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Abstract

We introduce adaptive sequential rejection
sampling, an algorithm for generating exact
samples from high-dimensional, discrete dis-
tributions, building on ideas from classical AI
search. Just as systematic search algorithms
like A* recursively build complete solutions
from partial solutions, sequential rejection
sampling recursively builds exact samples
over high-dimensional spaces from exact sam-
ples over lower-dimensional subspaces. Our
algorithm recovers widely-used particle fil-
ters as an approximate variant without adap-
tation, and a randomized version of depth
first search with backtracking when applied
to deterministic problems. In this paper,
we present the mathematical and algorith-
mic underpinnings of our approach and mea-
sure its behavior on undirected and directed
graphical models, obtaining exact and ap-
proximate samples in a range of situations.

1 Introduction

Efficient inference in high-dimensional, discrete prob-
ability models is a central problem in computational
statistics and probabilistic AI. In this paper, we intro-
duce a recursive algorithm for exact sampling aimed
at solving this problem in the presence of multimodal-
ity. We do this by generalizing ideas from classic AI
search to the stochastic setting. Just as systematic
search algorithms like A* recursively build complete
solutions from partial solutions, sequential rejection
sampling recursively builds exact samples over high-
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dimensional spaces from exact samples over lower-
dimensional subspaces. Our method exploits and gen-
eralizes ideas from classical AI search for managing de-
terministic dependencies, including depth first traver-
sal with early constraint checking and backtracking, to
tractably generate exact and approximate samples.

Many popular approaches to inference, such as mean-
field variational methods (Jordan et al., 1999), con-
vex relaxations (Wainwright et al., 2002; Sontag and
Jaakkola, 2008), and generalized belief propagation
(Yedidia et al., 2001), focus on approximating MAP
assignments or (low-dimensional, e.g. 1 or 2 variable)
marginal distributions. While effective in many set-
tings, low-dimensional marginals (and MAP assign-
ments) often do not capture the essential features of a
distribution, especially in the presence of multimodal-
ity. Homogeneous Ising models, where the probability
of a state x = (x1, . . . , xn) is1

P (x) ∝ exp
{
−J

∑
(i,j)∈E

xixj

}
, x ∈ {−1, 1}n, (1)

provide one source of extreme examples. As the cou-
pling parameter J increases, the joint distribution on
spins approaches a 2-component mixture on the “all
up” and “all down” states, which has only 1 bit of en-
tropy. A MAP approximation misses the fundamental
bimodality of the distribution, while the minimum-KL
product-of-marginals approximation confuses this dis-
tribution with the uniform distribution on spins.

When a distribution contains many widely separated
modes, and is therefore difficult to parametrically
approximate, simulation-based inference seems ideal.
Exact and approximate sampling are also of intrin-
sic interest in computational physics (Propp and Wil-
son, 1996; Edwards and Sokal, 1988). Unfortunately,
popular methods like Gibbs sampling often run into

1We use f(x) ∝ g(x, y) to mean that f(x) = c(y) g(x, y)
for some (in the case of distributions, normalizing) constant
of proportionality c(y).
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severe convergence problems in precisely these set-
tings. This difficulty motivates a number of specialized
samplers that exploit sophisticated data augmentation
techniques (Swendsen and Wang, 1987), as well as a
variety of model-specific proposal designs.

Our algorithm mitigates the problems of multimodal-
ity by generalizing ideas for managing deterministic
dependencies from the constraint satisfaction litera-
ture. In particular, it operates by a stochastic gen-
eralization of systematic search. In deterministic sys-
tematic search, solutions to a problem are built up
piece-by-piece2. The first complete candidate solution
is either exact (as in backtracking search or A*) or
approximate (as in beamed searches), and strategies
for search tree expansion are often used to manage
deterministic dependencies among chains of choices.
Our algorithm automatically recovers a randomized
variant of one such method, depth first search with
backtracking and early constraint checking, when ap-
plied to constraint satisfaction problems, generalizing
these ideas to the setting of sampling. Furthermore,
if the rejection step in our algorithm is replaced with
importance sampling with resampling (and particular
restricted choices of variable orderings are used) we re-
cover widely-used particle filtering algorithms for ap-
proximate sampling.

In this paper, we present the mathematical and algo-
rithmic underpinnings of our approach and measure its
behavior on Ising models, causal networks and a stereo
vision Markov random field, obtaining exact and ap-
proximate samples in a range of situations.

2 The Adaptive Sequential Rejection
Algorithm

Consider the problem of generating samples from an
high-dimensional discrete distribution with density
P (x), x ∈ X. In many cases, we can only efficiently
compute the density to within a multiplicative con-
stant; that is, we can compute a function P̄ (x) such
that P (x) = P̄ (x)/Z. This setting arises in fac-
tor graph inference, where the normalization constant
Z =

∑
x∈X P̄ (x) is due to either the partition function

2Contrast with local search, e.g. fixed-point iteration,
where a complete but possibly poor quality approximate
solution is repeatedly iterated upon until it stabilizes.
Markov chain Monte Carlo methods generalize this fixed-
point iteration idea to the space of distributions, asymptot-
ically converging to the correct distribution and recovering
deterministic fixed-point algorithms for particular proposal
and target choices. Techniques like coupling from the past
(Propp and Wilson, 1996; Huber, 2002; Childs et al., 2000)
provide the distributional analogues of termination analy-
sis, sometimes allowing automatic determination of when
exact samples have been obtained.

of the underlying undirected model or the marginal
likelihood of the evidence in the underlying directed
model. Let P̄ (x) = P̄ (y, z) = ψ1(y)ψ2(y, z), where
X = Y × Z is a decomposition of the state that re-
sults in a factored representation for P̄ . For example,
we might take Z to be one variable, and Y to be all
the rest. Our algorithm generates exact samples from
P (y, z) by recursively generating an exact sample ŷ
from P̄ ′(y) = ψ1(y) (which we assume has an analo-
gous decomposition, i.e. Y and ψ1 factor), and then
extending ŷ to an exact sample (ŷ, ẑ) from P (y, z) by
rejection.

In order to apply our algorithm to an arbitrary factor
graph, we will need a way of recursively decompose a
model into a nested sequence of distributions. We will
return to this issue later in the paper, using ideas from
deterministic search, where variables will be brought
in one at a time. First, we present the basic recursion
in our algorithm, assuming a decomposition has been
chosen.

Assume (by induction) that we have an exact sample
ŷ from P ′(y). Let P̄ (y) =

∑
z′ P̄ (y, z′) be the (un-

normalized) marginal distribution of y under P . We
define3 a (Gibbs) transition kernel from Y into Z by

QP (z | y) ,
P̄ (y, z)
P̄ (y)

(2)

=
ψ1(y)ψ2(y, z)∑
z′ ψ1(y)ψ2(y, z′)

(3)

=
ψ2(y, z)∑
z′ ψ2(y, z′)

, (4)

and sample ẑ from QP ( · | ŷ). We then treat (ŷ, ẑ),
whose density is P ′(y)QP (z | y), as a proposal to a
rejection sampler for P (y, z). Let x̂ = (ŷ, ẑ) and define
the weight of the sample x̂ as

WP ′→P (x̂) ,
P̄ (ŷ, ẑ)

P̄ ′(ŷ)QP (ẑ | ŷ)
(5)

=
P̄ (ŷ)
P̄ ′(ŷ)

(6)

=
∑

z′ ψ1(ŷ)ψ2(ŷ, z′)
ψ1(ŷ)

(7)

=
∑
z′

ψ2(ŷ, z′). (8)

Note that the weight does not depend on ẑ and so we
consider the weight WP ′→P (y) a function of y.

We then accept x̂ as an exact sample from P with
probability

WP ′→P (ŷ)
CP ′→P

, (9)

3We will use , to denote definitions.
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where CP ′→P is any constant such that CP ′→P ≥
WP ′→P (y) for all y ∈ Y. In general, loose up-
per bounds on WP ′→P (y) are easy to find but in-
troduce unnecessary rejections. On the other hand,
overconfident values of C are also easy to find, but
will result in approximate samples (or, more precisely,
exact samples from the distribution proportional to
min{P̄ (y, z), CP ′→P P̄

′(y)QP (z | y)}.) Both variants
may have practical value. Here, we focus on the setting
where we actually use the optimal rejection constant:

C∗P ′→P , max
y

WP ′→P (y) = max
y

∑
z′

ψ2(y, z′). (10)

If y = (y1, . . . , yn) is high-dimensional, then the worst
case complexity of calculating C∗P ′→P is exponential
in n. However, when the sequence of distributions we
are using has sparse dependencies (i.e., when ψ2(y, z)
is a function of only O(log n) dimensions yi), then we
can calculate C∗P ′→P in polynomial time. For exam-
ple, in 2-d grid Ising models, ψ2 depends on at most
three neighbors and therefore C∗ can be calculated in
constant time.

This inductive argument describes the non-adaptive
sequential rejection sampler. We apply it to sampling
from the joint distribution of factor graph models by
automatically constructing a nested sequence of distri-
butions from orderings on the variables, using machin-
ery we introduce later. Sequential importance sam-
pling with resampling (SIR) can be viewed as an ap-
proximate variant, where the rejection step - produc-
ing one exact sample, or failing - is replaced with an
importance sampling and resampling step propagat-
ing k particles approximately drawn from the target.
The weight per particle is the same as in sequential
rejection.

The choice of the Gibbs transition kernel is important.
Incorporating the ψ2(y, z) factor into the proposal pre-
vents the algorithm from proposing samples ẑ that are
already known to be incompatible with the setting ŷ.
Thus we recover early constraint checking, and gen-
eralize it to favor paths that seem probable given the
current partial assignment.

2.1 Adaptation Stochastically Generalizes
Backtracking

Systematic searches typically avoid reconsidering par-
tial solutions that have been discovered inconsistent;
this behavior is known as backtracking, and requires
dynamically recording the information about inconsis-
tent states obtained over the course of search. We
accomplish this in the broader setting of sampling by
introducing an adaptation rule into our sampler, which
recovers this deterministic avoidance in the limit of de-
terministic inconsistency.

Following Eq. 9, the non-adaptive sampler with the
optimal rejection constants C∗ accepts samples with
probability

αP ′→P =
EP ′(WP ′→P (ŷ))

C∗P ′→P

. (11)

From Eq. 6, we have that

WP ′→P (y) ∝ P (y)
P ′(y)

, (12)

and therefore, using the definition of C∗P ′→P and can-
celing the constant of proportionality shared between
W and C∗, we have

αP ′→P =

∑
y P

′(y) P (y)
P ′(y)

maxy
P (y)
P ′(y)

(13)

= min
y

P ′(y)
P (y)

. (14)

Note that the acceptance probability αP ′→P depends
only on the choice of P ′ and P and is precisely the
smallest ratio in probability assigned to some y ∈ Y.4

An interesting special case is when the simpler distri-
bution P ′(y) matches the marginal P (y). In this case,
Wp′→p = 1 and we always accept.5 Assuming each
attempt to generate samples from P ′ by rejection suc-
ceeds with probability αP ′ , the entire rejection sam-
pler will succeed with probability αP ′αP ′→P . If this
probability is O(2−w), where w is the tree width of
the factor graph, then, in expectation, we will be no
better off than using variable clustering and dynamic
programming to calculate marginals and sample ex-
actly.

Our goal then is to drive αP ′→P → 1 (and inductively,
αP ′ → 1). Consider the extreme case where a sam-
pled value ŷ is revealed to be inconsistent. That is,
ψ2(ŷ, z) = 0 for all z and therefore WP ′→P (y) = 0.
We should then adjust P ′ (and its predecessors, recur-
sively) so as to never propose the value y = ŷ again.
Certainly if P ′ is the marginal distribution of P (re-
cursively along the chain of rejections), this will take
place.

Consider the (unnormalized) proposal density

P̄ ′S(y) = P̄ ′(y)
∏
y′∈S

(
WP ′→P (y′)
C∗P ′→P

)δyy′

(15)

4In particular, the acceptance is positive only if P (y) >
0 =⇒ P ′(y) > 0 (i.e., P ′ is absolutely continuous with
respect to P ).

5While it may be tempting to think the problem is
solved by choosing P = P ′, if each stage of the algo-
rithm performed this marginalization, the overall complex-
ity would be exponential. The key to adaptation will be
selective feedback.



         403

Exact and Approximate Sampling by Systematic Stochastic Search

where S ⊂ Y and δyy′ is the Kronecker delta satisfying
δyy′ = 1 if y = y′ and 0 otherwise. Then

WP ′
S→P (x) ,

P̄ (y, z)
P̄ ′S(y)QP (z | y)

(16)

=
WP ′→P (y)∏

y′∈S

(
WP ′→P (y′)

C∗
P ′→P

)δyy′
(17)

=

{
C∗P ′→P y ∈ S
WP ′→P (y) y 6∈ S,

(18)

where step (17) follows from Eq. (6). Therefore
C∗P ′

S→P = C∗P ′→P . In particular, if S = Y, then
WP ′

S→P (y) = C∗P ′
S→P = C∗P ′→P and every sample is

accepted. In fact,

P̄ ′S=Y(y) = P̄ ′(y)
∏

y′∈Y

(
WP ′→P (y′)
C∗P ′→P

)δyy′

(19)

∝ P̄ ′(y)WP ′→P (y) (20)

= P̄ ′(y)
P̄ (y)
P̄ ′(y)

(21)

= P̄ (y) (22)

and therefore an exact sample from P ′Y is a sample
from the marginal distribution of P . The Gibbs kernel
exactly extends this to a sample from the joint.

Adaptation then involves the following modification
to our algorithm: after proposing a sample (ŷ, ẑ), we
augment S with ŷ. As S → Y, P̄ ′S(y) → 1

C∗
P ′→P

P̄ (y)
pointwise.

This change can be implemented efficiently by stor-
ing a hashmap of visited states for every distribu-
tion in the sequence and modifying density evaluation
(and, therefore, the Gibbs kernels) to reflect hashmap
contents. Each stage of the sampler pushes states
to the previous stage’s hashmap as adaptation pro-
ceeds, moving each proposal distribution towards the
ideal marginal. Because such adaptation leaves C∗

unchanged (see Appendix), adaptation increases the
algorithmic complexity by only a linear factor in the
number of sampling attempts, with overall complex-
ity per attempt still linear in the number of variables.
Taken together, the hashmaps play the role of the
stack in a traditional backtracking search, recording
visited states and forbidding known bad states from
being proposed.

2.2 Sequences of Distributions for Graphical
Models

To apply this idea to graphical models, we need a way
to generically turn a graphical model into a sequence

a)

x1f1 x2 f2f12

x3f3

f13

x4 f4f34

f24

b)

x1f1

x3f3

f13

Figure 1: A four node Ising model, and its restriction to
the variables x1 and x3.

of distributions amenable to adaptive sequential rejec-
tion. We accomplish this - and introduce further ideas
from systematic search - by introducing the idea of a
sequence of restrictions of a given factor graph, based
on a variable ordering (i.e. permutation of the vari-
ables in the model). Each sequence of restrictions can
be deterministically mapped to a nested sequence of
factor graphs which, for many generic orderings, cap-
ture a good sequence of distributions for sequential
rejection under certain analytically computable condi-
tions.

We denote by Xi a random variable taking values xi ∈
Xi. If V = (X1, . . . , Xk) is a vector random variables,
then we will denote by XV the cartesian product space
X1 × · · · ×Xk in which the elements of V take values
v = (x1, . . . , xk).

Definition 2.1 A factor graph G = (X,Ψ, V )
is an undirected X,Ψ-bipartite graph where X =
(X1, . . . , Xn) is a set of random variable and Ψ =
{ψ1, . . . , ψm} is a set of factors. The factor ψi rep-
resents a function XVi

7→ [0,∞] over the variables
Vi ⊂ X adjacent to ψi in the graph. The graph repre-
sents a factorization

P (v) = P (x1, . . . , xn) =
1
Z

∏
i

ψi(vi) (23)

of the probability density function P , where Z is the
normalization constant.

Definition 2.2 The restrictionGS of the factor graph
G = (X,Ψ, V ) to a subset S ⊂ X is the subgraph
(S,ΨS , VS) of G consisting of the variables S, the
collection of factors ΨS = {ψi ∈ Ψ | Vi ⊂ S}
that depend only on the variables S, and the edges
VS = {Vi | ψi ∈ ΨS} connecting the variables S and
factors ΨS. We denote by ZS the normalization con-
stant for the restriction.

See Figure 1 for an example restriction of an Ising
model. Consider a factor graph G = (X,Ψ, V ) and let
X1:k = {x1, . . . , xk} ⊂ X, (k = 1, . . . , n) be the first k
variables in the model under some order. The sequence
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of distributions we consider are the distributions given
by the restrictions GX1:k , k = 1, . . . , n.

We recover likelihood weighting (generalizing it to in-
clude resampling) on Bayesian networks when we use
the importance variant of our algorithm and a topo-
logical ordering on the variables. Similarly, we recover
particle filtering when we apply our method to time se-
ries models, with resampling instead of rejection and
an ordering increasing in time.

In this paper, we focus on generically applicable strate-
gies for choosing an ordering. All our exact sam-
pling results use a straightforward ordering which first
includes any deterministically constrained variables,
then grows the sequence along connected edges in
the factor graph (with arbitrary tie breaking). This
way, as in constraint propagation, we ensure we sat-
isfy known constraints before attempting to address
our uncertainty about remaining variables. If we do
not do this, and instead sample topologically, we find
that unlikely evidence will lead to many rejections (and
approximate rejection, i.e. likelihood weighting, will
exhibit high variance). In general, we expect finding
an optimal ordering to be difficult, although heuris-
tic ordering information (possibly involving consider-
able computation) could be exploited for more efficient
samplers. An adaptive inference planner, which dy-
namically improves its variable ordering based on the
results of previous runs, remains an intriguing possi-
bility.

3 Experiments

First, we measure the behavior on ferromagnetic Ising
models for a range of coupling strengths, including the
critical temperature and highly-coupled regimes where
Gibbs samplers (and inference methods like mean-field
variational and loopy belief propagation) have well-
known difficulties with convergence; see Figure 3 shows
some of our results.

We have also used our algorithm to obtain exact sam-
ples from 100x100-dimensional antiferromagnetic (re-
pulsive) grid Ising models at high coupling, with no re-
jection, as is expected by analytic computation of the
αs, describing probability of acceptance. At this scale,
exact methods such as junction tree are intractable
due to treewidth, but the target distribution is very
low entropy and generic variable orderings that respect
connectedness lead to smooth sequences and there-
fore effective samplers. We have also generated from
exact samples from 20x20-dimensional ferromagnetic
grid Isings at more intermediate coupling levels, where
adaptation was critical for effective performance.

We also measured our algorithm’s behavior on ran-

Figure 2: (left 4) Exact samples from a 10x10-
dimensional grid ferromagnetic Ising just below the crit-
ical temperature. (right 4) Exact samples from a 10x10-
dimensional grid ferromagnetic Ising just above the critical
temperature.
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Figure 3: (left) Ferromagnetic (right) Antiferromag-
netic. (both) Frequency of acceptance in nonadaptive
(blue, lower) and adaptive (red, higher) sequential rejec-
tion as a function of coupling strength J . Naive rejection
approaches suffer from exponential decay in acceptance
probability with dimension across all coupling strengths,
while generic MCMC approaches like Gibbs sampling fail
to converge when the coupling reaches or exceeds the criti-
cal value. Note that adaptive rejection improves the bound
on the region of criticality.

domly generated (and in general, frustrated) Ising
models with coupling parameters sampled from
U [−2, 2]. We report results for a typical run of the
adaptive and non-adaptive variants of sequential re-
jection sampling on a typical problem size; see Figure
4 for details. We also note that we have successfully
obtained exact samples from 8x8-dimensional Isings
with randomly generated parameters, using adapta-
tion. On the models we tested, we obtained our first
sample in roughly 5000 attempts, reducing to roughly
one sample per 1000 attempts after a total of 100,000
had been made.

Given the symmetries in the pairwise potentials in
(even) a frustrated Ising model without external field -
the score is invariant to a full flip of all states - our al-
gorithm will always accept with probability 1 on tree-
structured (sub)problems. This is because the com-
bination of Gibbs proposals (i.e. the arc-consistency
insight) with the generic sequence choice (connected
ordering) can always satisfy the constraints induced
by the agreement or disagreement on spins in these
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Figure 4: Comparison of adaptive (top-red, center) and
nonadaptive (top-blue/dashed, bottom) rejection sampling
on a frustrated 6x6-dimensional Ising model with uniform
[−2, 2] distributed coupling parameters. (top) Cumulative
complete samples over 100,000 iterations. (lower plots) A
black dot at row i of column j indicates that on the jth
iteration, the algorithm succeed in sampling values for the
first i variables. Only a mark in the top row indicates a suc-
cessful complete sample. While the nonadaptive rejection
sampler (bottom) often fails after a few steps, the adaptive
sampler (center), quickly adapts past this point and starts
rapidly generating samples.

settings. Accordingly, our algorithm is more efficient
than other exact methods for trees (such as forward
filtering with backward sampling) in these cases. If,
on the other hand, the target distribution does not
contain this symmetry (so some of the initial choices
matter), there will be some probability of rejection,
unlike with forward filtering and backward sampling.
This helps to explain the bands of rejection sometimes
seen in the nonadaptive algorithm and the opportunity
for adaptation on Ising models, as it is impossible for
the algorithm to reject until a variable is added when
its already added neighbors disagree.

We also applied our method to the problem of diagnos-
tic reasoning in bipartite noisy-OR networks. These
problems motivated several variational inference algo-
rithms and in which topological simulation and belief
propagation are known to be inaccurate (Saul et al.,
1996). Furthermore, as in the ferromagnetic Ising set-
ting, it seems important to capture the multimodal-
ity of the posterior. A doctor who always reported
the most probable disease or who always asserted you
were slightly more likely to be sick having visited him
would not have a long or successful professional life.
The difficulty of these problems is due to the rarity of
diseases and symptoms and the phenomenon of “ex-
plaining away”, yielding a highly multimodal posterior
placing mass on states with very low prior probability.
We explored several such networks, generating sets of

Figure 5: Comparison of adaptive (top-red, center) and
nonadaptive (top-blue/dashed, bottom) rejection sampling
for posterior inference on a randomly generated medical di-
agnosis network with 20 diseases and 30 symptoms. The
parameters are described in the main text. (top) Cumu-
lative complete samples over 100,000 iterations. (lower
plots) show the trajectories of a typical adaptive and non-
adaptive run in the same format as Figure 4. Here, adap-
tation is critical, as otherwise the monolithic noisy-OR fac-
tors result in very low acceptance probabilities in the pres-
ence of explaining away.

symptoms from the network and measuring both the
difficulty of obtaining exact samples from the full pos-
terior distribution on diseases and the diagnostic ac-
curacy. Figure 5 shows exact sampling results, with
and without adaptation, for a typical run on a typical
network, generated in this regime. This network had
20 diseases and 30 symptoms. Each possible edge was
present with probability 0.1, with a disease base rate
of 0.2, a symptom base rate of 0.3, and transmission
probabilities of 0.4.

The noisy-OR CPTs result in large factors (with all
diseases connected through any symptoms they share).
Accordingly, the sequential rejection method gets no
partial credit by default for correctly diagnosing a
symptom until all values for all possible diseases have
been guessed. This results in a large number of rejec-
tions. Adaptation, however, causes the algorithm to
learn how to make informed partial diagnoses better
and better over exposure to a given set of symptoms.

Finally, we applied our method to a larger-scale ap-
plication: approximate joint sampling from a Markov
Random Field model for stereo vision, using param-
eters from (Tappen and Freeman, 2003). This MRF
had 61,344 nodes, each with 30 states; Figure 6 shows
our results. We suspect exact sampling is intractable
at this scale, so we used the importance relaxation
of our algorithm with 1 and 5 particles. Because of
the strong - but not deterministic - influence of the
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Figure 6: Comparison of an aggressively annealed Gibbs
sampler (linear temperature schedule from 20 to 1 over
200 steps) to the non-adaptive, importance relaxation of
our algorithm. The red circle denotes the mean of three
1-particle runs. The horizontal bars highlight the quality
of our result. (a) Gibbs stereo image after sampling work
comparable to an entire 1-particle pass of (b) our algo-
rithm. (c) Gibbs stereo image after 140 iterations.

external field, we needed a more informed ordering.
In particular, we ordered variables by their restricted
entropy (i.e. the entropy of their distribution under
only their external potential), then started with the
most constrained variable and expanded via connect-
edness using entropy to break ties. This is one reason-
able extension of the “most constrained first” approach
to variable choice in deterministic constraint satisfac-
tion. The quality of approximate samples with very
few particles is encouraging, suggesting that appropri-
ate sequentialization with arc consistency can lever-
age strong correlations to effectively move through the
sample space.

4 Discussion

Our experiments suggest that tools from systematic
search, appropriately generalized, can mitigate prob-
lems of multimodality and strong correlation in sam-
pler design. When variables (and their attendant soft
constraints) are incorporated one at a time, a sampler
may be able to effectively find high probability regions
by managing correlations one variable at a time. Addi-
tionally, any sample produced by sequential rejection
is, by definition, exact.

Prior work generating samples from very large (and
sometimes critical) ferromagnetic Isings has instead
relied on specialized cluster sampling methods to man-
age the correlation problem. Given a convergent
Markov chain, coupling from the past techniques pro-
vide termination analysis; i.e., they give a proof of

exact convergence. Comparing and combining these
approaches seems fruitful, and would likely build on
the theory of sequential Monte Carlo samplers (and in
particular, backward kernels) from (Del Moral et al.,
2006) and (Hamze and de Freitas, 2005). In the case of
approximate sampling, other work has used determin-
istic search as the subroutine of a sampler (Gogate and
Dechter, 2007), rather than recovering search behavior
in a limit. (Southey et al., 2002) uses local (not sys-
tematic) search to improve the quality of the proposal
distribution for an importance sampler.

The rejection rate plots for Ising models show that
our algorithm runs into difficulty near the phase tran-
sition, where the distribution is the most complex. Its
effectiveness may track semantic features of the dis-
tribution, and it would be interesting to study this
relationship analytically. It would also be interesting
to explore SAT problems, which are known to empiri-
cally exhibit a phase transition in hardness. It would
also be interesting to see how the rejection rate and
memory consumption of adaptation in our algorithm
relate to the cost of dynamic programming (ala junc-
tion tree), and to explore the behavior of straightfor-
ward blocked variants of our method where multiple
variables are added simultaneously.

Exact sampling may be truly intractable for large
problems, with exact samplers useful primarily as a
source of proposals for approximate algorithms. How-
ever, it seems that recursive control structures from
combinatorial optimization may be generally useful
in sampler design, and encourage the development of
samplers whose efficiency actually improves as soft
constraints harden and probabilistic reasoning prob-
lems turn into satisfiability. By constraining our sam-
pling algorithms to sample uniformly from satisfying
solutions in the deterministic limit, we may arrive at
more useful methods for the uncertain reasoning prob-
lems central to probabilistic AI.
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5 Appendix

If the distribution P (x) is not the target distribu-
tion but instead the distribution at some intermedi-
ate stage in a sequential rejection sampler, the down-
stream stage will adapt P to match its marginal. Let
R ⊂ X, and consider the adapted distribution PR(x)
with additional factors φx ∈ [0, 1] for x ∈ R. For
x 6∈ R, let φx = 1. We show that these additional fac-
tors satisfy the existing pre-computed bound C∗ and
that sequential rejection on the adapted distribution

PR eventually accepts every sample. In this case, the
weight of a sample is

WP ′→PR
(y, z) ,

P̄R(y, z)
P̄ ′(y)QPR

(z | y)
(24)

=
∑
z′

(
ψ2(y, z′)

∏
x∈R

φ
δx(y,z′)
x

)
(25)

and therefore

WP ′→PR
(y, z) ≤

∑
z′

ψ2(y, z′) = WP ′→P (y). (26)

We claim that WP ′
S→PR

(y, z) ≤ C∗P ′→P . Let R′ and
φ′ be the set of x = (y, z) and weights that have been
fed back to P in previous iterations of the algorithm.
Consider

WP ′
S→PR

(y, z) ,
P̄R(y, z)

P̄ ′S(y)QPR
(z | y)

(27)

=
WP ′→PR

(y)∏
y′∈S

(
WP ′→P

R′
(y′)

C∗
P ′→P

)δyy′
(28)

=

WP ′→PR
(y) y 6∈ S

WP ′→PR
(y)

WP ′→P
R′

(y)C
∗
P ′→P y ∈ S. (29)

Eq. (26) implies that when y 6∈ S, we have
WP ′

S→PR
(y, z) ≤WP ′→P (y) ≤ C∗P ′→P . Therefore, the

claim is established for y ∈ S if
WP ′→PR

(y)

WP ′→P
R′

(y) ≤ 1. We

have that

WP ′→PR
(y)

WP ′→PR′ (y)
=
∑

z′ ψ2(y, z′)
∏

x∈R φx
δx(y,z′)∑

z′ ψ2(y, z′)
∏

x∈R′ φ′x
δx(y,z′)

(30)

First note that, x ∈ R′ =⇒ x ∈ R. There-
fore, the inequality is satisfied if φ′x ≥ φx for all x.
We prove this inductively. When a value x is first
added to R, x 6∈ R′, hence φ′x = 1 ≥ φx. By in-
duction, we assume the hypothesis for φx and show
that φ′y ≥ φy. Consider Eq. (29). If y 6∈ S, then

φy =
WP ′→PR

(y)

C∗
P ′→P

≤ WP ′→P (y)
C∗

P ′→P

≤ 1 = φ′y by the opti-
mality of C∗ and Eq. 26. If y ∈ S, we have φ′x ≥ φx

for all x by induction, proving the claim.

Evidently, the weights decrease monotonically over the
course of the algorithm. Of particular note is the case
when R = X and S = Y: here the acceptance ratio
is again 1 and we generate exact samples from PR.
Of course, |R| and |S| are bounded by the number of
iterations of the algorithm and therefore we expect sat-
uration (i.e., |R| = |X|) only after exponential work.


