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Abstract

This paper presents a novel learning algo-
rithm for structured classification, where the
task is to predict multiple and interacting la-
bels (multilabel) for an input object. The
problem of finding a large-margin separation
between correct multilabels and incorrect
ones is formulated as a linear program. In-
stead of explicitly writing out the entire prob-
lem with an exponentially large constraint
set, the linear program is solved iteratively
via column generation. In this case, the pro-
cess of generating most violated constraints
is equivalent to searching for highest-scored
misclassified incorrect multilabels, which can
be easily achieved by decoding the structure
based on current estimations. In addition, we
also explore the integration of column gener-
ation and an extragradient method for lin-
ear programming to gain further efficiency.
The proposed method has the advantages
that it can handle arbitrary structures and
larger-scale problems. Experimental results
on part-of-speech tagging and statistical ma-
chine translation tasks are reported, demon-
strating the competitiveness of our approach.

1 Introduction

Structured classification is to predict multiple and in-
teracting labels, called multilabels, for a given input
object. This kind of problem frequently arises in text,
speech and image processing as well as bioinformatics,
with examples including sequence labeling, parsing, bi-
partite matching, etc.
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Recent advances in machine learning have applied
maximum margin learning techniques to many of the
above problems by optimizing a support vector ma-
chine (SVM)-style objective function over structured
outputs. In comparison with binary classification
tasks, a major issue complicating the structured case is
that an exponential number of potential incorrect mul-
tilabels, i.e. negative examples, exist for every training
point. Directly applying an SVM formulation to such
problems will yield a quadratic programming (QP) op-
timization with exponentially many constraints, cor-
respondingly exponentially many variables in the dual
form. A solution to this problem was proposed by
Altun et al. (2003) and Tsochantaridis et al. (2005)
based on the working set method. Whilst Taskar et al.
(2003) introduced a novel algorithm for Markov net-
works, whose spirit is to reformulate the optimization
problem into an equivalent problem of size polynomial
in the number of cliques in the graphs by decomposing
its original dual variables into the so-called marginal
dual variables. Alternatively, Bartlett et al. (2004) as-
sumed the dual variables to be generated from a Gibbs
distribution of a series of “mini-dual” variables each
corresponding to a possible configuration for a clique
in the graph, and estimated them based on exponen-
tiated gradient updates. Besides SVM-like optimiza-
tions, Taskar et al. (2006) made a further improve-
ment by using a convex-concave saddle-point formula-
tion of the large margin structured estimation, which
extended its application to a broader range of combi-
natorial models whose decoding processes are solvable
via convex programming.

However, many real world applications may represent
more complex situations. For example, in statistical
machine translation (SMT), the word lattice is nei-
ther a Markov network nor any convex combinatorial
model. Moreover, even an experimental SMT sys-
tem will involve millions of lexicon entries (labels), for
which training the weights usually requires hundreds
of thousands of bilingual sentence pairs (training ex-
amples). The QP-based methods mentioned above are
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still impractical for these kinds of tasks.

Thus, in this paper we present a linear programming
(LP) approach for large margin learning, which can be
applied to general structured prediction problems. In
our framework, we still follow the large margin sep-
aration hyperplane formulation similar to SVM, but
use an L1-regularization in the objective function. In-
stead of explicitly writing out the entire problem, the
column generation technique is employed to solve it.
In this case, it is equivalent to incrementally adding
violated constraints which can be detected via decod-
ing the structure with the current estimation. In ad-
dition, column generation can be utilized with the ex-
tragradient method for LP (Korpelevich, 1976), which,
we argue, can be expected to offer further efficiency
by providing a proper starting point in every itera-
tion. Compared to previous works, not only does the
proposed approach allow arbitrary structures, it also
scales better than the QP-based models. In addition,
we prove that optimizing the objective function of the
proposed model directly minimizes its generalization
error bound.

2 Structured Classification

We consider the problem of learning a w-
parameterized function f : X × Y → R, where
X and Y are respectively the input and output spaces.
Accordingly, the multilabel prediction ŷ for a given
input object x ∈ X is obtained as:

ŷ = argmax
y∈Y

f(x,y;w) (1)

We define the joint feature mapping φ : X × Y → R
d,

and assume that f is from the linear family, as:

f(x,y;w) := w⊤φ(x,y) (2)

Then based on a set of training examples S :=
{(xi,yi) ∈ X × Y | i = 1, . . . , m}, our goal is to seek
the hyperplane w that separates the positive examples
from the negative ones with maximum margin in the
R

d feature space defined by φ. This type of problem
is formulated by SVM and the extensions (Crammer
and Singer, 2001) into the following optimization:

max
w,γ

γ (3)

s.t. w⊤∆φ(xi,yi,y) ≥ γ, ∀y 6= yi, ∀i;

‖w‖2 = 1.

where ∆φ(xi,yi,y) = φ(xi,yi)−φ(xi,y), and γ is the
separation margin. This problem can be equivalently
transformed to a quadratic program as:

min
w

1

2
‖w‖22 (4)

s.t. w⊤∆φ(xi,yi,y) ≥ 1, ∀y 6= yi, ∀i.

Slack variables ξi can be introduced to allow some ex-
amples to fail to reach the margin, but only with an
associated cost:

min
w,ξ

1

2
‖w‖22 + C

m
∑

i=1

ξ2
i (5)

s.t. w⊤∆φ(xi,yi,y) ≥ 1− ξi, ∀y 6= yi, ∀i;

ξ ≥ 0.

where C > 0 is called the regularization coefficient,
trading off training errors with the margin.

2.1 LP Formulation

As mentioned above, in structured classification prob-
lems, the direct use of QP (5) is infeasible, as there will
be too many potential negative examples yielding too
large a constraint set. Before addressing a solution to
this issue, first we make a slight modification to it by
replacing the L2-norm in the objective function with
an L1-norm to make it an LP problem. In addition,
we constrain w to be non-negative, which simplifies its
solution, as will be shown later. That is:

min
w,ξ

‖w‖1 + C

m
∑

i=1

ξi (6)

s.t. w⊤∆φ(xi,yi,y) ≥ 1− ξi, ∀y 6= yi, ∀i;

w ≥ 0; ξ ≥ 0.

2.2 A More Complex Case

In some special problems, of which an example of con-
cern is SMT, the situation will be a bit more complex.
Firstly, in SMT the word lattice given by a source
sentence x may have several paths yielding the same
translation y. So here we take each path denoted by y

as a multilabel, rather than the output translation y.
In addition, for a given source sentence, there might be
several reference translations. Moreover, it can not be
guaranteed that the reference translations are among
the paths in a word lattice. Therefore, in this case we
will have to use the so-called pseudo-references that
are the best translations we can obtain from the word
lattice (Liang et al., 2006; Tillmann and Zhang, 2006)
as positive examples.

We use Y to denote the set of the paths that yield good
outputs (pseudo-references), whilst Y denotes the set
of those leading to bad ones. One solution could be
that we separate with a large margin each positive ex-
ample (x, y), where y ∈ Y , from those negative exam-
ples (x, ȳ), where ȳ ∈ Y and ȳ has an internal structure
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close to y. Then the problem can be rewritten as:

min
w,ξ

‖w‖1 + C

m
∑

i=1

ξi (7)

s.t. w⊤∆φ

(

xi, arg min
y∈Yi

ϑ(y, ȳ), ȳ

)

≥ 1− ξi,

∀ȳ ∈ Y i, ∀i; w ≥ 0; ξ ≥ 0.

where we use ϑ(y, ȳ) to denote some metric to measure
the closeness of the internal structures of y and ȳ. This
formulation works by enforcing at least parts of the
pseudo-references to be highly ranked in contrast to
the rest of the paths in every word lattice. The insight
behind this is to control the variety inside the problem.

2.3 A More General Case

Alternatively, we could also try to separate all the good
multilabels from the bad ones with a large margin:

min
w,ξ

‖w‖1 + C

m
∑

i=1

ξi (8)

s.t. w⊤∆φ(xi, y, ȳ) ≥ 1− ξi, ∀ȳ ∈ Y i, y ∈ Yi, ∀i;

w ≥ 0; ξ ≥ 0.

This gives a more general form of the structured clas-
sification problems, of which LP (6) and LP (7) can
be taken as two special cases.

3 Column Generation

To solve such LP problems that have exponentially
large constraint sets, column generation (CG) provides
a practical solution without requiring the entire con-
straint set explicitly to be available. It starts from
an initial point, incrementally adds the most violated
constraints into a working set and solves the current
relaxed subproblem, referred to as restricted master
problem, until an optimum is achieved or some ap-
proximate stopping criterion is reached.

For convenience of expression, we rewrite our LP prob-
lems into matrix form:

min
w,ξ

1⊤w + C1⊤ξ (9)

s.t. Hw ≥ 1−Mξ; w ≥ 0; ξ ≥ 0.

where H =
(

∆φ(xi, y, ȳ)⊤
ȳ∈Y i,y∈Yi,1≤i≤m

)

, 1 denotes

the vector with components 1, ξ is the vector repre-
sentation of the slack variables with the ith element
ξi, and M is the matrix matching each ξi to its cor-
responding rows in H. For future discussions, here we
also give its dual form with dual variables λ, as:

max
λ

1⊤λ (10)

s.t. H⊤λ ≤ 1; M⊤λ ≤ C1; λ ≥ 0.

Algorithm 1: Column Generation for LP
1 input: {(xi, yi)|yi ∈ Yi, i = 1, . . . , m}
2 w ← 1, ξ← 0,H← ( ),M← ( )
3 repeat
4 for i← 1 to m

5 ȳi ← argmaxy∈Y i
w⊤φ(xi, y)

6 yi ←

{

arg miny∈Yi
ϑ(y, ȳi) : LP (7)

arg miny∈Yi
w⊤φ(xi, y) : LP (8)

7 if w⊤∆φ(xi, yi, ȳi) < 1− ξi

8 h← ∆φ(xi, yi, ȳi)
⊤

9 H←

(

H

h

)

, M←

(

M

δi
1

)

10 end if
11 end for

12 (w, ξ)←
min 1⊤w + C1⊤ξ

s.t. Hw ≥ 1−Mξ;
w ≥ 0; ξ ≥ 0.

13 until convergence
14 return w

Algorithm 1 illustrates the process of solving a LP-
based structured classification problem using the col-
umn generation method. Note here, to balance be-
tween the number of constraints to be added into the
working set and the number of times the LP subprob-
lems must be solved, in each iteration we generate a
most violated constraint for each training example, in-
stead of the most violated constraint over the entire
training set. The ‘argmax’ operation in Line 5 usu-
ally can be achieved by doing a k-best decoding of the
structure based on w and seeking the top ranked in-
correct multilabel. For simpler problems that have a
unique correct multilabel output for each input, such
as part-of-speech tagging, k = 2 is sufficient.

4 Extragradient Method for LP

To solve the LP (sub)problems in Line 12 of Algorithm
1, the extradradient method proposed by Korpelevich
(1976) is utilized. We start from a brief overview of it.

Let Q ⊂ R
m and S ⊂ R

n be two subsets of Euclidean
space, and π(u,v) be a real-valued function, where
u ∈ Q and v ∈ S. We assume that:

1. Q and S are closed and convex.

2. π(u,v) is convex in u and concave in v, differen-
tiable, and its partial derivatives satisfy the Lips-
chitz condition on Q× S, i.e. there exists a con-

1
δi denotes a row vector with its ith element 1 and all

the others 0.
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stant K ≥ 0 such that:

‖πu(u,v)− πu(u′,v′)‖2 ≤ K(‖u− u′‖22 + ‖v − v′‖22)
1

2

‖πv(u,v)− πv(u′,v′)‖2 ≤ K(‖u− u′‖22 + ‖v − v′‖22)
1

2

3. The set of saddle points U∗ × V∗ of π(u,v) on
Q× S is nonempty.

The extragradient method finds saddle points of
π(u,v) by the following update rules:

ūt = PQ(ut − απu(ut,vt)) (11)

v̄t = PS(vt + απv(ut,vt))

ut+1 = PQ(ut − απu(ūt, v̄t))

vt+1 = PS(vt + απv(ūt, v̄t))

where α ≥ 0, and PQ and PS are operators projecting
their arguments onto the corresponding sets. Then
Korpelevich (1976) proved the following theorem:

Theorem 4.1 If assumptions 1–3 hold and 0 ≤ α ≤
1
K

, then there exists a saddle point (u∗,v∗) ∈ U∗×V∗

such that (ut,vt)→ (u∗,v∗) when t→∞.

Getting back to our problem LP (9) and LP (10), the
extragradient method solves them by finding the sad-
dle point of their Lagrange function:

min
w,ξ

max
λ

1⊤w + C1⊤ξ + λ⊤1− λ⊤Mξ − λ⊤Hw

s.t. w ≥ 0; ξ ≥ 0;

λ ≥ 0. (12)

The corresponding update rules are:

w̄t = Pw≥0(wt − α(1−H⊤λt)) (13)

ξ̄
t
= Pξ≥0(ξt − α(C1−M⊤λt))

λ̄
t
= Pλ≥0(λt + α(1−Mξt −Hwt))

wt+1 = Pw≥0(wt − α(1−H⊤λ̄
t
))

ξt+1 = Pξ≥0(ξt − α(C1−M⊤λ̄
t
))

λ
t+1 = Pλ≥0(λt + α(1−Mξ̄

t
−Hw̄t))

where the step size α can be estimated by (2‖H‖2F +

2‖M‖2F )−
1

2 , and ‖ · ‖F denotes the Frobenius norm.

4.1 Extragradient method with CG

When applied to solve our restricted master prob-
lems in Algorithm 1, this extragradient method can
be slightly modified to offer a practical solution for
large-scale training tasks as follows. The proofs of Ko-
rpelevich (1976) suggest that the iterative process (13)
can be started from an arbitrary feasible point for the
primal and the dual problems LP (9) and LP (10),

Primal Objective

D
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Primal Objective

D
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e

1st Iteration
2nd Iteration
3rd Iteration

Figure 1: A Visual Demonstration of the Extragradi-
ent Method for LP with Column Generation: the top
figure shows the process of solving an entire LP prob-
lem with the extragradient method; the bottom figure
illustrates the column generation procedure to solve
the same problem according to Algorithm 2.

which, after finding a basis in a number of initial steps,
will go along a spiral curve and converge to the opti-
mum with the speed of a geometric progression. Thus
we could intuitively expect that it will converge faster
if started from a feasible point closer to the solution.
We replace Line 12 of Algorithm 1 with Algorithm 2,
where in each iteration the previous solution is used
to find a proper starting point for the extragradient
method. Moreover, further efficiency can be gained by
not solving the LP subproblems exactly, but to a tol-
erance (Line 10 of Algorithm 2) leaving the final solu-
tion to be appropriately tightened when the optimum
is achieved. Since at each time Line 5 of Algorithm
2 actually gives a feasible point for the entire primal
problem LP (9), whilst if all those elements of λ that
correspond to the constraints out of the working set
are regarded as 0, λ is also a feasible point for the
dual problem LP (10), Algorithm 2 will approach the
global optimum when the whole process converges.

Figure 1 visualizes this process by observing the objec-
tive values of a pair of primal and dual problems. In
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Algorithm 2: Extragradient Method with CG
1 tolerances: ǫ1, ǫ2
2 w0 ← w, ξ0 ← ξ, λ0 ← λ

3 for i← 1 to m

4 if w⊤∆φ(xi, yi, ȳi) < 1− ξi

5 ξ0
i ← (1 −w⊤∆φ(xi, yi, ȳi))

6 λ0 ← (λ⊤, 0)⊤

7 end if
8 end for

9 iterate process (13) from ((w0, ξ0), λ0)

10 until max
{

‖(wt,ξt)−(wt−1,ξt−1)‖2

‖(wt,ξt)‖2

,
‖λt−λt−1‖2

‖λt‖2

}

< ǫ1

&& ‖wt‖1 + C‖ξt‖1 − ‖λ
t‖1 < ǫ2

11 w ← wt, ξ ← ξt, λ← λt

the top figure, it can be seen that in the bilinear case
the extragradient method converges to the optimum
solution (where the primal and dual objectives have
equal values) along a spiral curve. The bottom one
shows that after CG, Line 5 of Algorithm 2 actually
makes the starting point for the next iteration shift
along the dashed line. Although the actual conver-
gence speed in the next iteration still depends on the
seriousness of the current suboptimal solution violat-
ing the constraints, i.e. how far the next starting point
will be shifted from the diagonal line, the extragradient
method converges geometrically, which suggests that
it can provide an acceptable approximation in not too
many steps, since we tend to solve the subproblems to
a given tolerance.

5 Experimental Results

To demonstrate the effect of our method, we test it on
two different tasks. In all the following experiments,
the algorithms are implemented in C/C++ and run on
a cluster machine with 8× 3.00GHz Intel(R) Xeon(R)
CPUs and 32GB memory.

5.1 Part-of-speech Tagging

We first experiment with the proposed LP method,
which we name LP-Struct, on a part-of-speech tag-
ging task, which follows the formulation in LP (6).
The corpus we used consists of 6700 manually tagged
sentences from a bibliographic database of publica-
tions MEDLINE (Smith et al., 2004). We perform
random sampling 5 times. At each time, 1000 sen-
tences are selected as the test set, with the remaining
5700 sentences being the training set. The features
used for each label in the following experiments are
simply its observation and one previous label (i.e. a
first-order hidden Markov model). We also compare
our LP-Struct to some existing techniques for struc-
tured classification problems, including probabilistic
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Figure 2: CPU Time Expenses: dual-simplex (dot
markers) vs. extragradient (cross markers). (The 5
dot/cross curves are for the 5 repeats of the experi-
ment. Each data point stands for the total CPU time
expense up to that iteration. Hence, the number of
points on a curve gives the number of iterations spent
in total.)

hidden Markov model (HMM), conditional random
field (CRF) (Lafferty et al., 2001), structured percep-
tron (Collins, 2002), and single-best MIRA (Crammer
et al., 2005). Here, we use an open-source toolkit
CRF++2 to train the CRF and MIRA models. In
addition, we compare two versions of LP-Struct that
solve the subproblems via the extragradient method
and the standard dual-simplex method respectively.
The implementation of the dual-simplex method is
from LP SOLVE3, one of the most efficient open-
source LP solvers. The results are shown in Table 1. It
can be seen that LP-Struct outperforms HMM and the
structured perceptron, and has a result very close to
MIRA, but works slightly worse than CRF. However,
the training of LP-Struct is significantly faster than
MIRA and CRF. In Figure 2 we compare the CPU
time and the number of iterations spent in training
LP-Struct based on the dual-simplex method and the
extragradient method. Not only is the extragradient
method much faster than the dual-simplex method,
the trend of its time growth is also more stable, as
the trend shown in the first a few iterations of the
dual-simplex method suggests that it might take too
much time to finish some intermediate steps if used for
problems of a much larger scale.

5.2 Statistical Machine Translation

Next we experiment with LP-Struct on SMT, a much
more complex problem, based on the formulations in

2Available at: http://crfpp.sourceforge.net/
3Available at: http://lpsolve.sourceforge.net/5.5/
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Table 1: Experimental Results for Part-of-Speech Tagging

Model Error Rate (%) Avg. CPU Time (s) Avg. #Iteration
CRF 4.58±0.14 51403 205
MIRA 4.91±0.06 9084 46
Perceptron 5.38±0.19 26 100
LP-Struct/Simplex 4.94±0.18 3879 23
LP-Struct/Extragradient 4.92±0.13 856 14
HMM 20.02±0.29 – –

Table 2: Experimental Results for SMT

Training Method LP (7) LP (8) MERT
BLEU (%) 32.35 32.30 31.69

NIST 7.95 8.19 7.94

LP (7) and LP (8). We modify the Moses (Koehn
et al., 2007) system to make it fit for our experiments,
and do a purely-discriminative training for it on the
Senate Debates data set of the Canada Hansards cor-
pus. There are 182K sentence pairs in the training
set and 12K and 13K sentence pairs in two separate
test sets. Here we only translate in one direction,
French to English. Pseudo-references are generated
by searching for the highest-BLEU-scored hypotheses
in beam search stacks. In addition, to simplify the
situation, in our experiments we only allow the adja-
cent phrases to exchange their positions. The features
we use for training include both blanket features and
discriminative features, similar to Liang et al.’s (2006)
work. Concretely, for blanket features we have forward
and backward orientation-based distortion probabili-
ties (6 features), one tri-gram language model prob-
ability, bidirectional translation probabilities (2 fea-
tures) and lexicon weights (2 features), a word penalty,
a phrase penalty and a distortion distance penalty, i.e.
14 features in total. We also use all the English tri-
grams, bilingual phrase pairs and their corresponding
distortion orientations extracted from the training set
as the discriminative features. Finally, we have in total
about 8 millon features. The LP solver here employs
the extragradient method introduced above. We test
it on the 13K test set and compare the results to the
baseline Moses system whose parameters (14 blanket
features only) are tuned based on the minimum error-
rate training (MERT) (Och, 2003) on the 12K devel-
opment set. The results are summarized in Table 2,
where we find that both of the models LP (7) and LP
(8) improve the baseline. Interestingly, LP (7) gains
more on the BLEU score, whilst LP (8) gains more on
the NIST score. These results are statistical signifi-
cant according to the approximate randomization test
(Riezler and Maxwell III, 2005), with p < 0.05.

6 Generalization Bound

This section gives a generalization bound of our LP-
based method for structured classification. We start
by introducing some notation.

In our problem LP (8), we actually take a triple
(x, y, ȳ) as a training example. We assume that
(x, y, ȳ) is generated from the joint space X := X ×
Y × Y, and F to be a class of real-valued functions
on X , such that F(X) := {f = 〈w, ∆φ(X)〉|∆φ :
X → R

d,w ∈ R
d+}. Let D be a distribution on

X . The error errD(f) of a function f ∈ F is de-
fined to be the probability D{(x, y, ȳ) : f(x, y, ȳ) < 0}.
We can also rewrite our training set in the form of
S = s1 ∪ s2 ∪ . . . ∪ sm, where si := {(xi, yi, ȳi)|yi ∈
Yi, ȳi ∈ Y i}.

The proposition from Schölkopf et al. (2001) to eluci-
date the relationship between single-class classification
and binary classification can be adopted here.

Proposition 6.1 (i) Suppose w parameterizes the
supporting hyperplane for the data set S. Then w pa-
rameterizes the optimal separating hyperplane for the
labeled data set, {((xi, yi, ȳi), 1)|yi ∈ Yi, ȳi ∈ Y i, i =
1, . . . , m} ∪ {((xi, ȳi, yi),−1)|yi ∈ Yi, ȳi ∈ Y i, i =
1, . . . , m}. (ii) Suppose w parameterizes the optimal
separating hyperplane passing through the origin for
a labeled data set, {((xi, yi, y

′
i), zi)|zi ∈ {−1, +1}, i =

1, . . . , m}, aligned such that yi ∈ Yi, y
′
i ∈ Y i for zi = 1,

and y′
i ∈ Y i, y

′
i ∈ Yi for zi = −1. Then w parameter-

izes the supporting hyperplane for the unlabeled data
set, {(xi, yi, ȳi)|yi ∈ Yi, ȳi ∈ Y i, i = 1, . . . , m}.

Now we can utilize the methodology for SVMs (Cris-
tianini and Shawe-Taylor, 2000) to analyze our model.
We start by introducing the following definitions.

Definition 6.1 Let F be a family of real-valued func-
tions on domain X. Given a sample S ∈ X l, we say
that a finite set of functions B covers F at radius γ if
for all f ∈ F , there exists g ∈ B, such that for each
data point z ∈ S, |f(z) − g(z)| < γ. The covering
number of F with respect to S, denoted by N (F , S, γ),
is the size of the smallest such cover. We also define
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the covering number of F for any sample of size l, as:

N (F , l, γ) := max
S∈Xl

N (F , S, γ).

In our case, given an f ∈ F the margin of an ex-
ample (x, y, ȳ) is defined to be f(x, y, ȳ), which cor-
responds to the binary classification view zf(x, y, y′).
We also define the margin of the training set S as
mS(f) := min(x,y,ȳ)∈S f(x, y, ȳ). Then we have the
following theorem derived by Cristianini and Shawe-
Taylor (2000).

Theorem 6.1 Consider thresholding a real-valued
function space F and fix γ ∈ R

+. For any proba-
bility distribution D on X, with probability 1− η over
the training set S, any function f ∈ F that has mar-
gin mS(f) ≥ γ on S has generalization error no more
than errD(f) ≤ ε(|S|,F , η, γ), where:

ε(|S|,F , η, γ) =
2

|S|

(

log2N (F , 2|S|,
γ

2
) + log2

2

η

)

,

provided |S| > 2
ε
.

Theorem 6.1 can be applied to our soft-margin case as
follows. For an input space X , we define the auxiliary
inner product space:

L(X) :=







g ∈ R
X : supp(g) is

countable and

∑

z∈supp(g)

g(z)2 <∞







,

where for g, h ∈ L(X), the inner product is given by
〈g, h〉 :=

∑

z∈supp(g) g(z)h(z). Now, we embed our

input space into space X × L(X) using the mapping
τ : (x, y, ȳ) 7→ ((x, y, ȳ), 1

C
δx̂), where C ∈ R

+ is a
constant, and δx̂ ∈ L(X) is defined as:

δx̂(x, y, ȳ) :=

{

1 if x = x̂;
0 otherwise.

Hence, for a function (f, g) ∈ F × L(X) we define its
action on τ(x, y, ȳ) ∈ X × L(X) to be:

(f, g)(τ(x, y, ȳ)) := f(x, y, ȳ) +
1

C
〈g, δx〉.

Now for fixed margin γ, the slack variables ξi in
LP (8) can be derived from ξi = max{0, γ −
infyi∈Yi,ȳi∈Y i

f(xi, yi, ȳi)}. By defining g(S, f, γ) ∈
L(X) to be:

g(S, f, γ) := C

m
∑

i=1

ξiδxi
,

we can make the data separable with margin
γ. It is easy to check that ∀(xi, yi, ȳi) ∈ S:
(f, g)(τ(xi, yi, ȳi)) = f(xi, yi, ȳi) + ξi ≥ γ, while
∀(x, y, ȳ) 6∈ S: (f, g)(τ(x, y, ȳ)) = f(x, y, ȳ). Theo-
rem 6.1 can therefore be translated to the following
theorem.

Theorem 6.2 Consider thresholding a real-valued
function space F and fix γ ∈ R

+. For any probabil-
ity distribution D on X, with probability 1 − η over
the training set S, any function f ∈ F for which
(f, g) ∈ G := F × L(X) has generalization error no
more than errD(f) ≤ ε(|S|,G, η, γ), where

ε(|S|,G, η, γ) =
2

|S|

(

log2N (G, 2|S|,
γ

2
) + log2

2

η

)

,

provided |S| > 2
ε
, and there is no discrete probability

on misclassified training points.

Based on our previous definition of F(X), the L1-norm
of (f, g) is then given by ‖(f, g)‖1 = ‖w‖1 + C‖ξ‖1.
If we assume max{‖∆φ(X)‖∞, 1

C
} ≤ b and ‖w‖1 +

C‖ξ‖1 ≤ c, we can obtain the following corollary from
Zhang’s (2002) Theorem 5.

Corollary 6.3 For the function class G := F ×L(X)
defined above, we have that:

log2N (G, l, γ) ≤

36c2b2(1 + ln(d + m))

γ2
log2

(

2

⌈

4cb

γ
+ 2

⌉

l + 1

)

.

Proof Given a uniform distribution vector µ ∈ R
n+

with each element µi = 1
n
, it is easy to check that for

any v ∈ R
n its weighted relative entropy with respect

to µ defined to be entroµ(v) :=
∑n

i=1 |vi| ln
|vi|

µi‖v‖1

sat-

isfies entroµ(v) ≤ ‖v‖1 lnn. Letting v = (w, ξ) ≥ 0

and inserting the above result into Zhang’s (2002) The-
orem 5 proves Corollary 6.3.

Note here, in our case, for any γ > 0, at the optimum
of LP (8), the quantity c

γ
= a will be a constant.

It can be seen that minimizing the objective function
in LP (8) will directly minimizes the generalization
error bound of our method. A similar result is given
by Demiriz et al. (2002) for the LP Boosting models.
But the latter applies LP to boosting feature selection,
which is for another problem domain.

When compared to the PAC-Bayesian bound for L2-
regularized structured classification models due to
Bartlett et al. (2004), our bound does not have the
logarithmic dependence on the number of labels in
the training set, but a logarithmic dependence on the
feature dimension, which will be much less than the
number of labels in the training set in many practi-
cal problems, e.g. part-of-speech tagging, parsing and
many other natural language processing tasks. In ad-
dition, our bound depends on the potential training
sample size |S| that is exponentially large, but not the
number of training examples m. As the dependence is
log

2
l

l
, it will significantly gain over the previous results

of Bartlett et al. (2004).
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7 Conclusions

In this paper, we present a novel algorithm for struc-
tured classification problems, which models the SVM-
style large-margin separation problem with a linear
program. To handle the exponentially large constraint
set, the column generation technique is employed. In
addition, we argue that further efficiency can be ob-
tained if the restricted master problems are solved us-
ing the extragradient method. We show encouraging
results by applying our algorithm to part-of-speech
tagging and statistical machine translation tasks. To
the best of our knowledge, none of the previous large-
margin structured prediction models has been applied
to handle such large-scale problems as in our experi-
ments. Furthermore, we prove that the generalization
error bound of our model can be directly optimized
by minimizing the empirical risk on the training data.
However, in the SMT case, a drawback of the proposed
method is that it is to some extent sensitive to the
quality of pseudo-references, as it tends to spend more
iterations on those inseparable (but possibly inconse-
quential) examples. However, generating highly reli-
able pseudo-references itself could be a difficult prob-
lem as well. To develop a more robust algorithm will
be one of our future research directions.
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