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Abstract

Novelty detection is an important tool for un-
supervised data analysis. It relies on finding
regions of low density within which events
are then flagged as novel. By design this is
dependent on the underlying measure of the
space. In this paper we derive a formulation
which is able to address this problem by al-
lowing for a reference measure to be given
in the form of a sample from an alternative
distribution. We show that this optimization
problem can be solved efficiently and that it
works well in practice.

1 Introduction

Novelty detection is useful in finding events which oc-
cur only rarely. The basic premise is that given a set
of observations X = {x1,...,2,} C X, drawn from
some distribution p(z) one wants to find a function h
whose value is below some threshold, say 0, only for
those observations which can be considered novel. h
can then be used to detect unusual activity in com-
puter networks, e.g. for fault or intrusion detection,
to supervise industrial processes and machines, or to
clean a database. A family of algorithms that has been
used with great success are one-class Support Vector
Machine style estimators [Scholkopf et al., 2001, Tax
and Duin, 1999]. They rely on the idea that regions of
high density can be efficiently enclosed in a small set
or alternatively efficiently separated by a hyperplane.

Experiments show that this approach outperforms the
traditional strategy commonly used in statistics of es-
timating the density first and subsequently threshold-
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ing the density to detect unusual events. This is due
to two reasons: density estimators attempt to perform
particularly well in regions where the density is high.
Moreover, considerable computation (the cost may be
exponential depending on the density model) needs to
be spent on normalizing the density. Both concerns
are irrelevant for novelty detection hence one should be
able to design algorithms which are immune to them.

While single class SVMs indeed resolve those prob-
lems, they suffer from a related issue: while not ex-
plicit, single class SVMs depend on the measure of
the underlying space. In other words, by transform-
ing the measure of the space we use for estimation, we
arrive at significantly different estimates. For many
applications, this problem cannot be addressed since
we can only make educated guesses in terms of what
the measure of the underlying space should be. For
some cases, however, we will have data drawn from a
reference measure at our disposition (e.g. from related
machines in a server center).

In this paper we extend the one-class Support Vector
Machine approach to thresholded estimates of likeli-
hood ratios. In fact, we show that we are able to use
similar objective function that is applied to single-class
SVMs while retaining a convex optimization problem
and without the need for intermediate density estima-
tion. The optimization problem remains simple and
it only requires a slight modification of the problem
posed by Nguyen et al. [2008] to fit our needs. We
show that estimation can be carried out by repeated
invocation of convex optimization.

Note that our problem is closely related to binary clas-
sification between two sets of observations, in particu-
lar, the retrieval of particularly characteristic observa-
tions, such as Precision@k and the multivariate rank-
ing proposed by Joachims [2005]. There exist subtle
differences, though: binary classification is a symmet-
ric setting for discrimination between two sets whereas
we are interested in addressing the asymmetric prob-
lem of finding novel instances in one set relative to the

536



Relative Novelty Detection

other. Secondly, formulations such as Precision@QFk are
not specifically designed for the retrieval of density
thresholded observations. We show that in practice
our algorithm outperforms [Joachims, 2005] even for
retrieval.

2 Novelty Detection

We begin with a nonstandard description of nov-
elty detection by thresholded likelihood maximization
along the lines of [Smola et al., 2005]. Denote by H the
space of functions on the domain X. In many cases we
will assume that H is a Reproducing Kernel Hilbert
Space with kernel k : X x X — R and with associated
RKHS norm ||A|| for all h € . This choice, however,
is not essential and one should note that our setting is
entirely general in terms of how the complexity of the
function h € H is measured.

Define a density in the nonparametric exponential
family via

p(x|h) :=exp (h(x) — g[h]) (1)
where g[h] =log Aex exp h(z)dzx.

Typically computation of g[h] or its derivative is in-
tractable and only approximations of it may be con-
sidered. Nonetheless we can state a general purpose
penalized log-likelihood maximization problem via

minimize Z glh] — h(x;) + AQ[R] (2)

to obtain a good density estimate for the set of obser-
vations X. Here Q[h] is a (typically convex) regular-
ization functional of h, such as 3 I[h]%.

2.1 Single Class SVM

Conventionally in novelty detection one would try to
obtain an estimate h by solving (2). Subsequently
one may want to threshold the (unnormalized) log-
likelihood £ at some level p to declare all observations
novel which satisfy ﬁ(x) < p. This approach has sev-
eral disadvantages:

1. Solving (2) is often intractable.

2. We do not need to know g[h] for the purpose of
novelty detection, yet it is g[h] which renders the
optimization problem intractable.

3. We only need the value of h relative to a threshold
p rather than its actual value. In particular, we
do not care about values of h for regions of high
density but only for all z with h(x) < p.

These three problems can be addressed by replacing
—logp(z|h) by a thresholded likelihood ratio, that is

max (0, log W) =max(0,p — h(z)). (3)
The latter is exactly the loss function proposed by
Scholkopf et al. [2001] in the context of single-class
SVMs. The objective function can be understood as
follows: we are only interested in the likelihood ra-
tio between p(z|h) and some reference density exp(p —
glh]). The normalization of p(x|h), that is exp(—g[h])
is not needed. Finally, we only care about regions
where the density p(z) is below a certain threshold,
hence the max(0,£) term. Amongst other things,
(3) explains the conundrum why the functions esti-
mated with single-class SVM resemble density esti-
mates: they are density estimates, albeit only for the
low density regions.

2.2 Domain Reparametrization

The optimization problem arising from (3) is convex in
h, provided that Q[h] is. However, it suffers from a key
problem: Assume that we have some diffeomorphism
7 : Z — X which reparametrizes the domain X. In this
case the density p(z|h) needs to be rewritten as

p(z|h) = p(n(2)|h) |02 (2)] - (4)

Here the determinant of the Jacobian |9,n(z)| is used
to recalibrate the measure with respect to its new
parametrization. Unfortunately, when plugging p(z|h)
into (3) the expression becomes

max (0, p — h(n(z)) —log |0.n(2)|),

that is, we are now looking for relative novelty with
respect to the new measure dz = |9,7(z)| " da rather
than the original measure dz. This means that regions
which before might have been considered novel may
cease being considered novel and vice versa due to the
offset of log |0,n(2)|.

In other words: a simple reparametrization of an ar-
bitrary measure on the data domain can skew what
is considered an outlier. This is highly undesirable.
Imagine a ring-shaped density: a change of parame-
ters from z to logx would change the novelty score
by log x, all other terms being equal which has signif-
icant implications on whether the center of the ring-
shaped density will be regarded as novel given a finite
amount of data. While on simple vectorial domains
the Lebesgue measure may be acceptable or it may be
possible to make educated guesses, this is next to im-
possible on more structured domains such as strings,
graphs, webpages and other data structures.
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2.3 Relative Novelty Detection

One way of addressing this problem is by positing a ref-
erence measure ¢ with respect to which it is possible
to perform novelty detection. Since this measure un-
dergoes the same transformations as the distribution
under consideration the two effects cancel out and our
analysis becomes measure invariant. This means that
rather than dealing with (3) we estimate

f(p(x)/q(x)) := max (0, p —logp(x)/q(x))  (5)

or rather a witness of the log-likelihood ratio in the
relevant range of p > logp(z)/q(x). Provided that
the reference measure ¢ is known, this leads to a sim-
ple modification of the original optimization problem.
However, in most cases we will not know ¢ but we may
only have a sample Y := {y1,...,y,} € X drawn from
the reference q. While we could estimate ¢ based on
Y, it is more desirable to obtain a formulation which
does not depend on a density estimate but rather on
an expansion in terms of X and Y directly.

3 Estimation of f-divergences

The loss function f(&) as given by (5) has an important
property: its gradient vanishes for typical observations
where the log likelihood ratio £ exceeds p. Instead of
estimating the ratio directly we resort to a technique
proposed by Nguyen et al. [2008].

3.1 Variational Decomposition

Divergences between distributions, say p and ¢ which
can be expressed as the expectation over a function of
a likelihood ratio can be estimated directly by solv-
ing a convex minimization problem which attempts to
approximate a surrogate for log p(x)/q(x). This surro-
gate can then be used to in our quest to find regions
of novel observations.

Definition 1 Denote by f : Rt — R a convex func-
tion with f(1) = 0. Moreover, let p and q be dis-
tributions on X and assume that the Radon Nikodym

derivative fl—’q’ exists. Then define the f-divergence via

D¢ (p,q) = Epnp(a) [f (%)} : (6)

This concept dates back to Ali and Silvey [1966] and
is commonly referred to as the Csiszar f-divergence.
Typically one requires that f(1) = 0 to ensure
that whenever p and ¢ are identical it follows that
D¢(p,q) = 0. For instance, by choosing f(§) = —log¢
we obtain the Kullback-Leibler divergence. On the
other hand, f(§) = £log¢ yields the reverse Kullback-
Leibler divergence. In the context of this paper we

are primarily interested in f(§) = max(0, p — log¢) as
defined in (5) where p < 0.

Nguyen et al. [2008] propose a variational approach to
estimating f-divergences between distributions. Their
approach can be summarized by the decomposition:

Dy (p,q) = sup E, [h(z)] = E, [f*(h(x))].  (7)

Here h is a real valued function on X and f* is the
Fenchel-Legendre dual of f, defined as

[ (x) = Slgpr—f(é“). (8)

This means that we may recast the problem of esti-
mating Dy(p,q) as an optimization problem. More-
over, the solution h of (7) provides us with valuable
information about the log likelihood ratio itself.

3.2 Properties of the Decomposition
Denote by h the solution of (7). By duality f satisfies
f(&) =supx€ — f*(x) (9)
X

and consequently & € (f*)(x). The set-inclusion
arises from the fact that f or f* may not be con-
tinuously differentiable, hence we need to deal with
subdifferentials. Since h(z) needs to satisfy the opti-
mality conditions imposed by (8) pointwise we have
[Nguyen et al., 2008]

L € () (h(w)).
To make the relationship to the conventional KIL-
divergence more explicit let us compute the Fenchel-

Legendre dual for both fki,(§) = —log& and fu.(§) =
max(0, p — log&). We have

(10)

00 if&E>0
—1—log(—¢) if&<0

(i) © = {-¢ ife<o

frr () = { (11)
(12)

for the KL divergence. Moreover, for novelty detec-
tion, we effectively obtain thresholded variants via

00 if&>0
far(§) = § &e? if§ef-er,0] (13)

—1—p—1log(—¢§) &< —e”
[eP,00) ifE=0

(fan)(€) = qe if & € [—e,0] (14)
—¢1 if¢ < —er

This means that whenever h(z) < —e™” we are able

p(z)

For larger values h(z) > —e™”

to infer ¢(z) = )
we can only infer that ¢(x) > e’p(z), that is, we can
infer that x is not novel in p with respect to g.
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3.3 Reparametrization

Clearly, solving (7) outright with respect to h is impos-
sible since we do not have access to p or g but rather
only to samples from both distributions. Hence one
needs regularization. That is, instead of minimizing
(7) one solves the following optimization problem.

yz _*Zh

Here Q[h] is a regularization term which ensures good
generalization properties.  Unfortunately the con-
strained convex optimization problem arising from
(15) is heavily constrained. This means that it can be
costly to find a feasible initialization. Moreover, it is
a constrained convex program which makes optimiza-
tion more costly. An alternative is to change variables
in analogy to Nguyen et al. [2008]. We perform the

1 n
inimize = 3 f* Q] (1
minimize 2 I (h( + AQ[h] (15)

substitution:
(w) = - exp (i(2) ~ o) (16)
. =@ if i(x) <0
o)) = {_1 S )
() Uw)) = {Zﬁ_l(w) sy 09

In analogy to (13) we infer that whenever the risk mini-
mizer [(z) > 0 we have g(z) = p(x)e?~'(*) whereas for
I[(x) < 0 we can only conclude that g(x) > p(z)e”
This is exactly what is desired for a novelty detector
— it should ignore the particular shape of a density in
regions where ¢(z)/p(zx) is high and provide a faithful
representation of regions where ¢(x)/p(x) is low. In
summary, the overall optimization problem becomes

minilmize % ; foo(Uys)) + % ; el@)=r L AQ[I).

(19)

The main difference to the reparametrization of
Nguyen et al. [2008] is that instead of a linear func-
tion fiy (I(y;)) = —1 — I(x) and p = 0 we now have
an exponential downweighting for observations with
I(y;) < 0, while the weight of the observations in x has
been rescaled by e~”.

4 Optimization

Unlike the optimization problem arising in KL diver-
gence estimation, (19) is no longer convex for novelty
detection. Nonetheless, we show how a globally opti-
mal solution can be obtained efficiently. Subsequently
we describe a kernel expansion and we address the is-
sue of adjusting p automatically such that a given frac-
tion of observations is flagged as novel relative to p(z).

We will do this by proposing automatic rescaling for p
similar in spirit to the v-trick [Scholkopf et al., 1999)
in SV regression.

DC Programming Assuming convexity in Q[l] the
optimization problem (19) is nonetheless nonconvex in
[ overall due to the term e!®) for all I(x) < 0. Such
problems can be readily alleviated by means of DC
Programming [Dinh and An, 1988], also known as the
concave convex procedure in machine learning [Yuille
and Rangarajan, 2003]. The basic idea is that for func-
tions which can be decomposed into a sum of convex
and concave parts, we can upper bound the latter via

Fconcave(x) < Fconcave(xo) + <~73 — Zo, 8J;Fconcave ($0)> .

This is used to minimize an upper bound on the objec-
tive function and successively one obtains better con-
vex upper bounds on the nonconvex objective until the
optimization procedure converges to a local minimum.

While in general no convergence guarantees can be
given, the procedure is sufficient to guarantee conver-
gence to a global minimum for the problem of rel-
ative novelty detection (19): the mapping h(x) =
—exp(l(x) — p) is strictly monotonic. Moreover, the
original optimization problem is convex, hence it has
only a global minimum. Consequently DC program-
ming will converge to the same global optimum.

Stochastic Gradient Descent Note that instead
of DC programming we could also resort to stochastic
gradient descent directly on the objective function. In
particular, there is no need to receive observations x;
and y; in a specific order. In this case the updates de-
rived from DC programming and stochastic gradient
descent on the nonconvex objective function coincide,
as DC programming provides an accurate approxima-
tion at the point of expansion.

Kernel expansion We may choose an RKHS norm

as regularizer Q[l]. This allows us to apply to Repre-
senter Theorem and to expand [ in terms of

+Zﬁz Yi, ®

This expansion can be plugged into (19) to obtain an
unconstrained optimization problem in « and (.

m

l(z) = Z (zi,x

i=1

Adjusting p It is not clear, a priori, which value of
the threshold p we should choose. Picking a large value
of p corresponds to a rather aggressive choice of nov-
elty which may miss almost all observations. Choos-
ing a threshold that is too small may include an overly
large subset of observations y; which are used in the
reference set. Note that f (I(y;)) does not explicitly
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depend on p. Instead, only the terms dependent on x
do via €*)=P_ That is, we adjust the relative weight
of the observations ;.

Note that the objective function is conver in p. Since
we would like to limit the number of detected items, a
large value of p is desirable. This is achieved by adding
a penalty of

vp

to the optimization problem (19). Unfortunately, no
direct equivalent of the role of p in single class SVM
can be found. That said, p is effectively adjusted such
that the average influence of all observations x; is lim-
ited to v. This can be seen through the optimality
conditions with respect to p yielding

m

1 l(zi)—p —
— E TTP = . 20
YT c (20)

=1

This condition can be enforced simultaneously to the
overall optimization as it only adds an additional vari-
able to a convex subproblem.

5 Experiments

5.1 Image Mosaics

In this experiment, we demonstrate the ability of our
relative novelty detector (TKL) in identifying dupli-
cate patches in image mosaics.! We constructed two
image mosaics consisting of the same set of 256 dis-
tinct patches (of size 20 x 20 pixels); these patches
are arranged in different orders in the background and
the target images to form mosaics with 16 x 16 blocks
(Figure 1(a,b)). Then we created relative novelty in
the target mosaic by duplicating one patch 4 times.
More specifically, we duplicate the first patch of the
target mosaic) and place these “novel” patches on the
15t 110 |13t and 15*" diagonal entries (Figure 1(b)).

Both mosaics have a resolution of 320 x 320 pixels.
We treated each non-overlapping 4 x 4 pixel block as
a data point, and used their pixel values (i.e. RGB
triples) as the input vector. Then we applied an RBF
kernel k(x,2') = exp(—s |l — #'||*) on the input vec-
tors.? The scale parameter s of the kernel was chosen
to be the reciprocal of the median distance between x
and z'.

We compared the performance of our method
(TKL), KL divergence where p(x)/q(x) is estimated

!This example is for demonstration purpose; as exact
detection of these duplicates can be solved by hashing the
patches.

2We used random features for the RBF kernel to speed
up the computation [Rahimi and Recht, 2008].

(KL), SVMPeF where Precision@k is directly opti-
mized [Joachims, 2005]3, and 1-class SVM [Scholkopf
et al., 2001].

Figure 1(c,d,e,f) shows the detection results of various
methods. Pixels marked in red indicate the detected
novelty (fixed at 1% of the image size) whereas the du-
plicated patches are highlighted in green frames. We
can see that TKL, KL, and SVMP®'f successfully iden-
tify a significant number of pixels from the duplicated
patches whereas conventional 1-class SVM failed to-
tally. Among TKL, KL, and SVMP®, the former two
are more preferable since the marked pixels all lie in-
side the duplicated patches.

5.2 Satellite Image

The experiment in Section 5.1 shows that relative nov-
elty detection works in well-controlled setting. In this
experiment, we consider a real-world application of rel-
ative novelty detection. We examine the performance
of the relative novelty detectors in identifying novel
objects in a target satellite image relative to another
background satellite image. Both the target and back-
ground images are of different housing areas in Can-
berra, Australia (Figure 2(a,b)). In the target image,
the greenish fields (especially the dark green oval) are
absent from the background image, and hence they are
considered as relatively novel. With traditional nov-
elty /outlier detector, the number of greenish pixels in
the target image may be overly large to make them
novel. The aim here is to identify these fields by using
relative novelty detection.

Both images have a resolution of 200 x 200. We treated
each non-overlapping 2 x 2 pixel block as a data point,
and used its pixel values (i.e. RGB triples) as the
input vector. Similar to previous section, we applied
an RBF kernel to the input vectors and used the same
RBF kernel scale parameter selection procedure.

Again, we compared the performance of TKL, KL,
SVMPefand 1-class SVM. Figure 2(c,d,e,f) shows the
novelty (in red; fixed at 5% of the image size) detected
by TKL, KL, SVMPe and 1-class SVM, respectively. In
this case, TKL, KL, and SVMP®f detect the oval and
some trees in dark green color whereas 1l-class SVM
produces qualitatively different result.

5.3 Novel Digit Detection (USPS)

In Section 5.1 and 5.2, TKL, KLand SVMP produces
qualitatively similar results. Therefore, in this section,
we used the USPS digit dataset to quantitatively ex-

3The option we used for SVMP**: -1 4 =-b 0 --p r
where r is the fraction of novelty. Note that k is equal to
r times the number of observations drawn from p(x)
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(e) SVMpert

(f) 1-class SVM

Figure 1: (a) Background and (b) target image mosaic pairs for relative novelty detection. Novel pixels detected
by (c) TKL, (d) KL, (e) SVMPef and (f) 1-class SVM are highlighted in red. True novel patches (or duplicated
patches) in the target image are also marked by green frames.

amine the difference between them. The USPS digit
dataset contains 7291 training data points and 2007
test data points, each of which is a 16 x 16 gray level
image of handwritten digit (0-9). We further split the
training set into two parts: 2/3 as a new training set,
and 1/3 as a validation set. The test set remains un-
changed.

We will now further synthesize datasets suitable for
relative novelty detection. Basically, our procedure
first mimics drawing observations from two distribu-
tions s(x) and ¢g(z) where s(z) = ¢(z); then it adds
some novelty into the sample from s(x) such that the
sample looks as if it was from a new distribution p(x).
With this manipulation, we will have p(z)/q(z) large
for the novel points, and we try to detect novelty in the
target disbution p(x) with respect to the background
distribution g(x).

More specifically, we will treat each of the ten digits
(0-9) as novelty once. The detail for creating samples
from s(x) and ¢(z) and adding novelty to obtain p(x)

is described below. Note that we will use digit 0 as
example and the procedure also applies to other digits:

1. First, put aside all images with digit 0. These are
the novel data points.

2. Randomly split the remaining images into 2 equal
halves, one half as observations from s(x) and an-
other half from ¢(z).

3. Add % novel points (digit 0) into the sample from
s(z), such that the fraction of novel points is r.
This is treated as a sample from p(z).

In our experiments, we used a set of 5 different r
(r = {2,4,6,8,10} in percentage). Furthermore, we
searched regularization parameter over the range of
1003131 We chose the best regularization parameter
according to the validation set and reported the per-
formance on the test set. The numbers reported in
Table 1 are the average Precision@k over 10 repeats of
each experiment.
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(a) Background (b) Target

(e) SVMP

(f) 1-class SVM

Figure 2: (a) Background and (b) target satellite image pairs for relative novelty detection. Novel pixels detected
by (c) TKL, (d) KL, (e) SVMP*f and (f) 1-class SVM are highlighted in red.

A common trend for all three methods is that as the
fraction of novelty increases, the accuracy of detecting
them also increases. However, TKL and KL are noti-
cably better than SVMP® in all experiments. In many
cases, such as when digit 0 is the novelty and r = 2%,
TKL and KL is more than 2 times better than SVMPe'f,

Between TKL and KL, TKL also wins in a majority of
the experiments. Especially when the fraction of nov-
elty is small which makes the novelty hard to detect,
the leading margin of TKL over KL is more obvious.
For instance, TKL is better than KL for only 3% when
digit 8 is the novelty and r = 10%. However, for the
same novlety but r = 2%, TKL is nearly 9% better
than KL.

6 Discussion

Relation to Classification It may seem surpris-
ing that truncated Kullback-Leibler estimation out-
performs estimators such as Precision@k which are
specifically designed for good retrieval performance

of the most relevant terms. We believe that this is
due to the fact that structured estimation to compute
Precision@k scores [Joachims, 2005] is likely not sta-
tistically consistent [Tewari and Bartlett, 2007].

On the other hand, it is easy to see that the Bayes-
optimal Precision@k estimate will decide to accept an
observation when the log-likelihood ratio between p(z)
and ¢(z) exceeds a given threshold, or in other words,
when logp(zly = 1)/p(xzly = —1) > ¢ for some con-
stant c¢.* Moreover, as established in (10), the min-
imizer of the variational optimization problem is a
rescaled log-likelihood ratio, at least in the region of
high values. This is exactly what we need for retrieval.
Hence our procedure is consistent.

We believe that this is the main reason why truncated
KL estimation outperforms custom designed estima-
tors in retrieval settings. A detailed analysis of the
statistical efficiency is subject to future research.

“With some abuse of notation we identified p(x) with
p(zly = 1) and ¢q(x) with p(z|y = —1).
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Table 1: Relative novelty detection results on USPS digits. The first column is the fraction r of novel data
points. The main part of this table reports the average Precision@k (%) when digits 0-9 are treated as novelty
respectively. The last column reports the number of times one method outperforms the others for a given r.

r Method 0 1 2 3 5 6 7 8 9 #win
KL 86.9+2.5 87.6+1.6 46.7+2.9 45.0+£2.9 28.943.5 24.4+3.2 43.9+2.5 78.3+1.9 12.8+2.2 15.6%+5.0 1
2 | TKL 92.5+1.6 77.6+3.9 57.841.7 51.1+1.4 38.9+3.5 32.24+3.4 57.842.4 83.3+1.9 21.7£2.7 22.243.7 9
svmperf 43.8+4.2 51.244.6 24.443.7 228423 16.1+2.8 10.6£2.8 25.0+3.0 42.846.5 10.0£2.0 7.8+4.2 0
KL 89.4+0.9 92.840.5 60.0£1.3 68.7+1.4 60.3£1.8 55.3£2.2 69.5+1.6 86.3+0.9 44.7£1.6 48.7+3.4 0
4 | TKL 90.6+1.2 93.14+0.6 66.8+1.3 75.841.7 68.4+1.2 60.0+£2.7 75.3+1.8 87.1+0.5 52.9+1.8 52.14+3.6 10
svmperf 58.2+2.7 83.6+2.0 33.2+1.6 42.1+£2.8 38.943.3 25.54£2.3 36.1+£2.6 64.243.8 25.84+2.4 29.242.1 0
KL 85.0+0.8 93.6+£0.3 67.2£0.9 74.7+1.1 73.3+£0.7 66.6£1.5 78.6+1.3 86.1+£0.5 62.4+1.0 67.9+1.4 0
6 | TKL 87.140.9 94.240.4 70.5£0.8 79.840.5 78.8+0.9 69.5+1.3 81.7+0.9 88.0+0.6 64.840.9 71.9+1.6 10
svmperf 61.2+2.2 90.2+1.1 43.94+1.4 52.8+1.5 50.9+1.6 42.2+1.5 53.1+1.6 72.7+1.3 39.7£2.6 47.9+1.6 0
KL 84.840.8 94.5+0.1 72.44£0.8 76.0+1.1 77.7+£0.5 74.0£1.2 82.9+1.0 86.6+0.4 68.0£0.9 75.3+1.1 1
8 | TKL 87.7+41.0 93.3+0.4 74.7£0.6 78.44+1.2 80.8+0.5 74.840.6 84.840.7 86.9+0.8 69.2+1.1 78.44+0.9 9
SVMPE | 71.041.0 90.1+£0.7 54.74+1.1 61.040.9 60.042.1 52.1+1.9 63.54+1.3 72.6+1.0 50.2+1.7 57.7+2.3 0
KL 88.1+£0.7 95.7+£0.1 78.4£0.5 78.7+£0.7 80.2+0.6 77.8£0.8 87.2+0.6 88.3+0.2 71.7£0.6 79.9+1.0 2
10 | TKL 90.44+0.8 95.3+0.2 79.44+0.7 80.1+40.9 81.840.5 78.7£0.8 87.940.7 87.140.6 74.6+1.0 83.44+0.8 8
SvMPet | 78.141.5 92.040.4 61.841.1 65.440.7 65.3+1.6 58.5+1.2 73.0+1.3 75.940.7 55.3+1.3 64.6+1.8 0

Stability Our setting may also have advantages in
terms of uniform convergence over the plain KL esti-
mation procedure. They arise mainly from the flexible
adjustment of the threshold parameter p via v. While
for the plain KL estimation procedure the weight
of individual observations may grow unbounded very
rapidly via expl(z;), the automatic adjustment of p
ensures that the average weight of all observations is
limited to v as can be seen in (20). A detailed analysis
is also a subject of future research.

Implementation We have shown that the method
can be easily implemented using existing variational
KL estimation code. Moreover, it is also possible to use
stochastic gradient descent on the objective function
directly, thereby allowing us to apply the method to
large collections of data.

7 Conclusion

In this paper, we identify the problem of relative nov-
elty detection and propose a truncated KL divergence
formulation for solving this problem. Based on a vari-
ational decomposition of trucated KL divergence, we
also design an efficient algorithm. We show that our
algorithm outperforms KL divergence, SVMP*f and 1-
class SVM in a range of different experiments.
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