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Abstract

Pac-Bayes bounds are among the tightest
generalization bounds for classifiers learned
from iid data, especially for margin clas-
sifiers. However, there are many practical
cases where the training data show some de-
pendencies and where the usual iid assump-
tion does not hold. Stating generalization
bounds for such frameworks is therefore of
the utmost interest, both from theoretical
and practical standpoints. Here, we propose
the first Pac-Bayes generalization bounds for
classifiers trained on data exhibiting interde-
pendencies. The approach undertaken to es-
tablish our results is based on the decompo-
sition of a so-called dependency graph that
encodes the dependencies within the data, in
sets of independent data, through the tool
of graph fractional covers. Our bounds are
very general, since being able to find an up-
per bound on the (fractional) chromatic num-
ber of the dependency graph is sufficient to
get new Pac-Bayes bounds for specific set-
tings. We show how our results can be used
to derive bounds for bipartite ranking and
windowed prediction on sequential data.

1 Introduction

Recently, there has been much progress in the field
of generalization bounds for classifiers. Pac-Bayes
bounds, introduced in (McAllester, 1999), and refined
in, e.g., (Seeger, 2002; Langford, 2005), are among
the most appealing advances. Their possible tight-
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ness (Ambroladze et al., 2007) make them a possible
route to do model selection. They can also be seen as
theoretical tools to motivate new learning procedures.

Nevertheless, Pac-Bayes bounds have so far applied to
classifiers trained from independently and identically
distributed (iid) data. Yet, being able to learn from
non-iid data while having strong theoretical guaran-
tees is an actual problem in a number of real world
applications such as, e.g., k-partite ranking or classi-
fication from sequential data. Here, we propose the
first Pac-Bayes bounds for classifiers trained on non-
iid data; they are a generalization of the iid Pac-Bayes
bound and they are general enough to provide a princi-
pled way to establish generalization bounds for a num-
ber of non-iid settings. To establish these bounds, we
make use of simple tools of probability theory, convex-
ity properties of some functions, and we exploit the
notion of graph fractional covers. This tool from graph
theory has already been used for deriving concentra-
tion inequalities for non independent data (Janson,
2004) (see additional references therein) and for pro-
viding generalization bounds based on the fractional
Rademacher complexity (Usunier et al., 2006).

The paper is organized as follows. Section 2 recalls the
standard iid Pac-Bayes bound, introduces the notion
of fractional covers and states the new chromatic Pac-
Bayes bounds, which rely on the fractional chromatic
number of the dependency graph of the data at hand.
Section 3 is devoted to the proof of our main theorem.
Section 4 provides specific versions of our bounds for
the case of iid data (which gives back the standard
iid bounds), for the case of bipartite ranking and for
windowed prediction on sequential data.

2 Chromatic Pac-Bayes Bounds

2.1 IID Pac-Bayes Bound

We introduce notation that will hold from here on.
We consider the problem of binary classification over
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the input space X , and Z denotes the product space
X × Y, with Y = {−1,+1}. H ⊆ YX is a family
of classifiers from X . D is a probability distribution
defined on Z and Dm the distribution of an m-sample;
for instance, Dm = ⊗mi=1D = Dm is the distribution
of an iid sample Z = {Zi}mi=1 of size m (Zi ∼ D,
i = 1 . . .m). P and Q are distributions over H.

The iid Pac-Bayes bound, can be stated as follows
(McAllester, 1999; Seeger, 2002).
Theorem 1 (IID Pac-Bayes Bound). ∀m, ∀D, ∀H,
∀δ ∈ (0, 1], ∀P , with probability at least 1− δ over the
random draw of Z ∼ Dm = Dm, the following holds:

∀Q, kl(êQ||eQ) ≤ 1
m

[
KL(Q||P ) + ln

m+ 1
δ

]
. (1)

This theorem provides a generalization error bound
for the Gibbs classifier gQ: given a distribution Q, this
stochastic classifier predicts a class for x ∈ X by first
drawing a hypothesis h according to Q and then out-
putting h(x). Here, êQ is the empirical error of gQ on
an iid sample Z of size m and eQ is its true error:

êQ = Eh∼Q
1
m

m∑
i=1

r(h, Zi) = Eh∼QR̂(h,Z)

eQ = EZ∼Dm
êQ = EZ∼D

h∼Q
r(h, Z) = Eh∼QR(h),

(2)

where, for Z = (X,Y ), r(h, Z) = Ih(X)6=Y and where
the fact that Z is an (independently) identically dis-
tributed sample was used. kl(q||p) is the Kullback-
Leibler divergence between the Bernoulli distributions
with probabilities of success q and p, and KL(Q||P ) is
the Kullback-Leibler divergence between Q and P :

kl(q||p) = q ln
q

p
+ (1− q) ln

1− q
1− p

KL(Q||P ) = Eh∼Q ln
Q(h)
P (h)

.

Throughout, we assume that the posteriors are abso-
lutely continuous with respect to the priors.

We note that even if the present bound applies to the
risk eQ of the stochastic classifier gQ, a straightfor-
ward argument gives that, if bQ is the (deterministic)
Bayes classifier such that bQ(x) = sign(Eh∼Qh(x)),
then R(bQ) ≤ 2eQ (Langford & Shawe-taylor, 2002).

The problem we focus on is that of generalizing The-
orem 1 to the situation where there may exist proba-
bilistic dependencies between the elements Zi of Z =
{Zi}mi=1 while the marginal distributions of the Zi’s
are identical. In other words, we provide Pac-Bayes
bounds for classifiers trained on identically but not in-
dependently distributed data. These results rely on
properties of a dependency graph that is built accord-
ing to the dependencies within Z. Before stating our

new bounds, we thus introduce the concepts of graph
theory that will play a role in their statements.

2.2 Dependency Graph, Fractional Covers

Definition 1 (Dependency Graph). Let Z = {Zi}mi=1

be a set of random variables taking values in some
space Z. The dependency graph Γ(Z) of Z is such that:
the set of vertices of Γ(Z) is {1, . . . ,m} and there is
an edge between i and j if and only if Zi and Zj are
not independent (in the probabilistic sense).

Definition 2 (Fractional Covers, (Schreinerman &
Ullman, 1997)). Let Γ = (V,E) be an undirected
graph, with V = {1, . . . ,m}.

• C ⊆ V is independent if the vertices in C are
independent (no two vertices in C are connected).

• C = {Cj}nj=1, with Cj ⊆ V , is a proper cover of V
if each Cj is independent and

⋃n
j=1 Cj = V . The

size of C is n.

• C = {(Cj , ωj)}nj=1, with Cj ⊆ V and ωj ∈ [0, 1],
is a proper exact fractional cover of V if each Cj
is independent and ∀i ∈ V ,

∑n
i=1 ωjIi∈Cj = 1;

ω(C) =
∑n
j=1 wi is the chromatic weight of C.

• χ(Γ) (χ∗(Γ)) is the minimum size (weight) over
all proper exact (fractional) covers of Γ: it is the
(fractional) chromatic number of Γ.

The problem of computing the (fractional) chromatic
number of a graph is Np-hard (Schreinerman & Ull-
man, 1997). However, for some particular graphs as
those that come from the settings we study in Sec-
tion 4, this number can be evaluated precisely. The fol-
lowing property holds (Schreinerman & Ullman, 1997):

Property 1. Let Γ = (V,E) be a graph. Let c(Γ) be
the clique number of Γ, i.e. the order of the largest
clique in Γ. Let ∆(Γ) be the maximum degree of a
vertex in Γ. We have the following inequalities:

1 ≤ c(Γ) ≤ χ∗(Γ) ≤ χ(Γ) ≤ ∆(Γ) + 1.

In addition, 1 = c(Γ) = χ∗(Γ) = χ(Γ) = ∆(Γ) + 1 if
and only if Γ is totally disconnected.

Remark 1. A cover can be thought of a fractional cover
with every wi equal to 1. Hence, all the results we state
for fractional covers apply to the case of covers.
Remark 2. If Z = {Zi}mi=1 is a set of random variables
over Z then a (fractional) proper cover of Γ(Z), splits
Z into subsets of independent random variables. This
is a crucial feature to establish our results. In addition,
we can see χ∗(Γ(Z)) and χ(Γ(Z)) as measures of the
amount of dependencies within Z.



         418

Ralaivola, Szafranski, Stempfel

The following lemma, also taken from (Janson, 2004),
Lemma 3.1, will be very useful in the following.
Lemma 1. If C = {(Cj , ωj)}nj=1 is an exact fractional
cover of Γ = (V,E), with V = {1, . . . ,m}, then

∀t ∈ Rm,
m∑
i=1

ti =
n∑
j=1

ωj
∑
k∈Cj

tk.

In particular m =
∑n
j=1 |Cj |.

2.3 Chromatic Pac-Bayes Bounds

We now provide new Pac-Bayes bounds for classifiers
trained on samples Z drawn from distributions Dm

where dependencies exist. We assume these depen-
dencies are fully determined by Dm and we define the
dependency graph Γ(Dm) of Dm to be Γ(Dm) = Γ(Z).
As said before, the marginal distributions of Dm along
each coordinate are equal to some distribution D.

We consider some additional notation. Pefc(Dm) is
the set of proper exact fractional covers of Γ(Dm).
Given a cover C = {(Cj , ωj)}nj=1 ∈ Pefc(Dm), Z(j) =

{Zk}k∈Cj and D(j)
m is the distribution of Z(j), it is

therefore equal to D|Cj |; α ∈ Rn is the vector of co-
efficients αj = ωj/ω(C) and π ∈ Rn is the vector of
coefficients πj = ωj |Cj |/m. Pn and Qn are distribu-
tions over Hn, P jn and Qjn are the marginal distribu-
tions of Pn and Qn with respect to the jth coordinate,
respectively; h = (h1, . . . , hn) is an element of Hn.

We can now state our main results.
Theorem 2 (Chromatic Pac-Bayes Bound (I)). ∀m,
∀Dm, ∀H,∀δ ∈ (0, 1], ∀C = {(Cj , ωj)}nj=1 ∈
Pefc(Dm), ∀Pn, with probability at least 1−δ over the
random draw of Z ∼ Dm, the following holds: ∀Qn,

kl(ēQn ||eQn) ≤ ω

m

"
nX
j=1

αjKL(Qjn||P jn) + ln
m+ ω

δω

#
, (3)

where ω stands for ω(C) and eQn
= EZ∼Dm

ēQn
, with

ēQn = Eh∼Qn

1

m

nX
j=1

ωj
X
k∈Cj

r(hj , Zk)

=
1

m

nX
j=1

ωj |Cj |Eh∼Qjn
1

|Cj |
X
k∈Cj

r(h, Zk)

=

nX
j=1

πjEh∼QjnR̂(h,Z(j)).

The proof of this theorem is deferred to Section 3. The
following proposition characterizes EZ∼Dm

ēQn
.

Proposition 1. ∀m, ∀Dm, ∀H, ∀C =
{(Cj , ωj)}nj=1 ∈ Pefc(Dm), ∀Qn: eQn = EZ∼Dm ēQn

is the error of the Gibbs classifier based on the mixture
of distributions Qπ =

∑n
j=1 πjQ

j
n over H.

Proof. From Definition 2, πj ≥ 0 and, according to
Lemma 1,

∑n
j=1 πj = 1

m

∑n
j=1 ωj |Cj | = 1. Then,

EZ∼Dm ēQn =
X
j

πjEh∼QjEZ∼DmR̂(h,Z(j))

=
X
j

πjEh∼QjEZ(j)∼D
(j)
m
R̂(h,Z(j))

=
X
j

πjEh∼QjnR(h)

= E
h∼π1Q1

n+...+πjQ
j
n
R(h) = Eh∼QπR(h).

This closes the proof.

Remark 3. The prior Pn and the posterior Qn enter-
ing into play in Proposition 1 and Theorem 2 through
their marginals only advocates for the following learn-
ing scheme. Given a cover and a (possibly factorized)
prior Pn, look for a factorized posterior Qn = ⊗nj=1Qj
such that each Qj independently minimizes the usual
iid Pac-Bayes bound given in Theorem 1 on each Z(j).
Then make predictions according to the Gibbs classi-
fier defined with respect to Qπ =

∑
j πjQj .

The following theorem gives a result that can be read-
ily used without choosing a specific cover.

Theorem 3 (Chromatic Pac-Bayes Bound (II)). ∀m,
∀Dm, ∀H, ∀δ ∈ (0, 1], ∀P , with probability at least 1−δ
over the random draw of Z ∼ Dm, the following holds

∀Q, kl(êQ||eQ) ≤ χ∗

m

»
KL(Q||P ) + ln

m+ χ∗

δχ∗

–
, (4)

where χ∗ is the fractional chromatic number of Γ(Dm),
and where êQ and eQ are defined as in (2).

Proof. This theorem is just a particular case of Theo-
rem 2. Assume that C = {(Cj , ωj)}nj=1 ∈ Pefc(Dm)
such that ω(C) = χ∗(Γ(Dm)), Pn = ⊗nj=1P = Pn and
Qn = ⊗nj=1Q = Qn, for some P and Q.

For the right-hand side of (4), it directly comes that∑
j

αjKL(Qjn||P jn) =
∑
j

αjKL(Q||P ) = KL(Q||P ).

It then suffices to show that ēQn
= êQ:

ēQn =
X
j

πjEh∼QjnR̂(h,Z(j)) =
X
j

πjEh∼QR̂(h,Z(j))

=
1

m

X
j

ωj |Cj |Eh∼Q
1

|Cj |
X
k

r(h, Zk)

= Eh∼Q
1

m

X
j

ωj
X
k

r(h, Zk)

= Eh∼Q
1

m

X
i

r(h, Zi) = Eh∼QR̂(h,Z) = êQ.
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Remark 4. This theorem says that even in the case of
non iid data, a Pac-Bayes bound very similar to the
iid Pac-Bayes bound (1) can be stated, with a worsen-
ing (since χ∗ ≥ 1) proportional to χ∗, i.e proportional
to the amount of dependencies in the data. In ad-
dition, the new Pac-Bayes bounds is valid with any
priors and posteriors, without the need for these dis-
tributions nor their marginals to depend on the chosen
cover (as is the case with the more general Theorem 2).
Remark 5. We note that among all elements of
Pefc(Dm), χ∗ is the best constant achievable in terms
of the tightness of the bound. Indeed, the function
fm,δ(ω) = ω ln m+ω

δω is nondecreasing for all m ∈ N
and δ ∈ (0, 1], as indicated by the sign of f ′m,δ = dfm,δ

dω :

f ′m,δ(ω) = − ln
δω

m+ ω
+

ω

m+ ω
− 1

≥ − ln
ω

m+ ω
+

ω

m+ ω
− 1

≥ − ω

m+ ω
+ 1 +

ω

m+ ω
− 1 = 0

where we have used lnx ≤ x−1. As χ∗ is the smallest
chromatic weight, it gives the tightest bound.

3 Proof of Theorem 2

A proof in three steps, following the lines of the proofs
given in (Seeger, 2002) and (Langford, 2005) for the
iid Pac-Bayes bound, can be provided for Theorem 2.

Lemma 2. ∀m, ∀Dm, ∀δ ∈ (0, 1], ∀C =
{(Cj , ωj)}nj=1, ∀Pn, with probability at least 1− δ over
the random draw of Z ∼ Dm, the following holds

Eh∼Pn

n∑
j=1

αje
|Cj |kl(R̂(hj ,Z

(j))||R(hj)) ≤ m+ ω

δω
, (5)

where ω stands for ω(C).

Proof. We first observe the following:

EZ∼Dm

X
j

αje
|Cj |kl(R̂(hj ,Z

(j))||R(hj))

=
X
j

αjEZ(j)∼D
(j)
m
e|Cj |kl(R̂(h,Z(j))||R(h))

≤
X
j

αj(|Cj |+ 1) (Lemma 5, Appendix)

=
1

ω

X
j

ωj(|Cj |+ 1) =
m+ ω

ω
,

where using Lemma 5 is made possible by the fact that
Z(j) are iid. Therefore,

EZ∼Dm
Eh∼Pn

n∑
j=1

αje
|Cj |kl(R̂(hj ,Z

(j))||R(hj)) ≤ m+ ω

ω
.

Applying Markov’s inequality (Theorem 7, Appendix)
to Eh∼Pn

∑
j αje

|Cj |kl(R̂(hj ,Z
(j))||R(hj)) gives the de-

sired result.

Lemma 3. ∀m, ∀Dm, ∀C = {(Cj , ωj)}nj=1, ∀Pn,
∀Qn, with probability at least 1 − δ over the random
draw of Z ∼ Dm, the following holds

m

ω

Xn

j=1
πjEh∼Qjnkl(R̂(h,Z(j))||R(h)) (6)

≤
Xn

j=1
αjKL(Qjn||P jn) + ln

m+ ω

δω
.

Proof. It suffices to use Jensen’s inequality with ln and
the fact that EX∼P f(X) = EX∼Q P (X)

Q(X)f(X), for all
f, P,Q. Therefore, ∀Qn:

lnEh∼Pn

X
j

αje
|Cj |kl(R̂(hj ,Z

(j))||R(hj))

= ln
X
j

αjEh∼P jne
|Cj |kl(R̂(h,Z(j))||R(h))

= ln
X
j

αjEh∼Qjn
P jn(h)

Qjn(h)
e|Cj |kl(R̂(h,Z(j))||R(h))

≥
X
j

αjEh∼Qjn ln

»
P jn(h)

Qjn(h)
e|Cj |kl(R̂(h,Z(j))||R(h))

–
= −

X
j

αjKL(Qjn||P jn)

+
X
j

αj |Cj |Eh∼Qjnkl
“
R̂(h,Z(j))||R(h)

”
= −

X
j

αjKL(Qjn||P jn)

+
m

ω

X
j

πjEh∼Qjnkl
“
R̂(h,Z(j))||R(h)

”
.

Lemma 2 then gives the result.

Lemma 4. ∀m, ∀Dm, ∀C = {(Cj , ωj)}nj=1, ∀Qn,, the
following holds

m

ω

∑n

j=1
πjEh∼Qjnkl(R̂(h,Z(j))||R(h)) ≥ kl(ēQ||eQ).

Proof. This simply comes from the application of The-
orem 6 given in Appendix. This lemma, in combina-
tion with Lemma 3, closes the proof of Theorem 2.

4 Examples

We give instances of Theorem 3 for various settings.

4.1 IID case

In this case, the training sample Z = {(Xi, Yi)}mi=1 is
distributed according to Dm = Dm and the fractional
chromatic number of Γ(Dm) is χ∗ = 1. Plugging in
this value of χ∗ in the bound of Theorem 3 gives the iid
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Z1 Zm

(a) iid data

Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

(b) Bipartite Ranking data

Zt−3 Zt−2 Zt−1 Zt Zt+1 Zt+2 Zt+3

(c) Sliding window data

Figure 1: Dependency graphs for the different settings
described in section 4. Nodes of the same color are
part of the same cover element; henceforth, they are
independent. (a) When the data are iid , the depen-
dency graph is disconnected and the fractional num-
ber is χ∗ = 1; (b) a dependency graph obtained for
bipartite ranking from a sample containing 4 positive
instances and 2 negative instances: χ∗ = 4; (c) a de-
pendency graph obtained with the technique of sliding
windows for sequence data, for a window parameter
r = 1 (see text for details): χ∗ = 2r + 1.

Pac-Bayes bound of Theorem 1. This emphasizes the
fact that the standard Pac-Bayes bound is a special
case of our more general results.

4.2 Bipartite Ranking

Let D be a distribution over X × Y and D+1

(D−1) be the class conditional distribution DX|Y=+1

(DX|Y=−1) with respect to D. In the bipartite ranking
problem (see, e.g. (Agarwal et al., 2005)), one tries to
control the misranking risk, defined for f ∈ RX by

Rrank(f) = P
X

+∼D+1

X
−∼D−1

(f(X
+

) ≤ f(X
−

)). (7)

f can be interpreted as a scoring function. Given an
iid sample S = {(Xi, Y i)}`i=1 distributed according
to D` = D

`
, a usual strategy to minimize (7) is to

minimize (a possibly regularized form of)

R̂rank(f,S) =
1

`+`−

∑
i:Y i=+1

j:Y j=−1

r(f, (Xi, Xj)), (8)

where r(f, (Xi, Xj)) = If(Xi)≤f(Xj)
and `+ (`−) is the

number of positive (negative) data in S. This empirical
risk, closely related to the Area under the Roc curve,
or Auc1 (Agarwal et al., 2005; Cortes & Mohri, 2004),

1It is actually 1-Auc.

estimates the fraction of pairs (Xi, Xj) that are ranked
incorrectly (given that Y i = +1 and Y j = −1) and is
an unbiased estimator of Rrank(h). The entailed prob-
lem can be seen as that of learning a classifier from the
training set Z = {Zij}ij = {(Xij = (Xi, Xj), 1)}ij .
This reveals the non-iid nature of the data, as Zij de-
pends on {Zpq : p = i or q = j} (see Figure 1).

Using Theorem 3, we have the following result:

Theorem 4. ∀`, ∀D over X × Y, ∀H ⊆ RX , ∀δ ∈
(0, 1], ∀P over H, with probability at least 1 − δ over
the random draw of S ∼ D`

, the following holds

∀Q over H, kl(êrank
Q ||erank

Q ) ≤ 1

`min

»
KL(Q||P ) + ln

`min + 1

δ

–
,

(9)

where `min = min(`+, `−), and êrank
Q

and erank
Q

are the
Gibbs ranking error counterparts of (2) based on (7)
and (8), respectively.

Proof. The proof works in three parts and borrows
ideas from (Agarwal et al., 2005). The first two parts
are necessary to deal with the fact that the depen-
dency graph of Z, as implied by S, does not have a
deterministic structure.

Conditioning on Y = y. Let y ∈ {−1,+1}` be a
fixed vector and `+y and `−y the number of positive and
negative labels, respectively. We define the distribu-
tion Dy as Dy = ⊗`i=1Dyi ; this is a distribution on
X `. With a slight abuse of notation, Dy will also be
used to denote the distribution over (X ×Y)` of sam-
ples S = {(Xi, yi)}`i=1 such that the sequence {Xi}`i=1

is distributed according to Dy. It is easy to check that
∀f ∈ H, ES∼Dy

R̂rank(f,S) = Rrank(f) (cf. (7)).

Given S, defining the random variable Zij as Zij =
((Xi, Xj), 1), Z = {Zij}i:yi=1,j:yj=−1 is a sample of
identically distributed variables, each with distribu-
tion D±1 = D+1 ⊗ D−1 ⊗ 1 over X × Y, where
X = X × X , Y = {−1,+1} and 1 is the distribution
that produces 1 with probability 1.

Letting m = `+y `
−
y we denote by Dy,m the distribution

of the training sample Z, within which interdependen-
cies exist (see Figure 1). Theorem 2 can thus be di-
rectly applied to classifiers trained on Z, the structure
of Γ(Dy,m) and its corresponding fractional chromatic
number χ∗y being completely determined by y. Letting
H ⊆ YX , ∀δ ∈ (0, 1], ∀P over H, with probability at
least 1− δ over the random draw of Z ∼ Dy,m,

∀Q over H, kl(êQ||eQ) ≤
χ∗y
m

»
KL(Q||P ) + ln

m+ χ∗y
δχ∗y

–
.

Given f ∈ H, it is obvious that for hf ∈ YX defined as
hf ((X,X ′)) = sign(f(X)− f(X ′)), with sign(x) = +1
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if x > 0 and −1 otherwise, R̂(hf ,Z) = R̂rank(f,S) and
EZ∼Dy,mR̂(hf ,Z) = ES∼Dy

R̂rank(f,S) = Rrank(f).
Hence, ∀δ ∈ (0, 1], ∀P over H, with probability at
least 1− δ over the random draw of S ∼ Dy,

∀Q, kl(êrank
Q ||erank

Q ) ≤
χ∗y
m

»
KL(Q||P ) + ln

m+ χ∗y
δχ∗y

–
. (10)

Integrating over Y. As proposed in (Agarwal
et al., 2005), let us call Φ(P ,S, δ) the event (10); we
just stated that ∀y ∈ {−1,+1}`, ∀P , ∀δ ∈ (0, 1],
PS∼Dy

(Φ(P ,S, δ)) ≥ 1− δ. Then, ∀P ,∀δ ∈ (0, 1],

PS∼D`
(Φ(P ,S, δ)) = EY[ES∼DY

IΦ(P,S,δ)]

=
X
y

ES∼Dy
IΦ(P,S,δ)P(Y = y)

=
X
y

PS∼Dy
(Φ(P ,S, δ))P(Y = y)

≥
X
y

(1− δ)P(Y = y) = 1− δ.

Hence, ∀δ ∈ (0, 1], ∀P overH, with probability at least
1− δ over the random draw of S ∼ D`,

∀Q, kl(êrank
Q ||erank

Q ) ≤ χ∗S
mS

»
KL(Q||P ) + ln

mS + χ∗S
δχ∗S

–
.

(11)

where χ∗S is the fractional chromatic number of the
graph Γ(Z), with Z defined from S as in the first part
of the proof (taking into account the observed labels
in S); here mS = `+`−, where `+ (`−) is the number
of positive (negative) data in S.

Computing the Fractional Chromatic Number.
In order to finish the proof, it suffices to observe that,
for Z = {Zij}ij , letting `max = max(`+, `−), the frac-
tional chromatic number of Γ(Z) is χ∗ = `max.

Indeed, the clique number of Γ(Z) is `max as for all
i = 1, . . . , `+ (j = 1, . . . , `−), {Zij : j = 1, . . . , `−}
({Zij : i = 1, . . . , `+}) defines a clique of order `− (`+)
in Γ(Z). Thus, from Property 1: χ ≥ χ∗ ≥ `max.

A proper exact cover C = {Ck}`max
k=1 of Γ(Z) can be

constructed as follows2. Suppose that `max = `+, then
Ck = {Ziσk(i) : i = 1, . . . , `−}, with

σk(i) = (i+ k − 2 mod `+) + 1,

is an independent set: no two variables Zij and Zpq
in Ck are such that i = p or j = q. In addition, it
is straightforward to check that C is indeed a cover
of Γ(Z). This cover is of size `+ = `max, which
means that it achieves the minimal possible weight

2Note that the cover defined here considers elements Ck
containing random variables themselves instead of their in-
dices. This abuse of notation is made for sake of readability.

over proper exact (fractional) covers since χ∗ ≥ `max.
Hence, χ∗ = χ = `max(= c(Γ)). Plugging in this value
of χ∗ in (11), and noting that mS = `max`min with
`min = min(`+, `−), closes the proof.

As proposed by (Langford, 2005), the Pac-Bayes
bound of Theorem 4 can be specialized to the case
where H = {f : f(x) = w · x,w ∈ X}. In this situa-
tion, for f ∈ H, hf ((X,X ′)) = sign(f(X) − f(X ′)) =
sign(w · (X−X ′)) is simply a linear classifier (next re-
sult therefore carries over to kernel classifiers). Hence,
assuming an isotropic Gaussian prior P = N (0, I) and
a family of posteriors Qw,µ parameterized by w ∈ X
and µ > 0 such that Qw,µ is N (µ, 1) in the direction w
and N (0, 1) in all perpendicular directions, we arrive
at the following theorem (of which we omit the proof):

Theorem 5. ∀`,∀D over X × Y, ∀δ ∈ (0, 1], the fol-
lowing holds with prob. at least 1− δ over the draw of
S ∼ D`

:

∀w, µ > 0, kl(R̂rank
Qw,µ ||R

rank
Qw,µ) ≤ 1

`min

»
µ2

2
+ ln

`min + 1

δ

–
.

The bounds given in Theorem 4 and Theorem 5 are
very similar to what we would get if applying iid Pac-
Bayes bound to one (independent) element Cj of a
minimal cover (i.e. its weight equals the fractional
chromatic number) C = {Cj}nj=1 such as the one we
used in the proof of Theorem 4. This would imply
the empirical error êrank

Q
to be computed on only one

specific Cj and not all the Cj ’s simultaneously, as is
the case for the new results. It turns out that, for
proper exact fractional covers C = {(Cj , ω)}nj=1 with
elements Cj having the same size, it is better, in terms
of absolute moments of the empirical error, to assess
it on the whole dataset, rather than on only one Cj .
The following proposition formalizes this.

Proposition 2. ∀m, ∀Dm, ∀H, ∀C = {(Cj , ωj}nj=1 ∈
Pefc(Dm), ∀Q, ∀r ∈ N, r ≥ 1, if |C1| = . . . = |Cn|
then

EZ∼Dm |êQ − eQ|
r ≤ E

Z(j)∼D
(j)
m
|ê(j)
Q − eQ|

r,∀j ∈ {1, . . . n},

where ê(j)Q = Eh∼QR̂(h,Z(j)).

Proof. Using the convexity of | · |r for r ≥ 1, the lin-
earity of E and the notation of section 2, for Z ∼ Dm:

|êQ − eQ|r = |
X
j

πjEh∼Q(R̂(h,Z(j))−R(h))|r

≤
X
j

πj |Eh∼Q(R̂(h,Z(j))−R(h))|r

=
X
j

πj |ê(j)
Q − eQ|

r.
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Taking the expectation of both sides with respect to
Z and noting that the random variables |ê(j)Q − eQ|r,
have the same distribution, gives the result.

4.3 Sliding Windows for Sequence Data

There are many situations, such as in bioinformatics,
where a classifier must be learned from a training sam-
ple S = {(Xt, Y t)}Tt=1 ∈ (X × Y)T where it is known
that there is a sequential dependence between theXt’s.
A typical approach to tackle the problem of learning
from such data is the following: in order to predict
Y t, information from a window {Xt+τ}rτ=−r of 2r + 1
data centered on Xt is considered, r being set accord-
ing to some prior knowledge or after a cross-validation
process. This problem can be cast in another classifi-
cation problem using a training sample Z = {Zt}Tt=1,
with Zt = ((Xt−r, . . . , Xt, . . . , Xt+r), Y t), with spe-
cial care taken for t ≤ r+1 and t > T −r. Considering
that Y = {−1,+1}, the input space and output space
to be considered are therefore X = X 2r+1

and Y = Y;
the product space is Z = X ×Y. As with the bipartite
ranking problem, we end up with a learning problem
from non-iid data, Z having a dependency graph Γ(Z)
as the one depicted on Figure 1.

It is easy to see that the clique number of Γ(Z) is
2r+1. Besides, one can construct a proper exact cover
C = {Cj}2r+1

j=1 of minimal size/weight by taking Cj =
{Zj+p(2r+1) : p = 0, . . . , b T−j2r+1c}, for j = 1, . . . , 2r+1 –
we make the implicit and reasonable assumption that
T > 2r + 1. This cover is proper and has size 2r + 1.
Invoking Property 1 gives that χ = χ∗ = 2r + 1.

It is therefore easy to get a new Pac-Bayes theorem
for the case of windowed prediction, by replacing χ∗

by 2r+ 1 and m by T in the bound (4) of Theorem 3.
We do not state it explicitly for sake of conciseness.

5 Conclusion

In this work, we propose the first Pac-Bayes bounds
applying for classifiers trained on non-iid data. The
derivation of these results rely on the use of fractional
covers of graphs, convexity and standard tools from
probability theory. The results that we provide are
very general and can easily be instantiated for specific
learning settings such as bipartite ranking and win-
dowed prediction for sequence data.

This work gives rise to many interesting questions.
First, it seems that using a fractional cover to decom-
pose the non-iid training data into sets of iid data and
then tightening the bound through the use of the chro-
matic number is some form of variational relaxation as
often encountered in the context of inference in graph-

ical models, the graphical model under consideration
in this work being one that encodes the dependencies
in Dm. It might be interesting to make this connection
clearer to see if, for instance, tighter and still general
bounds can be obtained with more appropriate varia-
tional relaxations than the one incurred by the use of
fractional covers.

Besides, Theorem 2 advocates for the learning algo-
rithm described in Remark 3. We would like to see
how such a learning algorithm based on possibly mul-
tiple priors/multiple posteriors could perform empiri-
cally and how tight the proposed bound could be.

On another empirical side, we are planning to run
intensive numerical simulations on bipartite ranking
problems to see how accurate the bound of Theo-
rem 5 can be: we expect the results to be of good
quality, because of the resemblance of the bound of
the theorem with the iid Pac-Bayes theorem for mar-
gin classifiers, which has proven to be rather accurate
(Langford, 2005). Likewise, it would be interesting to
see how the possibly more accurate Pac-Bayes bound
for large margin classifiers proposed by (Langford &
Shawe-taylor, 2002), which should translate to the case
of bipartite ranking as well, performs empirically.

The question remains as to what kind of strategies to
learn the prior(s) could be used to render the bound
of Theorem 2 the tightest possible. This is one of
the most stimulating question as performing such prior
learning makes it possible to obtain very accurate gen-
eralization bound (Ambroladze et al., 2007).

Finally, assuming the data are identically distributed
might be too strong an assumption. This brings up the
question on whether it is possible to derive the same
kind of results as those provided here in the case where
the variables do not have the same marginals: we have
recently obtained a positive answer on deriving such
a bound (Ralaivola, 2009), by directly leveraging a
concentration inequality given in (Janson, 2004). We
are also currently investigating how Pac-Bayes bounds
could be derived for a different setting that gives rise
to non-iid data, namely mixing processes.
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Appendix

Lemma 5. Let D be a distribution over Z.

∀h ∈ H,EZ∼Dme
mkl(R̂(h,Z)||R(h)) ≤ m+ 1.
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Proof. Let h ∈ H. For z ∈ Zm, we let q(z) = R̂(h, z);
we also let p = R(h). Note that since Z is i.i.d,
mq(Z) is binomial with parameters m and p (recall
that r(h, Z) takes the values 0 and 1 upon correct and
erroneous classification of Z by h, respectively).

EZ∼Dme
mkl(q(Z)||p)

=
X

z∈Zm
emkl(q(z)||p)PZ∼Dm(Z = z)

=
X

0≤k≤m

emkl( km ||p)PZ∼Dm(mq(Z) = k)

=
X

0≤k≤m

 
m

k

!
emkl( km ||p)pk(1− p)m−k

=
X

0≤k≤m

 
m

k

!
em( km ln k

m
+(1− k

m
) ln(1− k

m
))

=
X

0≤k≤m

 
m

k

!„
k

m

«k „
1− k

m

«m−k
.

However, it is obvious that, from the definition of the
binomial distribution,

∀m ∈ N,∀k ∈ [0,m],∀t ∈ [0, 1],
(
m

k

)
tk(1− t)m−k ≤ 1.

This is obviously the case for t = k
m , which gives

X
0≤k≤m

 
m

k

!„
k

m

«k „
1− k

m

«m−k
≤

X
0≤k≤m

1 = m+ 1.

Theorem 6 (Jensen’s inequality). Let f ∈ RX be a
convex function. For all probability distribution P on
X :

f(EX∼PX) ≤ EX∼P f(X).

Proof. Directly comes by induction on the definition
of a convex function.

Theorem 7 (Markov’s Inequality). Let X be a posi-
tive random variable on R, such that EX <∞.

∀t ∈ R,PX

X ≥ EX

t

ff
≤ 1

t
.

Consequently: ∀M ≥ EX,∀t ∈ R,PX
{
X ≥ M

t

}
≤ 1

t .

Proof. In almost all textbooks on probability.

Lemma 6. ∀p, q, r, s ∈ [0, 1],∀α ∈ [0, 1],

kl(αp+ (1− α)q||αr + (1− α)s)
≤ αkl(p||r) + (1− α)kl(q||s).

Proof. It suffices to see that f ∈ R[0,1]2 , f(v = [p q]) =
kl(q||p) is convex over [0, 1]2: the Hessian H of f is

H =

[
q
p2 + 1−q

(1−p)2 − 1
p −

1
1−p

− 1
p −

1
1−p

1
q + 1

1−q

]
,

and, for p, q ∈ [0, 1], q
p2 + 1−q

(1−p)2 ≥ 0 and detH =
(p−q)2

q(1−q)p2(1−p)2 ≥ 0: H � 0 and f is indeed convex.
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