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Abstract

Sparse Gaussian process methods that use in-
ducing variables require the selection of the
inducing inputs and the kernel hyperparam-
eters. We introduce a variational formula-
tion for sparse approximations that jointly
infers the inducing inputs and the kernel hy-
perparameters by maximizing a lower bound
of the true log marginal likelihood. The key
property of this formulation is that the in-
ducing inputs are defined to be variational
parameters which are selected by minimizing
the Kullback-Leibler divergence between the
variational distribution and the exact poste-
rior distribution over the latent function val-
ues. We apply this technique to regression
and we compare it with other approaches in
the literature.

1 INTRODUCTION

The application of Gaussian process (GP) models is in-
tractable for large datasets because the time complex-
ity scales as O(n3) and the storage as O(n2) where
n is the number of training examples. To overcome
this limitation, many approximate or sparse meth-
ods have been proposed in the literature (Williams
and Seeger, 2001; Smola and Bartlett, 2001; Csato
and Opper, 2002; Lawrence et al., 2002; Seeger
et al., 2003; Schwaighofer and Tresp, 2003; Snelson
and Ghahramani, 2006; Quiñonero-Candela and Ras-
mussen, 2005). These methods construct an approxi-
mation based on a small set of m support or inducing
variables that allow the reduction of the time com-
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plexity from O(n3) to O(nm2). They mainly differ
in the strategies they use to select the inducing in-
puts which are typically selected from the training or
test examples. Snelson and Ghahramani (2006) allow
the inducing variables to be considered as auxiliary
pseudo-inputs that are inferred along with kernel hy-
perparameters using continuous optimization.

Approximate marginal likelihoods are appropriate ob-
jective functions for model selection in sparse GP mod-
els. Existing state-of-the-art methods (Snelson and
Ghahramani, 2006; Seeger et al., 2003) derive such ap-
proximations by modifying the GP prior (Quiñonero-
Candela and Rasmussen, 2005) and then computing
the marginal likelihood of the modified model. This
approach turns the inducing inputs into additional ker-
nel hyperparameters. While this can increase flexibil-
ity when we fit the data, it can also lead to overfitting
when we optimize with respect to all unknown hyper-
parameters. Furthermore, fitting a modified model is
not so rigorous approximation procedure since there is
no distance between the exact and the modified model
that is minimized.

In this paper we introduce a variational method that
jointly selects the inducing inputs and the hyperpa-
rameters by maximizing a lower bound to the exact
marginal likelihood. The important difference between
this formulation and previous methods is that here the
inducing inputs are defined to be variational param-
eters which are selected by minimizing the Kullback-
Leibler (KL) divergence between a variational GP and
the true posterior GP. This allows i) to avoid overfit-
ting and ii) to rigorously approximate the exact GP
model by minimizing a distance between the sparse
model and the exact one. The selection of the inducing
inputs and hyperparameters is achieved either by ap-
plying continuous optimization over all unknown quan-
tities or by using a variational EM algorithm where at
the E step we greedily select the inducing inputs from
the training data and at the M step we update the
hyperparameters. In contrast to previous greedy ap-
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proaches, e.g. (Seeger et al., 2003), our scheme mono-
tonically increases the optimized objective function.

We apply the variational method to regression with
additive Gaussian noise and we compare its perfor-
mance to training schemes based on the projected pro-
cess marginal likelihood (Seeger et al., 2003; Csato and
Opper, 2002) and the sparse pseudo-inputs marginal
likelihood (Snelson and Ghahramani, 2006).

Our method is most closely related to the variational
sparse GP method described in (Csato and Opper,
2002; Seeger, 2003) that is applied to GP classifica-
tion (Seeger, 2003). The main difference between our
formulation and these techniques is that we maximize
a variational lower bound in order to select the induc-
ing inputs, while these methods use variational bounds
for estimating only the kernel hyperparameters.

2 SPARSE GP REGRESSION

A GP is a set of random variables {f(x)|x ∈ X} for
which any finite subset follows a Gaussian distribution.
To describe a GP, we only need to specify the mean
function m(x) and a covariance function k(x,x′). The
covariance function typically depends on a set of hy-
perparameters θ. A GP can be used as a prior over a
real-valued function f(x). This prior can be combined
with data to give a posterior over the function.

Suppose we have a training dataset {(xi, yi)}
n
i=1 of n

noisy realizations of some unobserved or latent func-
tion so that each scalar yi is obtained by adding Gaus-
sian noise to f(x) at input xi, i.e. yi = fi + ǫi, where
ǫi ∼ N(0, σ2) and fi = f(xi). Let X denote all train-
ing inputs, y all outputs and f the corresponding train-
ing latent function values. The joint probability model
is p(y, f) = p(y|f)p(f) where p(y|f) is the likelihood
and p(f) the GP prior. The data induce a posterior
GP which is specified by a posterior mean function and
a posterior covariance function:

my(x) = Kxn(σ2I + Knn)−1y, (1)

ky(x,x′) = k(x,x′) − Kxn(σ2I + Knn)−1Knx′ .

Here, Knn is the n×n covariance matrix on the train-
ing inputs, Kxn is n-dimensional row vector of ker-
nel function values between x and the training in-
puts and Knx = KT

xn. Any query related to the
posterior GP can be answered by the above mean
and covariance functions. For instance, the Gaus-
sian posterior distribution p(f |y) on the training la-
tent variables f is computed by evaluating eq. (1) at
the inputs X. Similarly the prediction of the output
y∗ = f∗ + ǫ∗ at some unseen input x∗ is described by
p(y∗|y) = N(y∗|my(x∗), ky(x∗,x∗) + σ2). The poste-
rior GP depends on the values of the hyperparameters

(θ, σ2) which can be estimated by maximizing the log
marginal likelihood given by

log p(y) = log[N(y|0, σ2I + Knn)]. (2)

Although the above GP approach is elegant, it is in-
tractable for large datasets since the computations re-
quire the inversion of a matrix of size n × n which
scales as O(n3). Thus, we need to consider approx-
imate or sparse methods in order to deal with large
datasets. Advanced sparse methods use a small set
of m function points as support or inducing variables.
This yields a time complexity that scales as O(nm2).
Important issues in these methods involve the selec-
tion of the inducing variables and the hyperparame-
ters. For reviews of current approaches see chapter 8
in (Rasmussen and Williams, 2006) and (Quiñonero-
Candela and Rasmussen, 2005).

Suppose we wish to use m inducing variables to con-
struct our sparse GP method. The inducing variables
are latent function values evaluated at some inputs
Xm. Xm can be a subset of the training inputs or aux-
iliary pseudo-points (Snelson and Ghahramani, 2006).
Learning Xm and the hyperparameters (θ, σ2) is the
crucial problem we need to solve in order to obtain
a sparse GP method. An approximation to the true
log marginal likelihood in eq. (2) can allow us to infer
these quantities. The current state-of-the-art approxi-
mate marginal likelihood is given in the sparse pseudo-
inputs GP method (SPGP) proposed in (Snelson and
Ghahramani, 2006). A related objective function used
in (Seeger et al., 2003) corresponds to the projected
process approximation (PP). These approximate log
marginal likelihoods have the form

F = log[N(y|0, σ2I + Qnn)], (3)

where Qnn is an approximation to the true covariance
Knn. In PP, Qnn = KnmK−1

mmKmn, i.e. the exact co-
variance is replaced by the Nyström approximation.
Here, Kmm is the m×m covariance matrix on the in-
ducing inputs, Knm is the n×m cross-covariance ma-
trix between training and inducing points and Kmn =
KT

nm. In SPGP, Qnn = diag[Knn − KnmK−1
mmKmn] +

KnmK−1
mmKmn, i.e. the Nyström approximation is cor-

rected to be exact in the diagonal. By contrasting eq.
(2) with (3), it is clear that F is obtained by mod-
ifying the GP prior. This implies that the inducing
inputs Xm play the role of extra kernel hyperparam-
eters (similar to θ) that parametrize the covariance
matrix Qnn. However because the prior has changed,
continuous optimization of F with respect to Xm does
not reliably approximate the exact GP model. Fur-
ther, since F is heavily parametrized with the extra
hyperparameters Xm, overfitting can occur especially
when we jointly optimize over (Xm,θ, σ2).
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In the next section, we propose a formulation for
sparse GP regression that follows a different philos-
ophy. Rather than modifying the exact GP model, we
minimize a distance between the exact posterior GP
and a variational approximation. The inducing inputs
Xm become now variational parameters which are rig-
orously selected so as the distance is minimized.

3 VARIATIONAL LEARNING

We wish to define a sparse method that directly ap-
proximates the posterior GP mean and covariance
functions in eq. (1). This posterior GP can be
also described by the predictive Gaussian p(z|y) =∫

p(z|f)p(f |y)df , where p(z|f) denotes the conditional
prior over any finite set of function points z. Suppose
that we wish to approximate the above Bayesian inte-
gral by using a small set of m auxiliary inducing vari-
ables fm evaluated at the pseudo-inputs Xm, which are
independent from the training inputs. fm are just func-
tion points drawn from the same GP prior as the train-
ing function values f . By using the augmented joint
model p(y|f)p(z, fm, f), we equivalently write p(z|y) as

p(z|y) =

∫
p(z|fm, f)p(f |fm,y)p(fm|y)dfdfm. (4)

Suppose now that fm is a sufficient statistic for the
parameter f in the sense that z and f are independent
given fm, i.e. it holds p(z|fm, f) = p(z|fm). The above
can be written as

q(z) =

∫
p(z|fm)p(f |fm)φ(fm)dfdfm

=

∫
p(z|fm)φ(fm)dfm =

∫
q(z, fm)dfm, (5)

where q(z) = p(z|y) and φ(fm) = p(fm|y). Here,
p(f |fm) = p(f |fm,y) is true since y is a noisy ver-
sion of f and because of the assumption we made that
any z is conditionally independent from f given fm

1.
In practise it is difficult to find inducing variables fm
that are sufficient statistics. Thus, we expect q(z) to
be only an approximation to p(z|y). In such case, we
can choose φ(fm) to be a “free” variational Gaussian
distribution, where in general φ(fm) 6= p(fm|y), that
depends on a mean vector µ and a covariance matrix
A. By using eq. (5), we can write down the approxi-
mate posterior GP mean and covariance functions as
follows

mq
y(x) = KxmK−1

mmµ, (6)

kq
y(x,x′) = k(x,x′) − KxmK−1

mmKmx′ + KxmBKmx′ ,

1From p(z|fm,y) =
R

p(y|f)p(z,fm,f)df
R

p(y|f)p(z,fm,f)dfdz
and by using the

fact p(z|fm, f) = p(z|fm), the result follows.

where B = K−1
mmAK−1

mm. The above defines the gen-
eral form of the sparse posterior GP which is computed
in O(nm2). The question that now arises is how do we
select the φ distribution, i.e. (µ, A), and the inducing
inputs Xm. Next we describe a variational method
that allows to jointly specify these quantities and treat
Xm as a variational parameter which is rigorously se-
lected by minimizing the KL divergence.

A principled procedure to specify φ and the inducing
inputs Xm is to form the variational distribution q(f)
and the exact posterior p(f |y) on the training function
values f , and then minimize a distance between these
two distributions. Equivalently, we can minimize a dis-
tance between the augmented true posterior p(f , fm|y)
and the augmented variational posterior q(f , fm) where
clearly from eq. (5) q(f , fm) = p(f |fm)φ(fm). The
augmented true posterior is associated with the aug-
mented joint model

p(y, f , fm) = p(y|f)p(f |fm)p(fm), (7)

which is equivalent to the initial model p(y, f) =
p(f |y)p(f), since by marginalizing out fm from the for-
mer we always recover the latter. In particular, notice
that the conditional prior p(f |fm) and the marginal
prior p(fm) depend on the specific values of the in-
ducing inputs Xm. However, this dependence never
affects the posterior p(f |y) or the marginal likelihood
p(y). Hence, the augmented representation has a set
of “free” parameters Xm which can be treated as varia-
tional parameters as opposed to the model parameters.

To determine the variational quantities (Xm, φ), we
minimize the KL divergence KL(q(f , fm)||p(f , fm|y)).
This minimization is equivalently expressed as the
maximization of the following variational lower bound
of the true log marginal likelihood:

FV (Xm, φ) =

∫
p(f |fm)φ(fm) log

p(y|f)p(fm)

φ(fm)
dfdfm,

(8)
where the term p(f |fm) inside the log cancels out. We
can firstly maximize the bound by analytically solving
for the optimal choice of the variational distribution
φ. The bound after this maximization is

FV (Xm) = log
[
N(y|0, σ2I + Qnn)

]
−

1

2σ2
Tr(K̃),

(9)

where Qnn = KnmK−1
mmKmn and K̃ = Cov(f |fm) =

Knn−KnmK−1
mmKmn. Details of the derivation of this

bound are given in a technical report (Titsias, 2009).
The novelty of the above objective function is that
it contains a regularization trace term: − 1

2σ2 Tr(K̃).
This clearly differentiates FV from all marginal likeli-
hoods, described by eq. (3), that were previously ap-
plied to sparse GP regression. We will analyze the
trace term shortly.
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The quantity in eq. (9) is computed in O(nm2) time
and is a lower bound of the true log marginal likeli-
hood for any value of the inducing inputs Xm. Fur-
ther maximization of the bound can be achieved by
optimizing over Xm and optionally over the number
of these variables. Note that the inducing inputs de-
termine the flexibility of the variational distribution
q(f , fm) = p(f |fm)φ(fm) since by tuning Xm we adapt
both p(f |fm) and the underlying optimal distribution
φ∗. To compute this optimal φ∗, we differentiate eq.
(8) with respect to φ(fm) without imposing any con-
straints. This gives:

φ∗(fm) = N(fm|µ, A), (10)

where µ = σ−2KmmΣKmny, A = KmmΣKmm and
Σ = (Kmm + σ−2KmnKnm)−1. This now fully speci-
fies our variational GP and we can use eq. (6) to make
predictions in unseen input points. Clearly, the pre-
dictive distribution is exactly the one used by the pro-
jected process (PP) that has been previously proposed
in (Csato and Opper, 2002; Seeger et al., 2003). Thus,
as far as the predictive distribution is concerned the
above method is equivalent to PP.

However, the variational method is very different to
PP and SPGP as far as the selection of the inducing
inputs and the kernel hyperparameters is concerned.
This is because of the extra regularization term that
appears in the bound in eq. (9) and does not appear in
the approximate log marginal likelihoods used in PP
(Seeger et al., 2003) and SPGP (Snelson and Ghahra-
mani, 2006). As discussed in section 2, for the latter
objective functions, the role of Xm is to form a set
of extra kernel hyperparameters. In contrast, for the
lower bound, the inputs Xm become variational pa-
rameters due to the KL divergence that is minimized.

To look into the functional form of the bound, note
that FV is the sum of the PP log likelihood and the
regularization trace term − 1

2σ−2Tr(K̃). Thus, FV at-
tempts to maximize the PP log likelihood and simul-
taneously minimize the trace Tr(K̃). Tr(K̃) repre-
sents the total variance of the conditional prior p(f |fm)
which also corresponds to the squared error of predict-
ing the training latent values f from the inducing vari-
ables fm:

∫
p(f , fm)||KnmK−1

mmfm − f ||2dfdfm. When

Tr(K̃) = 0, the Nyström approximation is exact, i.e.
Knn = KnmK−1

mmKmn, which means that the induc-
ing variables become sufficient statistics and we can
reproduce exactly the full GP prediction. Note that
the trace Tr(K̃) itself has been used as a criterion for
selecting the inducing points from the training data
in (Smola and Schölkopf, 2000) and is similar to the
criterion used in (Lawrence et al., 2002).

When we maximize the variational lower bound, the
hyperparameters (σ2,θ) are regularized. It is easy to

see how this is achieved for the noise variance σ2. At
a local maxima, σ2 satisfies:

σ2 =
1

n

∫

fm

φ∗(fm)||y − α||2dfm +
1

n
Tr(K̃), (11)

where ||z|| denotes the Euclidean norm and α =E[f |fm] = KnmK−1
mmfm. This decomposition reveals

that the obtained σ2 will be equal to the estimated
“actual” noise plus a “correction” term that is the av-
erage squared error of predicting the training latent
values from the inducing variables.

So far we assumed that the inducing inputs are se-
lected by applying gradient-based optimization. How-
ever, this can be difficult in high dimensional input
spaces as the number of variables becomes very large.
Further, the kernel function might not be differentiable
with respect to the inputs. In such cases we can still
apply the variational method by selecting the induc-
ing inputs from the training inputs. An important
property of this discrete optimization scheme is that
FV monotonically increases when we greedily select in-
ducing inputs and adapt the hyperparameters. Next
we discuss this greedy selection method.

3.1 GREEDY SELECTION

Let m ⊂ {1, . . . , n} be the indices of a subset of data
that are used as the inducing variables. The training
points that are not part of the inducing set are indexed
by n−m and are called the remaining points, e.g. fn−m

denotes the remaining latent function values. The
variational method is applied similarly to the pseudo-
inputs case. Assuming the variational distribution
q(f) = p(fn−m|fm)φ(fm), we can express a variational
bound that has the same form as the bound in eq. (9)

with the only difference that K̃ = Cov(fn−m|fm).

The selection of inducing variables among the training
data requires a prohibitive combinatorial search. A
suboptimal solution can be based on a greedy selection
scheme where we start with an empty inducing set
m = ∅ and a remaining set n − m = {1, . . . , n}. At
each iteration, we add a training point j ∈ J ⊂ n−m,
where J is a randomly chosen working set, into the
inducing set that maximizes the selection criterion ∆j .

It is important to interleave the greedy selection pro-
cess with the adaption of the hyperparameters (σ2,θ).
This can be viewed as an EM-like algorithm; at the
E step we add one point into the inducing set and at
the M step we update the hyperparameters. To ob-
tain a reliable convergence, the approximate marginal
likelihood must monotonically increase at each E or M
step. The PP and SPGP log likelihoods do not sat-
isfy such a requirement because they can also decrease
as we add points into the inducing set. In contrast,
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the bound FV is guaranteed to monotonically increase
since now the EM-like algorithm is a variational EM.
To clarify this, we state the following proposition.

Proposition 1. Let (Xm, fm) be the current set of
inducing points and m the corresponding set of indices.
Any point i ∈ n − m added into the inducing set can
never decrease the lower bound.

Proof: Before the new point (fi,xi) is added,
the variational distribution is p(fn−m|fm)φ∗(fm) =
p(fn−(m∪i)|fi, fm)p(fi|fm)φ∗(fm). When we add the
new point, the term p(fi|fm)φ∗(fm) is replaced by the
optimal φ∗(fi, fm) distribution. This can either in-
crease the lower bound or leave it invariant. A more
detailed proof is given in (Titsias, 2009).

A consequence of the above proposition is that the
greedy selection process monotonically increases the
lower bound and this holds for any possible crite-
rion ∆. An obvious choice is to use FV as the cri-
terion, which can be evaluated in O(nm) time for any
candidate point in the working set J . Such a selec-
tion process maximizes the decrease in the divergence
KL(q(f)||p(f |y)).

4 COMPARISON

In this section we compare the lower bound FV , the
PP and the SPGP log likelihood in some toy prob-
lems. All these functions are continuous with respect
to (Xm, σ2,θ) and can be maximized using gradient-
based optimization.

Our working example will be the one-dimensional
dataset2 considered in Snelson and Ghahramani (2006)
that consists of 200 training points; see Figure 1. We
train a sparse GP model using the squared exponential
kernel defined by σ2

f exp(− 1
2ℓ2

||xi − xj ||
2). Since the

dataset is small and the full GP model is tractable,
we compare the sparse approximations with the ex-
act GP prediction. The plots in the first row of Fig-
ure 1 show the predictive distributions for the three
methods assuming 15 inducing inputs. The left plot
displays the mean prediction with two-standard error
bars (shown as blue solid lines) obtained by the max-
imization of FV . The prediction of the full GP model
is displayed using dashed red lines. The middle plot
shows the corresponding solution found by PP and the
right plot the solution found by SPGP. The prediction
obtained by the variational method almost exactly re-
produces the full GP prediction. The final value of
the variational lower bound was −55.5708, while the
value of the maximized true log marginal likelihood
was −55.5647. Further, the estimated hyperparame-
ters found by FV match the hyperparameters found

2obtained from www.gatsby.ucl.ac.uk/∼snelson/.

by maximizing the true log marginal likelihood. In
contrast, training the sparse model using the PP log
likelihood gives a poor approximation. The SPGP
method gave a much more satisfactory answer than
PP although not as good as the variational method.

To consider a more challenging problem, we decrease
the number of the original 200 training examples by
maintaining only 20 of them3. We repeat the experi-
ment above using exactly the same setup. The second
row of Figure 1, displays the predictive distributions
of the three methods. The prediction of the varia-
tional method is identical to the full GP prediction
and the hyperparameters match those obtained by full
GP training. On the other hand, the PP log likeli-
hood leads to a significant overfitting of the training
data since the mean curve interpolates the training
points and the error bars are very noisy. SPGP pro-
vides a solution that significantly disagrees with the
full GP prediction both in terms of the mean predic-
tion and the errors bars. Notice that the width of
the error bars found by SPGP varies a lot in differ-
ent input regions. This nonstationarity is achieved
by setting σ2 very close to zero and modelling the
actual noise by the heteroscedastic diagonal matrix
diag[Knn −KnmK−1

mmKmn]. The fact that this diago-

nal matrix (the sum of its elements is the trace Tr(K̃))
is large indicates that the full GP model is not well ap-
proximated.

The reason PP and SPGP do not recover the full GP
model when we optimize over (Xm, σ2,θ) is not the
local maxima. To clarify this point, we repeated the
experiments by initializing the PP and SPGP log like-
lihoods to optimal inducing inputs and hyperparam-
eters values where the later are obtained by full GP
training. The predictions found are similar to those
shown in Figure 1. A way to ensure that the full GP
model will be recovered as we increase the number
of inducing inputs is to select them from the training
inputs. This, however, turns the continuous optimiza-
tion problem into a discrete one and moreover PP and
SPGP face the non-smooth convergence problem.

Regarding FV , it is clear from section 3 that by maxi-
mizing over Xm we approach the full GP model in the
sense of KL(q(f , fm)|p(f , fm|y)). Something less clear
is that FV efficiently regularizes the hyperparameters
(σ2,θ) so as overfitting is avoided. This is achieved by

the regularization trace term: − 1
2σ−2Tr(K̃). When

Tr(K̃) is large because there are not sufficiently many
inducing variables, this term favours kernel parame-
ters that give a smoother function. Also, when Tr(K̃)
is large the decomposition in eq. (11) implies that σ2

3The points were chosen from the original set according
to the MATLAB command: X = X(1:10:end).
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Figure 1: The first row corresponds to 200 training points and the second row to 20 training points. The first column
shows the prediction (blue solid lines) obtained by maximizing FV over the 15 pseudo-inputs and the hyperparameters.
The full GP prediction is shown with red dashed lines. Initial locations of the pseudo-inputs are shown on the top as
crosses, while final positions are given on the bottom as crosses. The second column shows the predictive distributions
found by PP and similarly the third column for SPGP.

must increase as well. These properties are useful for
avoiding overfitting and also imply that the prediction
obtained by FV will tend to be smoother than the pre-
diction of the full GP model. In contrast, the PP and
SPGP log likelihoods can find more flexible solutions
than the full GP prediction which indicates that they
are prone to overfitting.

5 EXPERIMENTS

In this section we compare the variational lower bound
(VAR), the projected process approximate log likeli-
hood (PP) and the sparse pseudo-inputs GP (SPGP)
log likelihood in four real datasets. As a baseline tech-
nique, we use the subset of data (SD) method. For
all sparse GP methods we jointly maximize the al-
ternative objective functions w.r.t. hyperparameters
(θ, σ2) and the inducing inputs Xm using the conju-
gate gradients algorithm. Xm is initialized to a ran-
domly chosen subset of training inputs. In each run
all methods are initialized to the same inducing in-
puts and hyperparameters. The performance crite-
ria we use are the standardized mean squared error

(SMSE), given by 1
T

||y∗−f∗||
2

var(y∗) , and the standardized

negative log probability density (SNLP) as defined in
(Rasmussen and Williams, 2006). Smaller values for
both error measures imply better performance. In all
the experiments we use the squared-exponential kernel
with varied length-scale.

Firstly, we consider the Boston-housing dataset, which
consists of 455 training examples and 51 test examples.

Since the dataset is small, full GP training is tractable.
In the first experiment, we fix the parameters (θ, σ2)
to values obtained by training the full GP model. Thus
we can investigate the difference of the methods solely
on how the inducing inputs are selected. We rigorously
compare the methods by calculating the moments-
matching divergence KL(p(f∗|y)||q(f∗)) between the
true test posterior p(f∗|y) and each of the approxi-
mate test posteriors. For the SPGP method the ap-
proximate test posterior distribution is computed by
using the exact test conditional p(f∗|fm). Figure 2(a)
show the KL divergence as the number of inducing
points increases. Means and one-standard error bars
were obtained by repeating the experiment 10 times.
Note that only the VAR method is able to match the
full GP model; for around 200 points we closely match
the full GP prediction. Interestingly, when the induc-
ing inputs are initialized to all training inputs, i.e.
Xm = X, PP and SPGP still give a different solu-
tion from the full GP model despite the fact that the
hyperparameters are kept fixed to the values of the
full GP model. The reason this is happening is that
they are not lower bounds to the true log marginal
likelihood and as shown in Figure 2(c) they become
upper bounds. To show that the effective selection
of the inducing inputs achieved by VAR is not a co-
incidence, we compare it with the case where the in-
puts are kept fixed to their initial randomly selected
training inputs. Figure 2(b) displays the evolution of
the KL divergence for the VAR, the random selection
plus PP (RSPP) and the SD method. Note that the
only difference between VAR and RSPP is that VAR
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Figure 2: (a) show the KL divergence as the number of inducing variables increases for the VAR the PP and SPGP
methods. Similarly (b) show the divergence for the VAR, RSPP and SD methods. (c) displays the approximate log
marginal likelihoods; the true log marginal likelihood value is displayed by using the dotted horizontal line. (d) and (e)
show the SMSE and SNLP errors (obtained by joint learning hyperparameters and inducing-inputs) against the number
of inducing variables. (f) shows the corresponding log marginal likelihoods.

optimizes the lower bound over the initial values of
the inducing inputs, while RSPP just keep them fixed.
Clearly RSPP significantly improves over the SD pre-
diction, and VAR significantly improves over RSPP.

In a second experiment, we jointly learn inducing vari-
ables and hyperparameters and compare the meth-
ods in terms of the SMSE and SNLP errors. The
results are displayed in the second row of Figure 2.
Note that the PP and SPGP methods achieve a much
higher log likelihood value (Figure 2(f)) than the true
log marginal likelihood. However, the error measures
clearly indicate that the PP log likelihood significantly
overfits the data. SPGP gives better SMSE error than
the full GP model but it overfits w.r.t. the SNLP error.
The variational method matches the full GP model.

We now consider three large datasets: the kin40k

dataset, the sarcos and the abalone datasets4 that
have been widely used before. Note that the abalone

dataset is small enough so as we will be able to train
the full GP model. The inputs were normalized to
have zero mean and unit variance on the training set

4
kin40k: 10000 training, 30000 test, 8 attributes,

ida.first.fraunhofer.de/ anton/data.html.
sarcos: 44, 484 training, 4, 449 test, 21 attributes,
www.gaussianprocess.org/gpml/data/.
abalone: 3, 133 training, 1, 044 test, 8 attributes,
www.liaad.up.pt/ ltorgo/Regression/DataSets.html.

and the outputs were centered so as to have zero mean
on the training set. For the kin40k and the sarcos

datasets, the SD method was obtained in a subset of
2000 training points. We vary the size of the inducing
variables in powers of two from 16 to 1024. For the
sarcos dataset, the experiment for 1024 was not per-
formed since is was unrealistically expensive. All the
objective functions were jointly maximized over induc-
ing inputs and hyperparameters. The experiment was
repeated 5 times. Figure 3 shows the results.

From the plots in Figure 3, we can conclude the fol-
lowing. The PP log likelihood is significantly prone to
overfitting as the SNLP errors clearly indicate. How-
ever, note that in the kin40k and sarcos datasets,
PP gave the best performance w.r.t. to SMSE error.
This is probably because of the ability of PP to in-
terpolate the training examples that can lead to good
SMSE error when the actual observation noise is low.
SPGP often has the worst performance in terms of the
SMSE error and almost always the best performance
in terms of the SNLP error. In the abalone dataset,
SPGP had significantly better SNLP error than the
full GP model. Since the SNLP error depends on the
predictive variances, we believe that the good perfor-
mance of SPGP is due to its heteroscedastic ability.
For example, in the kin40k dataset, SPGP makes
σ2 almost zero and thus the actual noise in the like-
lihood is modelled by the heteroscedastic covariance
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Figure 3: The first column displays the SMSE (top) and SNLP (bottom) errors for the kin40k dataset with respect to
the number of inducing points. The second column shows the corresponding plots for the sarcos dataset and similarly
the third column shows the results for the abalone dataset.

diag[Knn − KnmK−1
mmKmn]. The fact that the latter

term is large may indicate that the full GP model is
not well approximated. Finally the variational method
has good performance. VAR never had the worst per-
formance and it didn’t exhibit overfitting. The exam-
ples in section 4, the Boston-housing and the abalone

dataset indicate that the VAR method remains much
closer to the full GP model than the other methods.

6 CONCLUSION

We proposed a variational framework for sparse GP
regression that can reliably learn inducing inputs and
hyperparameters by minimizing the KL divergence be-
tween the true posterior GP and an approximate one.
This method can be more generally applicable. Cur-
rently we apply this technique to classification. An
interesting topic for the future is to apply this method
to GP models that assume multiple latent functions.
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