖γ‖`2 . (6)

Since f(γ) < 0, and ignoring the non-negative term
λ
∑
k∈Kc

√
dk‖ηk‖`2 , it follows that

nγTCγ ≤ λ
√
snd̄n‖γ‖`2 . (7)

Now, we bound the term γTCγ from below and plug-
ging the result into (7) will yield the desired upper
bound on the `2-norm of γ. Let ‖γ(1)‖`2 ≥ ‖γ(2)‖`2 ≥
· · · ≥ ‖γ(p)‖`2 be the ordered block entries of γ. Let
{un}n∈N be a sequence of positive integers, such that
1 ≤ un ≤ pn and define the set of “un-largest groups”
as U = {k : ‖γk‖`2 ≥ ‖γ(un)‖`2}. Define analogously
as before γ(U) and γ(U c). The quantity γTCγ can be
written as (γ(U)+γ(U c))TC(γ(U)+γ(U c)) = ‖a+b‖2`2
with a = Xγ(U)/

√
n and b = Xγ(U c)/

√
n. Then

γTCγ = aT a+ 2bT a+ bT b ≥ (‖a‖`2 − ‖b‖`2)2 . (8)

Further, we derive the bound for ‖γ(U c)‖`2 as a func-
tion of un. Aassuming that ` =

∑p
k=1 ‖γk‖`2 , it holds
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for every k = 1, · · · , pn that γ(k) ≤ `/k. Therefore

‖γ(Uc)‖2`2 ≤

(
pn∑
k=1

‖γk‖`2

)2 pn∑
k=un+1

1

k2

≤

(
pn∑
k=1

√
dk‖γk‖`2

)2

1

un
.

Further from (6), we get ‖γ(U c)‖2`2 ≤ (4snd̄n‖γ‖2`2) 1
un

.

Since γ(U) has at most
∑
k∈U dk non-zero coefficients

‖a‖2`2 ≥ φmin

(∑
k∈U

dk

)(
‖γ‖2`2 − ‖γ(Uc)‖2`2

)2
≥ φmin

(∑
k∈U

dk

)(
1− 4snd̄n

un

)
‖γ‖2`2 . (9)

From Lemma 1, γ(U c) has at most n non-zero groups,

‖b‖2`2 ≤ φmax(nd̄n)‖γ(U c)‖2`2 ≤
4snd̄n
un
‖γ‖2`2 . (10)

Plugging (9) and (10) into (8), combine with the facts∑
k∈U dk ≤ d̄nun and φmax ≥ φmin(un), we have

γTCγ ≥ φmin(und̄n)‖γ‖2`2

(
1− 4

√
d̄nsnφmax

unφmin(und̄n)

)
. (11)

Choose un = ensnd̄n, from the assumption, we have
that (snd̄nφmax)/(ensnd̄nφmin(e2

nsnd̄n)) < 1
18 . From

(7) and φmin(e2
nsnd̄n) ≤ φmin(ensnd̄n), we get

λ
√
snd̄n‖γ‖`2
n

≥ γTCγ ≥ φmin(und̄n)‖γ‖2`2

(
1−
√

4

18

)

Therefore, ‖γ‖`2 ≤ 17.5λ
√
snd̄n/(nφmin(ensnd̄n)), for

large n. The proves the desired lemma. Q.E.D.

Under the assumption of the theorem, when λn �
σen
√
n logmn and the fact that φmin(e2

nsnd̄n) ≤
φmin(ensnd̄n), we immediately get that

‖γλ‖2`2 ≤ (17.5)2σ2 snd̄n logmn

n

e2
n

φ2
min(e2

nsnd̄n)
.

Next we bound the variance term. For every subset
M ⊂ {1, · · · ,mn} with |M | ≤ n, denote θ̂M ∈ R|M |
the restricted least square estimator of the noise ε,

θ̂M = (XT
MXM )−1XT

M ε (12)

The next lemma bounds the `2-norm of this estimator,
which is useful to bound the variance of the group
Lasso estimator.

Lemma 3 Let m̄n be a sequence with m̄n = o(n) and
m̄n → ∞ for n → ∞. Then it holds with probability
converging to 1 for n→∞

max
M :|M |≤m̄n

‖θ̂M‖2`2 ≤
2 logmn

n

m̄n

φ2
min(m̄n)

σ2.

The `2-norm of the restricted estimator θ̂M is uni-
formly over all sets M with |M | ≤ m̄n.

Proof : From (12), for every M with |M | ≤ m̄n,

‖θ̂M‖2`2 ≤
1

n2φ2
min(m̄n)

‖XT
M ε‖2`2 . (13)

We want to show that, with probability tending to 1,

max
M :|M |≤m̄n

‖XT
M ε‖2`2 ≤ 2σ2m̄nn logmn.

Since εi ∼ N (0, σ2), we have, with probability con-
verging to 1, for n→∞, that maxj∈{1,...,mn} |XT

j ε|2 is
bounded from above by 2σ2n logmn. Therefore, with
probability tending to 1 for n→∞,

max
M :|M |≤m̄n

‖XT
M ε‖2`2 ≤ m̄n max

j∈{1,...,mn}
|XT

j ε|2

≤ 2σ2m̄nn logmn.

This proves the given lemma. Q.E.D.

For the following analysis, we define Aλ,ξ to be

Aλ,ξ =

{
j : λ

√
dj β̂j

‖β̂j‖`2
= XT

j (Y (ξ)−Xβ̂)

}
(14)

which represents the set of active groups for the de-
noised version problem in (3).

The following lemma shows that the variance of the
group Lasso estimator can be bounded by the vari-
ances of the restricted OLS estimators θ̂M .

Lemma 4 If, for a fixed value of λ, the number of
active variables of the de-noised estimators β̂λ,ξ is for
every 0 ≤ ξ ≤ 1 bounded by m′, then

‖β̂λ,0 − β̂λ‖2`2 ≤ C · max
M :|M |≤m′

‖θ̂M‖2`2

with C as a generic constant.

Proof : A solution path approach as in (Meinshausen
and Yu, 2009) is adopted. Let M(ξ) ≡ Aλ,ξ as in (14).
Similar as the linear Lasso case, the estimator β̂λ,ξ

and also the gradient XT
j (Y (ξ)−Xβ̂) are continuous

functions in both λ and ξ. Let 0 = ξ1 < · · · < ξJ+1 =
1 be the points of discontinuity of M(ξ). At these
locations, variables either join the active set or are
dropped from the active set.
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Fix some j with 1 ≤ j ≤ J . Denote by Mj be the set of
active groups M(ξ) for any ξ ∈ (ξj , ξj+1). Assuming

∀ξ ∈ (ξj , ξj+1) : ‖β̂λ,ξ − β̂λ,ξj‖`2 ≤ C(ξ − ξj)‖θ̂Mj‖`2 (15)

is true, where θ̂Mj is the restricted OLS estimator of
noise, as in (12). The claim then follows from a piece-
wise bound of the difference of the de-noised solutions
at different noise levels. That is

‖β̂λ,0 − β̂λ,1‖`2 ≤
J∑
j=1

‖β̂λ,ξj − β̂λ,ξj+1‖`2

≤ C · max
M :|M|≤m

‖θ̂M‖`2
J∑
j=1

(ξj+1 − ξj)

= C · max
M :|M|≤m

‖θ̂M‖`2 .

It thus remains to show the correctness of (15), which
follows from an application of lemma 5, by replacing
x̂1, x̂2, ŷ1 and ŷ2 with ξθ̂Mj , ξj θ̂Mj , β̂λ,ξ and β̂λ,ξj ,
respectively. The key observation is that the sub-
matrix XMj

should be full rank to make θ̂Mj well-
defineded. Q.E.D.

Lemma 5 For x ∈ Rq, Suppose x̂1 = arg minxf1(x)
and x̂2 = arg minxf2(x) where f1(x) = 1

2x
TAx + bTx

with A ∈ Rq×q positive definite and b ∈ Rq. Also,
f2(x) = f1(x) + cTx = 1

2x
TAx + bTx + cTx with c ∈

Rq. Let g1(x) = f1(x) + h(x) and g2(x) = f2(x) +
h(x) where h(x) is a convex function with respect to
x and everywhere subdifferentiable, and define ŷ1 =
arg minyg1(y) and ŷ2 = arg minyg2(y). Then we have

‖ŷ2 − ŷ1‖`2 ≤ γ‖x̂2 − x̂1‖`2 .

Proof : First we have f ′1(x̂1) = Ax̂1 + b = 0 and
f ′2(x̂2) = Ax̂2 + b + c = 0, which leads to x̂2 −
x̂1 = −A−1c and thus ‖x̂2 − x̂1‖`2 = ‖A−1c‖`2 ≥
λmin(A−1)‖c‖`2 .

Since ŷ1 and ŷ2 are minimizers of g1(.) and g2(.) re-
spectively, by the optimality condition we have Aŷ1 +
b + y∗1 = 0 and Aŷ2 + b + c + y∗2 = 0, where y∗1 is a
subgradient of h at ŷ1 and y∗2 is a subgradient of h at
ŷ2. Since h(.) is a convex function, we have

h(z1) ≥ h(ŷ1) + 〈y∗1 , z1 − ŷ1〉

and
h(z2) ≥ h(ŷ2) + 〈y∗2 , z2 − ŷ2〉

for arbitrary z1, z2 ∈ Rq. By setting z1 = ŷ2 and
z2 = ŷ1 and combining with the optimality condition
we have (ŷ2 − ŷ1)TA(ŷ2 − ŷ1) + cT (ŷ2 − ŷ1) ≤ 0. It
follows that

λmin(A)‖ŷ2 − ŷ1‖2`2 ≤ (ŷ2 − ŷ1)TA(ŷ2 − ŷ1)

≤ −cT (ŷ2 − ŷ1) ≤ ‖c‖‖ŷ2 − ŷ1‖`2

which implies that ‖ŷ2 − ŷ1‖`2 ≤ ‖c‖/λmin(A). Fi-
nally by combining the upper and lower bounds of
‖c‖ we have ‖ŷ2 − ŷ1‖`2 ≤ γ‖x̂2 − x̂1‖`2 with γ =
(λmin(A)λmin(A−1))−1. Q.E.D.

The next lemma provides an asymptotic upper bound
on the number of selected variables, the proof of which
is similar to Lemma 4 in (Meinshausen and Yu, 2009).

Lemma 6 (Bound on # of selected variables)
For λ ≥ σen

√
n logmn, the maximal number of

selected variables, sup0≤ξ≤1

∑
k∈Aλ,ξ dk, is bounded,

with probability converging to 1 for n→∞, by

sup
0≤ξ≤1

∑
k∈Aλ,ξ

dk ≤ e2nsnd̄n. (16)

Follow from Lemmas 3, 4, and 6, the next lemma
bounds the variance part of the group Lasso estimator:

Lemma 7 Under the conditions of Theorem 1, with
probability tending to 1 for n→∞

‖βλ − β̂λ‖2`2 ≤ 2Cσ2 snd̄n logmn

n

e2
n

φ2
min(e2

nsnd̄n)
.

From all above, the proof of theorem 1 finishes by com-
bining Lemma 2 and Lemma 7. Q.E.D.

Corollary 1 (rate of convergence) Let the as-
sumptions of Theorem 1 be satisfied. Assume that
there exist constants 0 < κmin ≤ κmax < ∞
such that lim infn→∞ φmin(snd̄n log n) ≥ κmin and
lim supn→∞ φmax ≤ κmax. Then, for λ � σ

√
n logmn,

there exists a constant M > 0 such that, with proba-
bility tending to 1 for n→∞,

‖β − β̂λn‖2`2 ≤Mσ2 snd̄n logmn

n
. (17)

Proof: directly follows from theorem 1 by choosing a
constant positive sequence en. Q.E.D.

Remark 2 Lemma 6 implies that, with high proba-
bility, at most e2

nsnd̄n variables will be chosen by the
group Lasso estimator. When en = log n, we see that,
up to a logarithm factor, the selected variables is of the
same order of magnitude as the number of true nonzero
coefficients, which is snd̄n. We also see that under the
conditions of Corollary 1, the group Lasso estimator is
`2-consistent if snd̄n logmn/n→ 0. It implies that, if
sn = O(1), up to a logarithmic factor, the number of
variables within each group can increase almost as fast
as sample size n. If we have snd̄n = O(1), the number
of groups pn can increase almost as fast as o(exp(n)).
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4 Applications of the Main Results

4.1 Group Nonnegative Garrote

One application of the previous result is that when us-
ing the group Lasso solution as the initial estimator,
we can build a two-step estimator that is both esti-
mation and variable selection consistent by applying
the nonnegative garotte procedure. The main result
here is adapted from (Yuan and Lin, 2007), in which
they assume the initial estimator is `∞-norm consis-
tent and derive the result for fixed dimensionality. In
our case, Theorem 1 guarantees `2-norm consistency,
which is stronger than the `∞-norm consistency as in
(Yuan and Lin, 2007). As a consequence, we achieve
a variable selection consistency result with increasing
dimensions using the following defined group nonneg-
ative garrote procedure.

Definition 3 (Group nonnegative garrotte) As-
suming β̂init = β̂λ is the group Lasso solution obtained
from (1). Define Zj = Xj β̂

λ
j . For some γn > 0, the

group nonnegative garotte estimator is defined as

α̂NG(γ) = arg min
α

‖Y − Zα‖2`2 + γn

pn∑
j=1

αj (18)

where αj ≥ 0, j = 1, . . . , pn.

Equation (18) is a quadratic programming problem
with the polyhedral type constraint regions, therefore
the whole solution path can be solved efficiently (Yuan
and Lin, 2007). Theorem 2 establishes the variable se-
lection consistency result for the group nonnegative
garrote estimators with increasing dimensions. The
proof can be found in (Zhang et al., 2008).

Theorem 2 Under the conditions of Theorem 1,
when applying the group nonnegative garotte estima-
tor as in (18) to the group Lasso solution from (1),
there exists a sequence of γn, such that

P
(
S(α̂NG(γ)) = S(β)

)
→ 1. (19)

and the final estimator β̃ ≡ (β̃1, . . . , β̃pn)T with β̃j =
β̂jα̂

NG
j (γ) is also estimation consistent.

4.2 Sparse Additive Models

Sparse additive models (or SpAM) are first introduced
by Ravikumar et al. (2007). These models combine
the smoothness assumptions in nonparametric regres-
sion with sparsity assumptions in high dimensional
linear models. Consider an additive model Yi =∑pn
j=1 fj(Xij)+εi where each function fj can be repre-

sented by an orthonormal basis Bj = {ψj1, ψj2, . . .} for
the second-order Sobolev space Hj . If we assume the

true model is sparse, i.e. only a small number of com-
ponent functions are nonzero, then using a truncated
basis of size dn, a version of the SpAM estimate fj as
f̂j(xj) =

∑dn
k=1 β̂jkψk(xj), where β̂jk is the solution to

the minimization problem

min
β

n∑
i=1

{(
Yi −

pn∑
j=1

dn∑
k=1

βjkψjk(Xij)

)2

+λn

pn∑
j=1

√√√√ dn∑
k=1

β2
jk

}
(20)

where λn is the regularization parameter. Let βj be
the dn dimensional vector {βjk, k = 1, . . . , dn}, and
Ψj the n × dn matrix, Ψj [i, k] = ψjk(Xij), equation
(20) can be written as a group Lasso problem

β̂ = arg minβ‖Y −
pn∑
j=1

Ψjβj‖2`2 + λ∗n

pn∑
j=1

√
dn‖βj‖`2 (21)

with λ∗n = λn/
√
dn. This estimator is essentially non-

parametric since dn should increase with the sample
size. From Theorem 1 and Corollary 1 , we can obtain
the following consistency result (the proof is omited).

Theorem 3 (Consistency of SpAM) Assuming
the the number of nonzero component functions sn =
O(1), let dn = O(n1/5), pn = O(n4/5) and the true
function f =

∑
j fj with each fj in the 2-nd order

Sobolev space. Choosing λn � σ
√

log p+logn
n , we have

‖f̂ − f‖2L2 = OP

(
log pn
n4/5

)
(22)

where f̂ =
∑pn
j=1 f̂j =

∑pn
j=1 Ψj β̂j with β̂j from (21).

Definition 4 (Nonnegative garrote SpAM) For
sparse additive models, when using the solution to
Equation (21) as an initial estimator and apply the
group nonnegative garrote procedure, the final estima-
tor f̃ =

∑pn
j=1 Ψj β̃j with β̃j as in Theorem 2 is called

the nonnegative garrote SpAM (or Ng-SpAM).

From Theorems 2 and 3, it’s obvious that Ng-SpAM
is both estimation and variable selection consistent.

5 Experimental Results

In this section, we report experiments on both syn-
thetic and real datasets. They provide empirical evi-
dence to our theory as well as to the superior finite-
sample performance of the group nonnegative garrote
and the Ng-SpAM estimators.

Experiment 1 (Group nonnegative garrote) In
this simulation, we compare the group Lasso and the
group nonnegative garrote in high-dimensional prob-
lems. We use a similar setting as in Zhao and Yu
(2007) by taking different (n, p, d, s) combinations with
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each of them representing sample size, number of
groups, number of variables per group, and the num-
ber of nonzero groups. For each (n, p, d, s) combina-
tion, we sample 100 times the covariance matrix Σ
from a Wishart distribution Wishart(pd, Ipd) and the
true parameter vector βj for the j-th nonzero group is
(8 · (0.5)j−1, . . . , 8 · (0.5)j−1)T . For each Σ we sample
a design matrix X from the multivariate normal dis-
tribution N (0,Σ). The response vector Y = Xβ + ε
is then calculated using ε ∼ N (0, (

√
0.6)2). The noise

level σ2 is set to 0.6 to manifest the asymptotic char-
acterizations.

For each design, 1000 simulations are conducted by re-
peatedly generating the noise vectors. For the group
nonnegative garrote we use the group Lasso as the
initial estimator, for which the tuning parameter λn
is automatically chosen such that there are exactly
min{n, p} − 1 nonzero groups kept. The tuning pa-
rameter γn for the second step is chosen optimally over
the solution path to find the correct model if possible.
For the group Lasso we also select its optimal tuning
parameter λ∗n by searching over the whole path. The
advantage of using such “oracle values” is that the sim-
ulation results will only depend on different methods.

Table 1: (Experiment 1) variable selection accuracy

(n, p, d, s) gLasso(sd) gNg(sd)

(100, 10, 4, 2) 0.9917 (0.0270) 1.000 (0.00)

(100, 16, 5, 3) 0.9808 (0.0343) 1.000 (0.00)

(100, 32, 4, 3) 0.9619 (0.0810) 1.000 (0.00)

(100, 40, 4, 5) 0.7068 (0.1121) 1.000 (0.00)

(100, 50, 4, 6) 0.4111 (0.1295) 1.000 (0.00)

The results are reported in Table 1, where gLasso rep-
resents the group Lasso and gNg represents the group
nonnegative garrote. For each (n, p, d, s) combination
the mean percentage of the variable selection accuracy
over all designs and the corresponding standard devia-
tions are listed. It’s obvious that variable selection ac-
curacy of the group Lasso decreases with the increase
of p, d and s. This is consistent with the Lasso re-
sult as in Zhao and Yu (2007). As a contrast, the
group nonnegative garrote achieves a perfect variable
selection performance. This suggests that the initial
group Lasso estimator are reasonably good in the es-
timation sense. Since the result from Corollary 1 is
a rate argument, it’s impossible to verify it quantita-
tively. We will provide some qualitative justifications
based on the nonnegative garrote regularization paths.
This is shown in the next experiment. The statistical
significance of these results is justified by a paired two-
sample t-test.

Experiment 2 (Sparse additive models) We gen-
erate n = 100 observations from a 10-dimensional

sparse additive model with four relevant variables:
Yi =

∑4
j=1 fj(Xij) + εi, where εi ∼ N (0, 1) and

f1(x) = exp(−2x), f2(x) = (2x − 1)2, f3(x) =
sin(2πx)

2−sin(2πx) , and f4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) +
0.2 sin2(2πx) + 0.4 cos3(2πx) + 0.5 sin3(2πx). The co-
variates are generated as Xj = (Wj + tU)/(1 + t),
j = 1, . . . , 10 where W1, . . . ,W10 and U are i.i.d. sam-
pled from Uniform(−2.5, 2.5). Thus, the correlation
between Xj and Xj′ is t2/(1 + t2) for j 6= j′. Alto-
gether 100 designs with 1000 simulations per design
are generated.

t gLasso− SpAM(sd) Ng − SpAM(sd)

t = 0.0 0.9991 (0.0021) 1.0000 (0.0000)

t = 0.5 0.9942 (0.0137) 1.0000 (0.0000)

t = 1.0 0.9835 (0.0208) 1.0000 (0.0000)

t = 1.5 0.9597 (0.0493) 1.0000 (0.0000)

t = 2.0 0.9390 (0.0530) 0.9999 (0.0003)

t = 2.5 0.8481 (0.0722) 0.9982 (0.0007)

t = 3.0 0.7488 (0.0993) 0.9856 (0.0020)
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Figure 1: Experiment 2 results: (Upper) Variable selec-
tion accuracy table; (Middle) A typical nonnegative gar-
rote regularization path (t = 2.0) and its zoomed-in plot
on the range [0,1.5], the vertical dashed line separates the
relevant and irrelevant variabls; (Lower) The group Lasso
fitted component functions (solid curve) and the truth
(dashed curve) for the fist 8 dimensions (t = 2.0).

For each covariate, we expand it using the Legendre
basis and directly applies the group Lasso as in Equa-
tion (21) with the group size d = 4. This method is



         383

Estimation Consistency of the Group Lasso and its Applications

denoted as glasso-SpAM. Choosing the tuning param-
eter such that there are exactly 8 groups are nonzero,
we can apply the group nonnegative garrote on this
initial estimator and denote the obtained estimator as
Ng-SpAM. The results are reported in Figure 1. The
upper variable selection accuracy table is consistent
with the previous experiment: the glasso-SpAM per-
forms worse when the correlations become larger. The
two middle path plots are from one typical run when
t = 2, in which glasso-SpAM fails to correctly identify
the true model but Ng-SpAM succeeds. From Equa-
tion (18), if γn = 0, the final estimator obtained from
the group nonnegative garrote corresponds to directly
calculating the ordinary least square (OLS) solution
using the basis expanded design. From the full and the
zoomed-in paths in Figure 1, we see that the nonneg-
ative garrote coefficients for the 4 relevant dimensions
finally goes to 1, while those for the irrelevant dimen-
sions shoot to much larger values. This suggests that
the initial glasso-SpAM solution, though overselects,
is very close to the OLS solution by directly regressing
the response on the 4 relevant groups. The lower fitted
component function plots also confirm this, with the
scales of the 4 irrelevant dimensions being very small.

Experiment 3: (Boston Housing Data) We ap-
ply the Ng-SpAM to the corrected Boston Housing
data in Ravikumar et al. (2007). The dataset con-
tains 506 records about housing prices in suburbs of
Boston. Each record has 10 continuous features which
might be useful in describing housing price, and the re-
sponse variable is the median house price. We consider
a sparse additive model and using exactly the same ex-
perimental setup as in Ravikumar et al. (2007) except
that their methods are replaced by the Ng-SpAM. The
results are reported in Figure 2.
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Figure 2: (Experiment 3)The Boston Housing data (Up-
per) the fitted component functions for the variables rm
and lsat; (Lower) The regularization path with the dashed
vertical line represents the 5-fold CV cutpoint.

The upper two plots show the fitted component func-
tions for the variables rm and lsat, their shapes are
very close to those obtained in Ravikumar et al.
(2007). The lower plot illustrates the group nonnega-
tive garrote path with the dashed vertical line repre-
sents the model selected by the 5-fold cross-validation.
Altogether 5 variables are selected by our method:
rm, lsat, ptratio, crim and nox, which is consistent with
Ravikumar et al. (2007) except that they treat nox as
borderline important. More detailed results and com-
parisons will be reported elsewhere.
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